Организация ЭВМ и систем. Однопроцессорные ЭВМ

Функции устройств, входящих в состав неймановской модели электронно-вычислительной машины. Контроллер как блок обработки данных и выдачи управляющих сигналов. Особенности десятичной системы счисления. Принципы построения элементарного процессора.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 28.12.2020
Размер файла 787,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Организация ЭВМ и систем. Однопроцессорные ЭВМ

И.В. Хмелевский, В.П. Битюцкий

Конспект лекций посвящен изучению основ организации и функционирования ЭВМ в целом и ее отдельных узлов, взаимодействия ЭВМ и периферийных устройств, в том числе многопроцессорных систем, перспективных направлений в развитии вычислительной техники, приобретению опыта разработки простейших микропроцессорных устройств.

Конспект предназначен для студентов всех форм обучения направления 230100 - Информатика и вычислительная техника.

1. Общие вопросы истории развития и построения ЭВМ

С момента своего возникновения человек старался облегчить свой труд с помощью различных приспособлений. В начале это касалось только физического труда, а затем также и умственного. В результате уже в XVII веке начали появляться первые механические устройства, позволяющие выполнять некоторые арифметические действия над числами. Они предназначались, в основном, для коммерческих расчетов и составления навигационных таблиц.

Совершенствование технологии обработки металлов, а затем и появление первых электромеханических устройств типа электромагнитных реле привело к интенсивному совершенствованию вычислительных устройств. Кроме того, совершенствование вычислительных устройств было обусловлено все возрастающим объемом информации, требующей переработки.

До 30-х годов прошлого столетия разработкой вычислительных устройств занимались механики, математики, электрики. Но с конца 30-х годов к этому процессу подключились электронщики, поскольку вычислительные устройства стали создавать на электронных элементах - электронных лампах. Вычислительные устройства превратились в электронные вычислительные машины (ЭВМ0, а все, что связано было с созданием ЭВМ, превратилось в отдельную область человеческих знаний, которую условно можно было назвать "Теория и принципы проектирования ЭВМ".

Однако уже в 50-е годы разнообразие проблем теории и методов проектирования объектов вычислительной техники, сложность ее элементов, устройств, машин и систем закономерно привели к тому, что из дисциплины "Теория и принципы проектирования ЭВМ", еще недавно охватывающей все основные аспекты этой области науки и техники, выделились самостоятельные курсы: схемотехника ЭВМ, методы оптимизации, периферийные устройства, операционные системы, теория программирования и т.д. Современная ЭВМ - настолько сложное устройство, что в одном курсе физически невозможно охватить подробно все проблемы проектирования, создания и эксплуатации ЭВМ, которые в общем случае имеют три аспекта:

- пользовательский (т.е. ЭВМ является инструментом решения прикладных задач);

- программный (т.е. ЭВМ является объектом системного программирования);

- электронный (т.е. ЭВМ является сложным электронным устройством, созданным с использованием сложных технологий).

Настоящий курс "Организация ЭВМ и систем" без излишней детализации рассматривает комплекс основных вопросов, относящихся к теории, принципам построения и функционирования ЭВМ как сложного электронного устройства. При этом основное внимание уделяется микроЭВМ и устройствам на базе микропроцессорных комплектов. Следует иметь в виду также, что под ЭВМ понимается любое устройство переработки цифровой информации (от микроконтроллера, управляющего стиральной машиной, до суперЭВМ), а не только персональный компьютер.

1.1 Два класса ЭВМ

Любая сфера человеческой деятельности, любой процесс функционирования технического объекта связаны с передачей и преобразованием информации. Одно из важнейших положений кибернетики состоит в том, что без информации, ее передачи и переработки невозможны организованные системы - ни биологические, ни технические, искусственно созданные человеком.

Информацией называются сведения о тех или иных явлениях природы, событиях общественной жизни, процессах в технических устройствах. Информация, зафиксированная в некоторых материальных формах (на материальном носителе), называется сообщением, например:

· статистические данные о работе предприятия и потребности производства в материалах;

· данные переписи населения;

· данные для диспетчера аэропорта о перемещении самолетов в воздухе;

· данные о толщине прокатываемого листа.

Все эти сообщения отличаются друг от друга по источнику информации, по способу представления, по продолжительности и т.д. Но их объединяет одно - информацию, которую они несут, необходимо передать, переработать и как-то использовать.

В общем случае сообщения могут быть непрерывными (аналоговыми) и дискретными (цифровыми).

Аналоговое сообщение представляется некоторой физической величиной (обычно электрическим током или напряжением), изменение которой во времени отражает протекание рассматриваемого процесса, например температуры в нагревательной печи. Физический процесс, передающий непрерывное сообщение, может в определенном интервале принимать любые значения и изменяться в произвольные моменты времени, т.е. может иметь бесконечное множество состояний.

