Разработка электронного учебника

Технико-экономическое обоснование необходимости разработки электронного учебника по дисциплине "Проектирование автоматизированных систем". Создание программного продукта. Эргономические требования к системам отображения информации; техника безопасности.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 20.09.2018
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ш проверить, что защитный заземляющий проводник не имеет выключателей и предохранителей, а также надёжно изолирован.

Пожарная безопасность

Под пожарной охраной понимают систему государственных и общественных мероприятий, направленных на охрану от огня людей и собственности.

Горение - это химический процесс соединения вещества с кислородом, сопровождающийся выделением тепла и света. Для возникновения и протекания процесса горения необходимо наличие горючего вещества, окислителя (обычно это кислород, находящийся в воздухе, фтор, хлор, озон и т.д.) и источников воспламенения, причём первые два элемента должны быть в соответствующем количественном соотношении, а источник воспламенения должен иметь определённую температуру и запас энергии, достаточные для нагревания вещества до необходимой температуры.

Пожар - это неконтролируемое горение вне специального очага, наносящее материальный ущерб. Особенностью пожаров в закрытых помещениях является сравнительно медленное горении в течение первых 30-40 минут из-за недостаточного притока воздуха в зону горения. После разрушения остекления интенсивность пожара резко возрастает. Скорость горения различных веществ колеблется в широких пределах.

Пожарная безопасность помещений, имеющих электрические сети, регламентируется ГОСТ 12.1.033-81 [3], ГОСТ 12.1.004-85 [4]. Работа оператора ЭВМ должна вестись в помещении, соответствующем категории Д пожарной безопасности (негорючие вещества и материалы в холодном состоянии). Огнестойкость здания по СНиП 2.01.02-85 [5] соответствует I степени (стены выполнены из искусственного или натурального камня и являются несущими, в перекрытиях здания отсутствуют горючие материалы).

В конструкции дисплеев используются специальные разъемы, уменьшающие переходное сопротивление, и, соответственно, нагрев. ЭВМ нельзя располагать вблизи источников тепла или термоизлучателей, на экраны дисплеев не должны падать прямые солнечные лучи. Устанавливать ЭВМ необходимо так, чтобы задняя и боковые стенки отстояли не менее чем на 0,2 м от других предметов. Для соблюдения теплового режима в корпусе ЭВМ предусмотрены вентиляционные отверстия и охлаждающий вентилятор. Внутренний монтаж выполнен проводом с повышенной теплостойкостью.

Пожарная безопасность объекта обеспечивается:

v системой предотвращения пожара;

v системой противопожарной защиты;

v организационно-техническими мероприятиями.

Предотвращение пожара в помещении достигается минимальным количеством предметов из горючих материалов, их безопасным расположением, а также отсутствием легковоспламеняющихся материалов.

Противопожарная защита помещения обеспечивается применением автоматической установки пожарной сигнализации (ПС-Л 1), наличием средств пожаротушения, применением основных строительных конструкций здания с регламентированными пределами огнестойкости, организацией своевременной эвакуации людей, применением средств коллективной и индивидуальной защиты людей.

Организационно-технические мероприятия должны включать организацию обучения служащих правилам пожарной безопасности.

Требования к уровням шума и вибрации

Возникает вопрос о влиянии помех на оператора и характеристиках его "помехоустойчивости". С точки зрения воздействий на оператора помехи могут быть различны. Одни из них постоянны и действуют в течении всего рабочего дня, другие случайны.

В рабочих помещениях компании основными источниками акустических шумов являются шумы ПЭВМ. ЭВМ являются также источниками шумов электромагнитного происхождения (колебания элементов электромеханических устройств под влиянием переменных магнитных полей). Кроме того, в данных помещениях, возникает структурный шум, то есть шум, излучаемый поверхностями колеблющихся конструкций стен, перекрытий, перегородок здания в звуковом диапазоне частот.

Систематический шум может вызвать утомление слуха и ослабление звукового восприятия, а также значительное утомление всего организма. Однако не все шумы вредны. Так, привычные не резко выраженные шумы, сопровождающие трудовой процесс, могут благоприятно влиять на ход работы; нерезкие шумы, характеризующиеся периодичностью звуков, например, музыка, в силу своей ритмичности не только не отвлекают от работы, но и вызывают положительные эмоции, способствуют повышению эффективности труда.