Дискретное сообщение характеризуется конечным набором состояний, например, передача текста. Каждое из этих состояний можно представить в виде конечной последовательности символов или букв, принадлежащих конечному множеству, называемому алфавитом. Такая операция называется кодированием, а последовательность символов - кодом. Число символов, входящих в алфавит, называется основанием кода. Важным здесь является не физическая природа символов кода, а то, что за конечное время можно передать только конечное число состояний сообщения. Причем, чем меньше основание кода, тем длиннее требуются кодовые группы для передачи фиксированного набора состояний сообщения.

В настоящее время в абсолютном большинстве случаев используются коды с основанием два, т.е. информация представляется в виде бинарных импульсных последовательностей, или двоичных кодов.

Передачу и преобразование любой дискретной информации всегда можно свести к эквивалентной передаче и преобразованию двоичных кодов, или цифровой информации.

Более того, возможно с любой заранее заданной степенью точности непрерывное сообщение заменить цифровым путем квантования непрерывного сообщения по уровню и дискретизации его по времени. Однако следует иметь в виду, что с увеличением точности представления аналогового сообщения растет разрядность кода. Это может привести к тому, что обработка аналогового сообщения в цифровой форме на конкретной ЭВМ в реальном масштабе времени окажется невозможной.

Таким образом, любое сообщение может быть с определенной степенью точности представлено в цифровой форме.

Электронные вычислительные машины (ЭВМ) являются преобразователями информации. В них исходные данные задачи преобразуются в результат ее решения. В соответствии с используемой формой представления информации при преобразовании ЭВМ делятся на два больших класса - аналоговые и дискретного действия - цифровые. Их обозначают как АВМ и ЦВМ соответственно. С 70-х годов термин ЭВМ относят именно к машинам дискретного действия, или ЦВМ, принципы функционирования которых и будут рассмотрены в настоящем курсе.

1.2 Немного истории

Считается, что первым механизмом для счета являлся абак, в котором сложение и вычитание чисел выполнялось перемещением камешков по желобам доски. Подобные устройства встречаются в разных вариантах в различных странах древнего мира.

Но настоящая потребность в автоматизации вычислений возникла в средние века в связи с резко возросшими в этот период торговыми операциями и океанским судоходством. Торговля требовала больших денежных расчетов, а судоходство - надежных навигационных таблиц.

Первые эскизы счетной машины создал Леонардо да Винчи (около 1500 года). А первые сведения о работающей счетной машине относятся к 1646 году (Германия). Но подробностей устройства этой счетной машины не сохранилось. В 1646 году во Франции Паскаль создал механическое устройство, которое складывало и вычитало многозначные числа. В 1673 году в Германии Лейбниц строит счетную машину, выполняющую все четыре арифметических действия. Он же предложил использовать двоичную систему счисления для нужд вычислительной математики. В этот период были созданы и другие счетные машины. Все они были построены в одном экземпляре (поскольку создавались десятки лет) и не могли долго работать - слишком сложны были их механизмы и слишком примитивна технология их изготовления. Только в 1820 году был налажен серийный выпуск (сотни штук в год) арифмометров конструкции Томаса де Кальмера. Вычисления, состоящие из последовательности арифметических операций, все еще лежали за пределами возможностей счетной машины.

В 1834 году Ч. Бэббидж разработал проект счетной машины, позволяющей реализовать вычисления любой сложности. Машина была задумана как механическая. Но Ч. Бэббиджа можно назвать пророком, поскольку его "аналитическая" машина стала прообразом ЭВМ, появившейся 100 лет спустя. Его машина содержала механический эквивалент практически всех основных устройств простейшей ЭВМ: память ("склад" на 1000 чисел по 50 десятичных знаков), арифметическое устройство ("мельница"), устройство управления, устройства ввода и вывода информации. Последовательность выполнения операций и пересылки чисел между устройствами задавалась программой на перфокартах Жаккарда (1804), которые использовались для управления работой ткацких станков. Кроме того, в машине Бэббиджа предусматривалась возможность изменения программы в зависимости от результата вычислений. Говоря современным языком, имелись команды условных переходов. Интересно отметить, что Бэббидж изобрел наиболее эффективный способ сложения чисел - сложение по схеме со сквозным переносом. Эту машину Бэббидж строил всю оставшуюся жизнь (до 1871 года), но создал только ее отдельные узлы. В то же время (50-е годы прошлого столетия) благодаря трудам английского математика Ады Лавлейс зародилось машинное программирование. Ада Лавлейс пыталась написать программы к еще не созданной счетной машине Бэббиджа.

В конце XIX -начале XX века начали появляться электромеханические счетно-аналитические машины для выполнения расчетно-бухгалтерских и статистических операций. Сильным толчком к развитию таких устройств стал конкурс, объявленный в США при проведении переписи 1888 года. В нем победил табулятор Холлерита, который явился родоначальником целого семейства электронно-механических машин для обработки статистических данных. В 1898 году Холлерит организовал фирму, которая поставляла такие машины всему миру. Эти машины непрерывно совершенствовались: в 1913 году создан табулятор, печатающий результаты; в 1921 году к нему добавлена коммутационная доска, на которой хранилась программа обработки данных, считываемых с различных позиций перфокарты.

Первые вычислительные машины в современном смысле появились в конце 30-х - начале 40-х годов. В 1936 -1937 году К. Цузе (Германия) спроектировал машину с программным управлением. В 1941 году она была создана (машина на электромагнитных реле). Это первая в мире ЭВМ с программным управлением. Программа наносилась на перфоленту и целиком вводилась в машину. После этого оператор уже не мог влиять на последовательность выполнения команд программы. Поскольку перфолента двигалась в одну сторону, все циклы записывались в развернутом виде, т.е. в виде последовательности групп команд.

В 1937 году Г. Айкин (США) разработал проект электромеханической универсальной ЭВМ с программным управлением. Она была построена в 1944 году фирмой IBM и названа "Марк-1". В 1947 году под руководством Айкина построена более мощная машина "Марк-2". В ней для хранения чисел и выполнения операций использовано 16000 электромеханических реле. В этот период был разработан целый ряд подобных релейных вычислительных машин, одна из которых практически полностью повторяла "аналитическую" машину Бебиджа.

Эти релейные вычислительные машины были ненадежны, медленно работали и потребляли много энергии, но позволили накопить большой опыт по созданию машин для автоматизированных вычислений. На них было опробовано двоичное кодирование чисел, представление чисел в форме с плавающей запятой, способы выполнения операций над числами на основе релейных схем и т.д.

В этот же период начали появляться машины, построенные на электронных лампах, причем первоначально лампы стали использоваться в простейших счетчиках импульсов. На них строились схемы с двумя устойчивыми состояниями, впоследствии названные триггерами (впервые подобная схема была разработана в 1918 году Бонч-Бруевичем). Исследуя свойства триггеров, американские ученые Дж. Моучли и Д. Эккер пришли к выводу о целесообразности использования в вычислительных машинах вместо электромеханических реле ламповых триггеров. В 1946 году под их руководством построена вычислительная машина "ЭНИАК" для баллистических расчетов. Она содержала 18000 электронных ламп и 1500 реле. Использование электронных ламп позволило резко (на два порядка) повысить скорость выполнения операций.

Анализируя работу этой машины, математик Дж. Нейман сформулировал основные концепции организации ЭВМ. В соответствии с этими концепциями началась разработка ЭВМ "ЭДВАК" - прообраза современных ЭВМ. Она была построена в 1950 году. А в 1949 году в Англии была введена в эксплуатацию первая в мире ЭВМ с хранимой в памяти программой - "ЭДСАК", созданная под руководством М. Уилкса.

Вычислительные машины "ЭДВАК" и "ЭДСАК" положили начало первому поколению ЭВМ - поколению ламповых машин. С начала 50-х годов было осуществлено много проектов ЭВМ, в каждом из которых применялись новые типы устройств, способы управления вычислительным процессом и обработки информации. Особое внимание уделялось улучшению характеристик памяти, поскольку в ламповых ЭВМ она была незначительной. Так, в 1952 г. впервые были использованы ферритовые сердечники.

На этом закончим рассмотрение истории развития вычислительных машин и перейдем к принципам действия ЭВМ.

1.3 Принципы действия ЭВМ

Рассмотрим вначале вычисления с помощью калькулятора. Предварительно на листе бумаги выписываются формулы и исходные данные, а часто и таблицы для занесения промежуточных и конечных результатов. В процессе вычисления числа с листа заносятся в регистр микрокалькулятора, а затем включается нужная по формуле операция. Полученные результаты переписываются с регистра (индикатора микрокалькулятора) на лист бумаги (в таблицу).

Таким образом, микрокалькулятор выполняет арифметические операции над числами, которые в него вводит человек. Лист бумаги выполняет в данном случае роль запоминающего устройства, хранящего программу (расчетную формулу), исходные, промежуточные и конечные результаты. Человек управляет процессом вычисления, включая перенос чисел с листа в микрокалькулятор и обратно, а также выбирает нужный вариант продолжения процесса вычисления в соответствии с полученным результатом. Интересно, что в данном случае быстродействие устройства, выполняющего арифметические операции (механического или электронного), практически не влияет на скорость вычислительного процесса, так как остальные операции выполняются очень медленно.