Для устранения или ослабления неблагоприятных шумовых воздействий целесообразно изолировать рабочие помещения, размещая их в частях здания, наиболее удаленных от городского шума - расположенных в глубине здания, обращенных окнами во двор и т.п. Шум ослабевает также благодаря зеленым насаждениям, поглощающим звуки.

Оптимальные показатели уровня шумов в рабочих помещениях конструкторских бюро, кабинетах расчетчиков, программистов определяются по ГОСТ 12.1.003-83 [6].

Характеристики постоянного шума - уровни звукового давления в децибелах в октавных полосах со среднегеометрическими частотами в герцах приведены в таблице 7.1.

Таблица 7.1.

Уровни звукового давления в октавных полосах

Уровень, дБ

63

152

250

500

1000

2000

4000

8000

Частота, Гц

71

61

54

49

45

42

40

38

Допустимый уровень шума при умственном труде, требующем сосредоточенности, - 50дБ. Для уменьшения шума и вибрации в помещении оборудование, аппараты и приборы устанавливаются на специальные фундаменты и амортизирующие прокладки. Если стены и потолки помещения являются источниками шумообразования, они должны быть облицованы звукопоглощающим материалом.

Пыль и вредные химические вещества

Воздух помещений загрязняется пылью, образующейся при обработке металла, пластмасс, древесины и других материалов, газами, выделяющимися при работе оборудования, неправильной эксплуатации тепловых агрегатов, при некоторых технологических процессах и химических реакциях, парами различных веществ. Воздушная среда загрязняется, как ядовитыми, так и неядовитыми веществами. Ядовитые (токсичные) вещества нарушают нормальную жизнедеятельность организма и могут привести к временным или хроническим патологическим изменениям. Однако и нетоксичные вещества при длительном воздействии, особенно при больших концентрациях могут стать причиной различных заболеваний, например, кожных или болезней внутренних органов. Степень и характер нарушений нормальной работы организма, вызываемых вредными химическими веществами, зависит от пути попадания его в организм, дозы, времени воздействия, концентрации вещества, растворимости, состояния человеческого организма, атмосферного давления, температуры, и, конечно, от состава загрязнения. Одним из проявлений воздействия вредных веществ является отравление. Отравления могут возникнуть внезапно при попадании в организм большого количества вредных веществ. Такие отравления называют острыми и расследуются как случаи производственного травматизма. Существует и другой вид отравления - профессиональное, которое развивается в течение длительного времени.

К ядовитым газовым примесям атмосферного воздуха относят:

v оксид углерода (II) - угарный газ (ПДК - 20 мг/ м 3);

v сероводород (ПДК - 10 мг/ м 3);

v аммиак (ПДК - 20 мг/м 3);

v выхлопные газы автомобилей и так далее.

Помимо газов в воздухе могут находиться мельчайшие частицы твёрдого вещества размерами от тысячных долей до одного миллиметра. Загрязнение воздуха пылью ухудшает санитарно-гигиенические условия труда. Такой воздух может стать причиной ряда болезней.

По действию на организм человека пыль разделяют на ядовитую (свинцовая, ртутная) и неядовитую (угольная, известняковая, древесная). Ядовитая пыль попадая в организм человека или оседая на коже, может вызвать острое отравление или хроническое заболевание. Другим фактором, определяющим опасность пыли для человека является её концентрация - содержание частиц в единице объёма воздуха (мг/м 3). Естественно, что масса вдыхаемой человеком пыли зависит от интенсивности дыхания, от вида выполняемой работы. Например, человек в неподвижном состоянии потребляет 10-12 л/мин, а при интенсивном физическом труде 50-70 л/мин. Следовательно, человек, выполняющий тяжёлую физическую работу в запыленной атмосфере, быстрее подвергается заболеванию.

В целях борьбы с пылью и загрязнением в рабочем помещении каждый день должна проводится влажная уборка.

Микроклимат

Наиболее значительным фактором производительности и безопасности труда является производственный микроклимат, который характеризуется температурой и влажностью воздуха, скоростью его движения, а также интенсивностью радиации, и должен соответствовать ГОСТ 12.1.005-88 [7] и СНиП 2.04.05-86 [8] (табл. 7.2.).

Таблица 7.2.