Принципиальный эффект достигается, если к быстродействующему арифметическому устройству добавить быстродействующую память, а также быстродействующее устройство, производящее все необходимые операции по реализации программы вычислений и пересылке чисел между арифметическим устройством и памятью. Если добавить к такому комплексу аппаратуры устройства связи с внешним миром, т.е. устройства ввода исходных данных и программы и вывода результата, то придем к классической пятиблочной структуре Неймана, несколько модифицированный вид которой показан на рис. 1.1 (первоначально устройство ввода и вывода изображалось одним блоком, а память не разделялась на основную и внешнюю).

Рассмотрим основные функции устройств, входящих в состав неймановской модели ЭВМ.

АЛУ - производит арифметические и логические преобразования над поступающими в него машинными словами, т.е. двоичными кодами определенной длины, представляющими собой числа или другой вид информации.

Память - хранит информацию, передаваемую из других устройств, в том числе поступающую извне через устройство ввода, и выдает во все другие устройства информацию, необходимую для протекания вычислительного процесса. В ЭВМ первых поколений память состояла только из двух существенно отличных по своим характеристикам частей - быстродействующей основной, или оперативной (внутренней), памяти (ОП) и значительно более медленной внешней памяти (ВП), способной хранить очень большие объемы информации. Память современных ЭВМ имеет более сложную структуру, поскольку внутренняя память ЭВМ разделилась на ряд иерархических уровней, обладающих различным объемом и быстродействием - ОП, кэш-память, сверхоперативная память, память каналов и т.д. Однако при первоначальном рассмотрении многоуровневость памяти можно не учитывать и считать, что внутренняя память состоит из одной ОП. Внутренняя память состоит из ячеек, каждая из которых служит для хранения одного машинного слова. Номер ячейки называется адресом. В запоминающем устройстве (ЗУ) ЭВМ, реализующем функцию памяти, выполняются операции считывания и записи информации. Причем при считывании информация не разрушается и может считываться любое число раз. При записи прежнее содержимое ячейки стирается.

Непосредственно в вычислительном процессе участвует только ОП. Обмен информацией между ОП и ВП происходит только после окончания отдельных этапов вычислений. Физическая реализация ОП и ВП будет рассмотрена в последующих разделах данного курса.

Устройство управления (УУ) - автоматически, без участия человека, управляет вычислительным процессом, посылая всем другим устройствам сигналы, предписывающие те или иные действия, в частности заставляет ОП пересылать необходимые данные, включать АЛУ на выполнение необходимой операции, перемещать полученный результат в необходимую ячейку ОП. Следует иметь в виду, что в современных ЭВМ АЛУ и УУ всегда объединены в одно устройство, которое называется процессор.

Пульт управления - позволяет оператору вмешиваться в процесс решения задачи, т.е. давать директивы устройству управления.

Устройство ввода - позволяет ввести программу решения задачи и исходные данные в ЭВМ и поместить их в ОП. В зависимости от типа устройства ввода исходные данные для решения задачи вводятся непосредственно с клавиатуры (дисплей, пишущая машинка) либо должны быть предварительно помещены на какой-либо носитель - перфокарты, перфоленты, магнитные карты, магнитные ленты, магнитные и оптические диски и т.д. В системах САПР осуществляется ввод графической информации.

Устройство вывода - служит для вывода из ЭВМ результатов обработки исходной информации. Чаще всего это символьная информация, которая выводится с помощью печатающих устройств (ПчУ) или на экран дисплея. В ряде случаев это графическая информация в виде чертежей и рисунков, которые могут быть выведены с помощью графических дисплеев, графопостроителей, принтеров, и т.д.

Теперь необходимо определить понятия алгоритм и программа. Понятие алгоритма не замыкается только областью вычислительной техники (ВТ). По интуитивному определению:

Алгоритм - это совокупность правил, строго следуя которым можно перейти от исходных данных к конечному результату.

В ВТ под "совокупностью правил" понимается последовательность арифметических и логических операций. (Утверждают, что слово алгоритм произошло от имени Мухаммед аль Хорезми, написавшем в IX веке трактат по арифметике десятичных чисел.)

Программа - это запись алгоритма в форме, воспринимаемой ЭВМ. Любая программа состоит из отдельных команд. Каждая команда предписывает определенное действие и указывает, над какими операндами это действие производится. Программа представляет собой совокупность команд, записанных в определенной последовательности, обеспечивающих решение задачи на ЭВМ. Для того,чтобы УУ могло воспринять команды, они должны быть закодированы в цифровой форме (во всех современных ЭВМ - это двоичный код).

Автоматическое управление процессом решения задачи достигается на основе принципа программного управления, являющегося основной особенностью ЭВМ. (Без программного управления ЭВМ превратится в обычный быстродействующий арифмометр или калькулятор.).

Другим важнейшим принципом является принцип хранимой в памяти программы. Согласно этому принципу программа, закодированная в цифровом виде, хранится в памяти наравне с числами. Поскольку программа хранится в памяти, одни и те же команды можно извлекать и выполнять необходимое количество раз. Более того, над кодами команд можно выполнять некоторые арифметические операции и тем самым модифицировать адреса обращения к ОП.

Команды программы выполняются в порядке, соответствующем их расположению в последовательных ячейках памяти. Однако команды безусловного и условного переходов могут изменять этот порядок соответственно безусловно или при выполнении некоторого условия, задаваемого отношениями типа больше, меньше или равно. В большинстве случаев сравниваются результаты выполнения предыдущей операции и некоторое число, указанное в команде условного перехода. Именно команды условного перехода позволяют строить не только линейные, но также ветвящиеся и циклические программы.

1.4 Понятие о системе программного (математического) обеспечения ЭВМ

Каждая ЭВМ обладает определенными свойствами, такими как возможность обрабатывать информацию в той или иной форме, возможность выполнять арифметические и логические операции, операции, связанные с организацией совместной работы устройств машины и т.д.

Для придания определенных свойств ЭВМ используют средства двух видов - аппаратные и программные (hard & soft). Последние называются также средствами программного обеспечения.

Часть свойств ЭВМ приобретает благодаря наличию в ней электронного и электромеханического оборудования, специально предназначенного для реализации этих свойств. Примером такого устройства является АЛУ.

Ряд других свойств реализуется без специальных электронных блоков с помощью программных средств. При этом используются имеющиеся аппаратные средства ЭВМ, выполняющие действия, предписанные специальными программами.

Так, например, ЭВМ может не иметь аппаратно реализованной операции извлечения корня. Но если есть программа извлечения корня, то существующие аппаратные средства могут выполнить эту операцию. Причем, с точки зрения пользователя, ЭВМ приобретет свойство вычисления корня.

Следует иметь в виду, что с помощью аппаратных средств соответствующие функции ЭВМ выполняются значительно быстрее, чем программным путем, но при этом ЭВМ становится сложнее и дороже. Всвязи с этим в ЭВМ с достаточно простыми процессорами стремятся как можно больше функций реализовать программным путем, а в мощных ЭВМ для повышения быстродействия - по максимуму использовать аппаратные средства.

Вообще же стремятся как можно оптимальнее соотнести аппаратные и программные средства, чтобы при умеренных аппаратных затратах и стоимости достигнуть высокой эффективности и быстродействия.

Таким образом, аппаратные и программные средства являются тесно связанными компонентами современной ЭВМ. Поскольку с точки зрения пользователя, как правило, неважно аппаратно или программно выполнены те или иные функции, можно говорить о виртуальной (кажущейся) ЭВМ.

Система программного (математического) обеспечения - это комплекс программных средств, в котором можно выделить операционную систему, комплект программ технического обслуживания и пакеты прикладных программ. На рис. 1.2 изображена упрощенная структура вычислительной системы как совокупности аппаратных и программных средств.

Операционная система (ОС) - это центральная и важнейшая часть программного обеспечения ЭВМ, предназначенная для эффективного управления вычислительным процессом, планирования работы и распределения ресурсов ЭВМ, автоматизации процесса подготовки программ и организации их выполнения при различных режимах работы машины, облегчения общения оператора и пользователя с машиной.

ОС состоит из программ, относящихся к двум большим группам.

Управляющие программы осуществляют управление работой устройств ЭВМ, т.е. координируют работу устройств в процессе ввода, подготовки и выполнения других программ.

Обрабатывающие программы осуществляют работу по подготовке новых программ для ЭВМ и исходных данных для них, например, сборку отдельно транслируемых модулей в одну или несколько исполняемых программ, работы с библиотеками программ, перезаписи массивов информации между ВП и ОП и т.д.

ОС в большинстве случаев являются универсальными и не учитывают особенности конкретных аппаратных средств. В современных ЭВМ для адаптации универсальной ОС к конкретным аппаратным средствам используют аппаратно-ориентированную часть операционной системы, которая в персональных компьютерах называется BIOS (Basic Input / Output System - базовая система ввода/вывода).

Следует иметь в виду, что оператор и пользователь не имеют прямого доступа к аппаратным средствам ЭВМ. (В частном случае, например при работе с персональным компьютером, оператор и пользователь являются одним и тем же лицом.) Все связи осуществляются только через ОС, обеспечивающую определенный уровень общения человека и машины. А уровень общения определяется в первую очередь уровнем языка, на котором оно происходит. На схеме представлена приближенная иерархия таких языков.

Проблемно-ориентированный - это язык, строго ориентированный на какую-либо проблему (моделирование сложных технических и экономических систем, САПР самых различных направлений, задачи анимации и т.д.).