Требования к параметрам микроклимата в производственном помещении

Параметры микроклимата

Значения параметров

Зимой

летом

1. Температура, °C

22-24

23-25

2. Скорость воздушных масс, м/с

0,1

0,1-0,2

3. Относительная влажность, %

40-60

40-60

Исследования показали, что высокая температура в сочетании с высокой влажностью воздуха оказывают большое влияние на работоспособность оператора. При таких условиях резко увеличивается время сенсомоторных реакций, нарушается координация движений, увеличивается количество ошибок.

Высокая температура отрицательно сказывается и на ряде психологических функций человека. Уменьшается объем запоминаемой информации, резко снижается способность к ассоциациям, ухудшается протекание ассоциативных и счетных операций, понижается внимание.

Относительная влажность в пределах 40 - 60% мало сказывается на состоянии человека. При влажности 99 - 100% практически выключается регулирующий механизм потоотделения и быстро наступает перегревание.

Для поддержания необходимых температуры и влажности рабочее помещение оснащено системами отопления и кондиционирования, обеспечивающими постоянный и равномерный нагрев, циркуляцию, а также очистку воздуха от пыли и вредных веществ.

В помещениях предполагающих эксплуатацию системы требования к параметрам микроклимата в целом выполнены.

Вентиляция

Для поддержания в помещениях нормального, отвечающего гигиеническим требованиям состава воздуха, удаления из него вредных газов, паров и пыли используют вентиляцию.

Вентиляция - это регулируемый воздухообмен в помещении. Вентиляцией называют также устройства, которые её создают. По способу перемещения воздуха в помещении различают естественную и искусственную вентиляцию. Возможно их сочетание - смешанная вентиляция. Естественная вентиляция подразделяется на аэрацию и проветривание.

Механическая вентиляция, в зависимости от направления движения воздушных потоков, может быть вытяжной (отсасывающей), приточной (нагнетающей) и приточно-вытяжной. Если вентиляция происходит во всём помещении, то её называют общеобменной. Вентиляция сосредоточенная в какой-либо зоне, называется местной (локализующей). По времени действия вентиляция делится на постоянно действующую и аварийную.

При естественной вентиляции воздух поступает в помещение и удаляется из него вследствие разности температур, а также под действием ветра. Аэрация - это организованная естественная вентиляция, выполняющая роль общеобменной.

Механическая вентиляция обеспечивается вентиляторами, забирающими воздух из мест, где он чист, и направляющих его к любому рабочему месту или оборудованию, а также удаляющими загрязнённый воздух. При механической вентиляции воздух перед его потреблением можно подвергнуть обработке: подогреть, увлажнить или подсушить, очистить от пыли и т.д., а также очистить перед выбросом в атмосферу.

7.1 Эргономические требования к системам отображения информации

Эргономические требования определяют необходимые параметры яркостных, временных и пространственных характеристик зрительной информации.

Оценка яркостного режима включает нормирование уровня яркости, ее перепадов в поле зрения наблюдателя для достижения требуемых показателей эффективности обработки зрительной информации. Оптимальным считается такое значение уровня яркости, при котором обеспечивается максимальное проявление конкретной чувствительности. При установке оптимального диапазона яркостей, находящихся в поле зрения оператора, необходимо обеспечить перепад яркостей, близкий к уровню адаптации.

Максимально допустимый перепад яркостей в поле зрения оператора не должен превышать 1:100. Оптимальными же являются соотношения 20:1 между источником света и ближайшим окружением и 40:1 между самым светлым и самым темным участками изображения. Контрастность изображения снижается при внешнем освещении тем значительнее, чем ниже яркость экрана и чем больше яркость, создаваемая освещением. Контраст между системой отображения информации и его непосредственным окружением не должен превышать соотношения 3:1.

Средства отображения информации отвечают следующим техническим требованиям:

Ш яркость свечения экрана не менее 100 Кд/м 2;

Ш минимальный размер точки растра не более 0,6 мм для цветного монитора;

Ш контрастность изображения не менее 0.8;

Ш частота регенерации изображения в текстовом режиме не менее 72 Гц;

Ш количество точек растра на строку не менее 640;

Ш наличие антибликового покрытия экрана;

Ш размер экрана не менее 31 см по диагонали;

Ш высота символов на экране не менее 3.8 мм;

Ш расстояние от глаз оператора до экрана 40-80 см;

Ш монитор должен быть оборудован поворотной подставкой, позволяющей перемещать его в горизонтальной и вертикальной в пределах 130-200 мм и изменять угол наклона экрана на 10-15.