Процедурно-ориентированный - это язык, ориентированный на выполнение общих процедур переработки данных (Фортран, Паскаль, Бейсик и т.д.).

Машинный язык - это самый нижний уровень языка. Команды записываются в виде двоичных кодов. Адреса ячеек памяти - абсолютные. Программирование очень трудоемко.

Ассемблер - это язык более высокого уровня, использующий мнемокоды (т.е. команды обозначаются буквенными сочетаниями). Запись программы ведется с использованием символических адресов, т.е. вместо численных значений адреса используются имена, за исключением первого оператора программы, который жестко привязан к физическому адресу. (Вообще, более правильно говорить язык ассемблера, поскольку Ассемблер -служебная программа, преобразующая символические имена команд и символические адреса в команды в машинном коде и числовые адреса.)

Макроязык - в первом приближении его можно определить как язык процедур, написанных на языке ассемблера, т.е. когда вместо целого комплекса команд (которые часто встречаются) используется только имя (название) этого комплекса.

Язык ОС - это язык, на котором оператор может выдавать директивы ОС, вмешиваться в ход вычислительного процесса.

Пакет программно-технического обслуживания предназначен для уменьшения трудоемкости эксплуатации ЭВМ. Эти программы проводят тестирование работоспособности ЭВМ и ее отдельных устройств, определяют места неисправностей.

Пакеты прикладных программ представляют собой комплексы программ для решения определенных, достаточно широких классов задач (научно-технических, планово-экономических), а также для расширения функций ОС (управление базами данных, реализация режимов телеобработки данных, реального времени и др.).

Все это, как уже отмечалось, в совокупности с аппаратными средствами составляет вычислительную систему. Причем при создании новых ЭВМ разработка аппаратного и программного обеспечения производится одновременно. В настоящее время программное обеспечение - такой же вид промышленной продукции, как и сама ЭВМ, причем его стоимость зачастую дороже аппаратной части.

Сложность современных вычислительных систем (ВС) привела к возникновению понятия архитектуры ВС. Это понятие охватывает комплекс общих вопросов построения ВС, существенных в первую очередь для пользователя, интересующегося главным образом возможностями ЭВМ, а не деталями ее технического исполнения. К числу таких вопросов относятся вопросы общей структуры, организации вычислительного процесса и общения пользователя с машиной, вопросы логической организации представления, хранения и преобразования информации и вопросы логической организации совместной работы различных устройств, а также аппаратных и программных средств машины.

1.5 Поколения ЭВМ

Выше рассматривались три понятия: аппаратные средства, программное обеспечение и архитектура ЭВМ. Рассмотрим коротко этапы развития ЭВМ за последние 50 лет с точки зрения этих понятий, составляющих основу классификации ЭВМ по поколениям.

Ранее отмечалось, что ближайшими прототипами современной ЭВМ можно считать машины "ЭДВАК" и "ЭДСАК", построенные в Англии и США в 1949-1950 годах. С начала 50-х годов началось массовое производство ЭВМ различных типов, которые сейчас принято относить к ЭВМ первого поколения. Следует иметь в виду, что поколения ЭВМ не имеют четких временных границ. Элементы каждого нового поколения ЭВМ разрабатывались и опробовались на ЭВМ предыдущего поколения.

Первое поколение (1950-1960 гг.)

ЭВМ этого поколения строилось на дискретных элементах и вакуумных лампах, имели большие габариты, массу, мощность, обладая при этом малой надежностью. Основная технология сборки - навесной монтаж. Они использовались в основном для решения научно-технических задач атомной промышленности, реактивной авиации и ракетостроения.

Увеличению количества решаемых задач препятствовали низкая надежность и производительность, а также чрезвычайно трудоемкий процесс подготовки, ввода и отладки программы, написанной на языке машинных команд, т.е. в форме двоичных кодов. Машины этого поколения имели быстродействие порядка 10-20 тысяч операций в секунду и ОП порядка 1К (1024 слова). В этот же период появились первые простые языки для автоматизированного программирования.

Второе поколение (1960-1965 гг.)

В качестве элементной базы использовались дискретные полупроводниковые приборы и миниатюрные дискретные детали. Основная технология сборки - одно- и двухсторонний печатный монтаж невысокой плотности. По сравнению с предыдущим поколением резко уменьшились габариты и энергозатраты, возросла надежность. Возросли также быстродействие (приблизительно 500 тысяч оп/с) и объем оперативной памяти (16-32К слов). Это сразу расширило круг пользователей, а следовательно, и решаемых задач. Появились языки высокого уровня (Фортран, Алгол, Кобол) и соответствующие им трансляторы. Были разработаны служебные программы для автоматизации профилактики и контроля работы ЭВМ, а также для лучшего распределения ресурсов при решении пользовательских задач. (Задача экономии времени процессора и ОП осталась, как и в первом поколении).