Описание зрительной работы оператора

Качество зрительного восприятия определяется энергетическими, пространственными и временными характеристиками сигналов, поступающих к оператору. В соответствии с названными характеристиками сигналов выделяются группы основных параметров зрительного анализатора:

Ш энергетические - диапазон воспринимаемых яркостей, контраст, слепящая яркость;

Ш пространственные - острота зрения, поле зрения, объем восприятия;

Ш временные - латентный период реакции, время адаптации, критическая частота мельканий.

1) Энергетические параметры.

Основной характеристикой зрительного анализатора является чувствительность. Его эффективное функционирование возможно в большом диапазоне интенсивностей сигналов, при этом сохраняется высокая чувствительность к интенсивности. Диапазон чувствительности зрительного анализатора лежит в пределах 10-7-10-5 Кд/м 2. Нижняя граница определяется минимальной интенсивностью светового потока, вызывающей ощущение. Эту величину называют порогом световой чувствительности. Он изменяется в очень широких пределах в процессе адаптации зрительного анализатора к внешнему световому воздействию; количественные оценки его зависят от длительности и характера адаптации (темновая или световая).

Абсолютный порог чувствительности зрительного анализатора характеризует наиболее высокую чувствительность, достигаемую в ходе темновой адаптации в течение нескольких часов (до 3-4 часов). Абсолютная чувствительность зрения достаточно высока. При достижении порога абсолютной чувствительности световые ощущения вызываются лучистой энергией, равной всего нескольким квантам.

При практических расчетах для повышения надежности проектируемых систем "человек-машина" рекомендуется исходить из максимального порога чувствительности, равного 5.2 · 10-6 Кд/м 2.

В поле зрения оператора одновременно могут попадать предметы разной яркости. Для оценки разности объектов в этом случае используется понятие адаптивной яркости. Оно определяется как средневзвешенное значение яркостей, попадающих в поле зрения. За счет адаптации глаза осуществляется "настройка" зрительного анализатора на эту яркость. Наиболее благоприятные условия для работы оператора создаются при яркостях адаптации от нескольких десятков до нескольких сотен Кд/м 2. Увеличение или уменьшение яркости снижает чувствительность к световым тонам. Наиболее контрастирующим соотношением являются (в порядке убывания светового контраста): синий на белом, черный на белом, зеленый на белом, черный на желтом, зеленый на красном, красный на желтом, красный на белом, оранжевый на черном, черный на пурпурном, оранжевый на белом, красный на зеленом.

Субъективная оценка яркостей воспринимаемого сигнала зависит от яркости окружающего фона, поэтому для практических целей используется относительный порог (порог контрастной чувствительности). Различают прямой контраст, рассчитываемый для светлого объекта на темном фоне, и обратный контраст - для светлого объекта на темном фоне. Для нормальной работы зрительного анализатора значение контраста должно находиться в диапазоне от 0.65 до 0.95.

Наиболее низкая световая чувствительность получается в ходе световой адаптации и характеризуется предельно допустимой яркостью источника, вызывающей эффект ослепления, то есть нарушение работы зрительного анализатора. Абсолютно слепящая яркость соответствует 225000 Кд/м 2. Эффект ослепления может наступить и в случае, если в поле зрения оператора находятся сигналы разной интенсивности. При этом сигналы с большей яркостью могут вызвать ослепление. В общем случае слепящая яркость определяется размером светящейся поверхности наблюдаемого объекта и яркостью сигнала, а также уровнем адаптации глаз.

2) Пространственные параметры.

Пространственные характеристики зрительного анализатора определяются воспринимаемыми глазом размерами предметов и их местоположением в пространстве. В эти группы включают остроту зрения, поле зрения, объем зрительного восприятия.

Острота зрения характеризует способность глаз различать мелкие детали и представляет собой минимальный угол, при котором две равноудаленные точки видны как раздельные. Угол зрения в 1 соответствует единице остроты зрения и считается пределом разрешающей способности глаза, обусловленным размерами световоспринимающих элементов - палочек и колбочек. Так как 1 соответствует 5 мкм сетчатки, то при диаметре палочек и колбочек 2-7 мкм абсолютный предел разрешения равен 0.3 - 0.5. Но такой предел достижим только при оптимальных условиях наблюдения и использования фовеальной области (центральной ямки, наиболее плотно заполненной колбочками). Более того, вследствие явления оптической дифракции реальный предел приближается к 2. Острота зрения зависит от уровня освещенности, расстояния до рассматриваемого предмета и его положения относительно наблюдателя, возраста последнего.

Поле зрения определяется при фиксированном взгляде как пространство в пределах которого возможна проекция изображения на сетчатку глаза. Оно зависит от возможностей оптической системы глаз, площади и характера распределения фоторецепторов, выступающих частей лица. Условно поле зрения можно разбить на три зоны:

v центрального зрения (размером 4-7, соответствующим желтому пятну сетчатки), где возможно наиболее четкое различение деталей;

v ясного видения (30-35), где при неподвижном глазе можно распознать предмет без различных мелких деталей;

v периферического зрения (75-90), где предметы обнаруживаются, но не распознаются.

Зона периферического зрения играет важную роль в ориентации во внешней обстановке. Объекты, попавшие в эту зону, могут быть быстро перемещены в зону ясного видения с помощью установочных движений глаз.

Объем восприятия определяется числом объектов наблюдения, которое может охватить оператор в течение одной зрительной фиксации. При предъявлении человеку не связанных между собой объектов наблюдения объем восприятия составляет 4-8 элементов.

3) Временные параметры.

Временные характеристики зрительного анализатора определяются временем, необходимым для возникновения зрительного ощущения при определенных условиях работы оператора. В группу этих характеристик входят: латентный (скрытый) период зрительной реакции, длительность инерции ощущения, критическая частота мельканий, время адаптации.

Латентный период - это интервал времени между моментом подачи сигнала и началом ответной реакции (возникновением ощущения). Это время зависит от интенсивности сигнала (чем сильнее раздражитель, тем реакция на него короче), его значимости, сложности работы оператора, возраста и других индивидуальных способностей человека. В среднем же латентный период зрительной реакции составляет 160 - 240 мс.

Длительность инерции ощущения определяется интервалом времени между моментом окончания воздействия раздражителя и моментом исчезновения зрительного ощущения, то есть это время сохранения воздействия света на сетчатку после окончания этого воздействия. Оно зависит от яркости и угловых размеров объекта. Если возникает необходимость в последовательном реагировании оператора на дискретно появляющиеся сигналы, то период их следования должен быть равен не меньше времени сохранения ощущения (рав-го 0.2-0.5 с).

Критическая частота мельканий (КЧМ) - это частота появления светового сигнала, при котором он, как раздражитель, воспринимается непрерывно. Эта частота зависит от яркости, размеров и конфигурации знаков. При обычных условиях наблюдения КЧМ = 15_25 Гц, при зрительном утомлении несколько снижается.

Адаптация - изменение чувствительности глаза в зависимости от воздействия на него световых сигналов, является важным свойством глаза, характеризующим его как самонастраивающуюся систему. Различают две формы адаптации: темновую (при переходе от света к темноте) и световую (при переходе от темноты к свету). При переходе в темноту световая чувствительность глаз увеличивается. Чем меньше разность яркостей, тем быстрее рост световой чувствительности. Переход из темноты в зону действия больших уровней яркости вызывает уменьшение световой чувствительности, которая тем меньше, чем выше уровень яркости.

Время адаптации определяется ее видом и находится в пределах от нескольких секунд до нескольких минут при световой адаптации и десятков минут при темновой. Яркость поля адаптации определяет вид освещения:

v ночное (менее 0.01 Кд/м 2);

v сумеречное (от 0.01 до 10 Кд/м 2);

v дневное (более 10Кд/м 2).

Им соответствует ночное, сумеречное, дневное зрение.

Заключение

Результатом данной дипломной работы явилась система, обработки и анализа структуры электронного гипертекстового учебника, написанного на языке HTML. Данная система призвана облегчить труд преподавателей, в частности и разработчиков автоматизированных обучающих систем, вообще, и написана на языке программирования Delphi 6.

Разработанная система решает следующие задачи:

Ш построение структуры понятий электронного гипертекстового учебника.

Ш отображение полученной структуры в наглядном и удобном для пользователя виде (в виде графа)

Ш поиск элемента в структуре;

Ш возможность перехода от просмотра структуры к просмотру учебника;

Ш обработка полученной структуры;

Ш тестирование.

Разработанная система состоит из двух функционально законченных модуля - модуля формирования структуры, реализованного в среде визуального программирования Delphi 6 и модуля отображения и обработки структуры, реализованного на языке HTML.