Все эти вышеперечисленные служебные программы оформились в ОС, которая первоначально просто автоматизировала работу оператора: ввод текста программы, вызов нужного транслятора, вызов необходимых библиотечных программ, размещение программ в основной памяти и т.д. Теперь вместе с программами и исходными данными вводилась целая инструкция о последовательности обработки программы и требуемых ресурсах.

Совершенствование аппаратного обеспечения, построенного на полупроводниковой базе, привело к тому, что появилась возможность строить в ЭВМ помимо центрального (основного) процессора еще ряд вспомогательных. Эти процессоры управляли всей периферией, в частности устройствами ввода/вывода, избавляли от вспомогательной работы центральный процессор. Одновременно совершенствовались и ОС. Это позволило на ЭВМ второго поколения реализовать режим пакетной обработки программ, а также режим разделенного времени. Последний был необходим для параллельного решения нескольких задач управления производством и организации многопользовательского режима через дисплейные станции. В машинах второго поколения широко использовались ОП на ферритовых кольцах (так называемые кубы памяти). Все это позволило поднять производительность ЭВМ и привлечь к ней массу новых пользователей.

Третье поколение (1965-1970 гг.)

В качестве элементной базы использовались интегральные схемы малой интеграции с десятками активных элементов на кристалл, а также гибридные микросхемы из дискретных элементов. Основная технология сборки - двухсторонний печатный монтаж высокой плотности. Это сократило габариты и мощность, повысило быстродействие, снизило стоимость универсальных (больших) ЭВМ. Но самое главное - появилась возможность создания малогабаритных, надежных, дешевых машин - миниЭВМ. МиниЭВМ первоначально предназначались для замены аппаратно-реализуемых контроллеров в контурах управления различных объектов и процессов (в том числе и ЭВМ),. Появление миниЭВМ сократило сроки разработки контроллеров, поскольку вместо разработки сложных логических схем требовалось купить миниЭВМ и запрограммировать ее надлежащим образом. Универсальное устройство обладало избыточностью, однако малая цена и универсальность периферии оказались большим плюсом, обеспечившим высокую экономическую эффективность.

Но вскоре потребители обнаружили, что после небольшой доработки на миниЭВМ можно решать и вычислительные задачи. Простота обслуживания новых машин и их низкая стоимость позволили снабдить подобными вычислительными машинами небольшие коллективы исследователей, разработчиков, учебные заведения и т.д. В начале 70-х гг. с термином миниЭВМ уже связывали два существенно различных типа вычислительной техники:

контроллер - универсальный блок обработки данных и выдачи управляющих сигналов, серийно выпускаемый для использования в различных специализированных системах контроля и управления;

универсальная ЭВМ небольших габаритов, проблемно-ориентированная пользователем на ограниченный круг задач в рамках одной лаборатории, технологического участка и т.д.

Четвертое поколение (с 1970 г.)

Успехи микроэлектроники позволили создать БИС и СБИС, содержащие десятки тысяч активных элементов. Одновременно уменьшались и габариты дискретных электронных компонентов. Основной технологией сборки стал многослойный печатный монтаж. Это позволило разработать более дешевые ЭВМ с большой ОП. Стоимость одного байта памяти и одной машинной операции резко снизилась. Но затраты на программирование почти не сократились, поэтому на первый план вышла задача экономии человеческих, а не машинных ресурсов.

Для этого разрабатывались новые ОС, позволяющие пользователю вести диалог с ЭВМ, что облегчало работу пользователя и ускоряло разработку программ. Это потребовало, в свою очередь, совершенствовать организацию одновременного доступа к ЭВМ целого ряда пользователей, работающих с терминалов.

Совершенствование БИС и СБИС привело в начале 70-х гг. к появлению новых типов микросхем - микропроцессоров (в 1968 г. фирма Intel по заказу Дейта-Дженерал разработала и изготовила первые БИС микропроцессоров, которые предполагалось использовать как составные части больших процессоров).

В те годы под микропроцессором понималась БИС, в которой полностью размещен процессор простой архитектуры, т.е. АЛУ и УУ. В результате были созданы дешевые микрокалькуляторы и микроконтроллеры - управляющие устройства, построенные на одной или нескольких БИС, содержащие процессор, память и устройства сопряжения с датчиками и исполнительными механизмами. С совершенствованием технологии их производства и, следовательно, падением цен микроконтроллеры начали внедряться даже в бытовые приборы и автомашины.

В 70-е же годы появились первые микроЭВМ - универсальные вычислительные системы, состоящие из процессора, памяти, схем сопряжения с устройствами ввода/вывода и тактового генератора, размещенные в одной БИС (однокристальная микроЭВМ) или в нескольких БИС, установленных на одной печатной плате (одноплатные микроЭВМ).