В ходе работы над проектом был проведен анализ сегодняшнего состояния автоматизированных обучающих систем и средств их разработки, были выявлены их достоинства и недостатки. На основе этого были сформулированы требования к обучающей системе, часть из которых легла в основу данного дипломного проекта.

Список использованной литературы

ГОСТ 12.1.019-79. ССБТ. Электробезопасность. Общие требования.

ГОСТ 25861-83. Машины вычислительные и системы обработки данных. Требования электрической и механической безопасности и методы испытаний.

ГОСТ 12.1.033-81. ССБТ. Пожарная безопасность объектов с электрическими сетями.

ГОСТ 12.1.004-85. ССБТ. Пожарная безопасность. Общие требования.

СНиП 2.01.02-85. Противопожарные нормы и правила.

ГОСТ 12.1.003-83. ССБТ. Шум. Общие требования безопасности.

СНиП 2.04.05-86. Отопление, вентиляция и кондиционирование.

ГОСТ 22269-76. Система "человек-машина". Рабочее место оператора. Взаимное расположение элементов рабочего места. Общие эргономические требования.

ГОСТ 12.1.002-84. ССБТ. Электрические поля промышленной частоты.

Алгоритмы и программы решения задач на графах и сетях / Нечепуренко М.И., Попков В.К., Майнагашев С.М. и др. - Новосибирск: Наука. Сиб. Отд-ние, 1990. - 515с.

Кристофидес Н. Теория графов. М., "Мир", 1978.

Норенков Ю.И., Михайловский О.В. Адаптивная автоматизированная обучающая система.//Конференция по искусственному интеллекту КИИ -94.Сб-к трудов. Тверь, 1994.- С.72-76.

Андриенко Г.Л., Андриенко Н.В. Интеллектуальная гипертекстовая система для исследования проблем и обучения.// Конференция по искусственному интеллекту КИИ-94.Сб-к трудов. Тверь, 1994.- С.58-62.

Миллер Т., Пауэл Д. Использование Delphi 3. Специальное издание. К.: Диалектика, 1997.

В.В. Фаронов Delphi 4. Учебный курс. Издательство "Нолидж", М-1998 г.

Кристофидес Н. Теория графов. М., "Мир", 1978.

Баженова И.Ю. Язык программирования Java - М.: Диалог-МИФИ, 1997-288 с.

Джамса К. Изучи сам JAVA сегодня - Мн.: ООО "Попурри", 1996 - 416 с.

Норенков Ю.И., Михайловский О.В. Адаптивная автоматизированная обучающая система.//Конференция по искусственному интеллекту КИИ -94.Сб-к трудов. Тверь, 1994.- С.72-76.

Андриенко Г.Л., Андриенко Н.В. Интеллектуальная гипертекстовая система для исследования проблем и обучения.// Конференция по искусственному интеллекту КИИ-94.Сб-к трудов. Тверь, 1994.- С.58-62.

Миллер Т., Пауэл Д. Использование Delphi 3. Специальное издание. К.: Диалектика, 1997.

Размещено на Allbest.ru

...

Подобные документы

  • Использование программы Microsoft Word 2010 при создании электронного учебника. Структура учебника, навигация, полнотекстный поиск, защита информации от изменений. Алгоритм разработки программного продукта. Описание технологических средств учебника.

    контрольная работа [196,9 K], добавлен 06.05.2014

  • Структурные элементы электронного учебника. Основные этапы разработки электронного учебника. Варианты структуры электронного образовательного издания. Подготовка электронного издания к эксплуатации. Методическое обеспечение электронного учебника.

    презентация [506,5 K], добавлен 28.12.2014

  • Концептуальные основы разработки электронного учебника на основе гипертекстовых технологий. Архитектура учебного пособия. Этапы построения электронного учебника "Информатика" и его структура. Анализ практического использования электронного учебника.

    дипломная работа [104,9 K], добавлен 02.05.2012

  • Электронный учебник как средство самообразования. Основные этапы проектирования электронного учебника. Методика использования электронных учебников. Язык гипертекстовой разметки HTML. Структура электронного учебника по дисциплине "Численные методы".

    дипломная работа [4,9 M], добавлен 02.05.2012

  • Обзор средств создания электронных обучающих систем. Требования к системе проектирования "электронного учебника". Разработка теоретической части и интерактивных примеров. Классификация средств создания электронных учебников. Принципы изложения материала.

    дипломная работа [7,8 M], добавлен 10.01.2013

  • Создание электронного учебника "Энциклопедия Интернет" для ознакомления пользователя с его функциями. Подготовка к разработке программного продукта. Анализ предметной области. Выбор языка программирования. Работа в интегрированной среде Delphi 7.

    курсовая работа [1,2 M], добавлен 09.03.2012

  • Внедрение информационных технологий в систему образования. Понятие, отличительные признаки, виды, структура и предназначение электронного учебника. Принципы его создания и основные этапы разработки в интегрированной среде программирования Delphi.

    дипломная работа [2,3 M], добавлен 03.07.2015

  • Описание электронного учебника, требования к его внутренней структуре и элементам. Технические характеристики и основные программные средства, используемые в процессе разработки. Формирование руководства пользователя, информационный интерфейс учебника.

    курсовая работа [1,5 M], добавлен 17.08.2015

  • Основное функциональное назначение электронного учебника. Основные требования к программной документации. Разработка алгоритма решения задачи. Требования к эргономике и технической эстетике. Назначение и условия применения программного средства.

    курсовая работа [2,1 M], добавлен 09.08.2011

  • Создание одной из форм обучения с использованием средств новых информационных технологий - электронного учебника. Администрирование электронного учебного пособия на тему "Линейное программирование". Проектирование структуры электронного учебника.

    курсовая работа [1,7 M], добавлен 09.06.2010

  • Создание электронного учебника, его предназначение, структура, логотип, начальная и главная страницы, разделы. Разработка стандартных фреймов, анимации с элементами мультимедиа и их внедрение в учебник. Руководство для пользователя электронным учебником.

    курсовая работа [3,4 M], добавлен 15.01.2010

  • Разработка электронного учебника по экономике для организации самостоятельной работы учащихся и поддержки курсов по экономике в вузах. Требования к программному средству. Описание объектов, свойств и методов. Разработка алгоритма решения задачи.

    курсовая работа [644,9 K], добавлен 06.05.2013

  • Разработка и реализация мультимедийного электронного учебника по дисциплине "Мультимедиа–технологии". Использование векторной графики. Передача данных в потоковом режиме. Работа со звуком. Применение Macromedia Flash в Web. Технология Symbol Conversation.

    курсовая работа [2,8 M], добавлен 16.08.2012

  • Разработка проекта мультимедийного электронного учебника по дисциплине "Компьютерные сети". Формирование требований пользователя. Структура входных и выходных данных, алгоритмы обработки. Рабочая документация: исходные модули, предварительные испытания.

    курсовая работа [227,8 K], добавлен 09.03.2013

  • Особенности электронных учебных пособий и основные принципы их создания. Сбор и подготовка исходного материала для электронного учебного пособия. Разработка структуры электронного пособия. Выбор программ и разработка интерфейса электронного учебника.

    дипломная работа [738,5 K], добавлен 27.06.2012

  • Электронный учебник как средство самообразования. Основные принципы самообразования. Этапы проектирования электронного учебника, построение интерфейса системы. Язык гипертекстовой разметки HTML. Структура электронного учебника по "Численным методам".

    дипломная работа [5,9 M], добавлен 15.03.2012

  • Технология создания электронного мультимедийного учебника. Особенности работы с изображениями. Структура электронного учебника, дизайн и интерфейс, наполнение информацией, расчет затрат на разработку. Техника безопасности при работе за компьютером.

    курсовая работа [480,3 K], добавлен 18.01.2012

  • Требования к разработке электронного учебно-методического обеспечения процесса обучения. Создание программного продукта – электронного учебника для изучения основ высшей математики. Разработка эскизного, технического и рабочего проектов программы.

    курсовая работа [1,1 M], добавлен 12.03.2013

  • Понятие электронного учебника, его сущность и особенности, назначение и использование, сфера применения. Модель структурирования системы и обоснование ее выбора. Проектирование системы управления и ее структурных единиц. Декомпозиция системы на модули.

    курсовая работа [32,5 K], добавлен 15.02.2009

  • Понятие электронного учебного пособия. Виды электронных учебных изданий, дидактические требования к ним. Компонент основной формы "Button1". Поэтапная разработка мультимедийного электронного учебника по дисциплине "Компьютерные сети", его интерфейс.

    курсовая работа [613,6 K], добавлен 31.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.