Совершенствование технологии позволило изготовить СБИС, содержащие сотни тысяч активных элементов, и сделать их достаточно дешевыми. Это привело к созданию небольшого настольного прибора, в котором размещалась микроЭВМ, клавиатура, монитор, магнитный накопитель (кассетный или дисковый), а также схемы сопряжения с малогабаритным печатающим устройством, измерительной аппаратурой, другими ЭВМ и т.д. Этот прибор получил название персональный компьютер.

В 1976 г. была зарегистрирована компания Apple Comp (Стив Джекоб и Стефан Возняк), которая и начала серийный выпуск первых в мире персональных компьютеров "Макинтош".

Благодаря ОС, обеспечивающей простоту общения с этой ЭВМ больших библиотек прикладных программ, а также низкой стоимости персональный компьютер начал стремительно внедряться в различные сферы человеческой деятельности во всем мире. Об областях и целях его использования можно прочитать в многочисленных литературных источниках. По данным на 1985 год, общий объем мирового производства уже составил 200106 микропроцессоров и 10106 персональных компьютеров в год.

Что касается больших ЭВМ этого поколения, то происходит дальнейшее упрощение контакта человек-машина. Использование в больших ЭВМ микропроцессоров и СБИС позволило резко увеличить объем памяти и реализовать некоторые функции программ ОС аппаратными методами, например аппаратные реализации трансляторов с языков высокого уровня и т.п. Это сильно увеличило производительность ЭВМ, хотя несколько возросла и цена.

Характерным для крупных ЭВМ 4-го поколения является наличие нескольких процессоров, ориентированных на выполнение определенных операций, процедур или решение определенных классов задач. В рамках этого поколения создаются многопроцессорные вычислительные системы с быстродействием в несколько десятков или сотен миллионов операций/с и многопроцессорные управляющие комплексы повышенной надежности с автоматическим изменением структуры.

Примером вычислительной системы 4-го поколения является многопроцессорный комплекс "Эльбрус-2" с суммарным быстродействием 100106 оп/с или вычислительная система ПС-2000, содержащая до 64 процессоров, управляемых общим потоком команд. При распараллеливании вычислительного процесса суммарная скорость достигает 200106 оп/с. Подобные суперЭВМ развивают максимальную производительность только при решении определенных типов задач (под которые они и строились). Это, прежде всего, задачи сплошных сред, связанные с аэродинамическими расчетами, прогнозами погоды, силовыми энергетическими полями и т.д. Производство суперЭВМ во всем мире составляет в настоящее время десятки штук в год, и строятся они, как правило, "под заказ".

Пятое поколение

Характерной особенностью пятого поколения ЭВМ является то, что основные концепции этого поколения были заранее формулированы в явном виде. Задача разработки принципиально новых компьютеров впервые поставлена в 1979 году японскими специалистами, объединившими свои усилия под эгидой научно-исследовательского центра по обработке информации - JIPDEC. В 1981 г. JIPDEC опубликовал предварительный отчет, содержащий детальный многостадийный план развертывания научно-исследовательских и опытно-конструкторских работ с целью создания к 1991 г. прототипа ЭВМ нового поколения.

Указанная программа произвела довольно сильное впечатление сначала в Великобритании, а затем и в США. Под эгидой JIPDEC прошли ряд международных конференций, в частности - "Международная конференция по компьютерным системам пятого поколения" (1981 г.), на которых полностью оформился "образ компьютера пятого поколения". Были предложены концепции создания не только поколения ЭВМ в целом, но и вопросы архитектуры основных типов ЭВМ этого поколения, структуры программных средств и языков программирования, разработки наиболее перспективной элементной базы и способов хранения информации.

Следует отметить, однако, что оптимистические прогнозы японских специалистов не сбылись. До сих пор не создан компьютер, в полной мере удовлетворяющий требованиям, предъявляемым к компьютерам пятого поколения.

Прежде чем перейти к изучению дальнейшего материала, следует сделать некоторые замечания. Дело в том, что, несмотря на общие принципы функционирования всех ЭВМ, их конкретные реализации существенно различаются. Особенно это касается суперЭВМ, решающих весьма специфические задачи. Да и обычные серийные большие ЭВМ общего назначения работают, как правило, в составе вычислительных центров, и доступ к ним возможен только через терминалы. Кроме того, их архитектура, аппаратное и программное обеспечение достаточно сложны для первоначального изучения, поэтому в дальнейшем основное внимание будет уделено небольшим ЭВМ, построенным на базе микропроцессоров, в том числе персональным компьютерам. Это имеет смысл еще и потому, что ЭВМ, построенные на базе микропроцессорных комплектов, представляют наибольший интерес для современного инженера, поскольку непосредственно участвуют в работе систем автоматизации производственных процессов, обрабатывают данные научных экспериментов, принимают и обрабатывают потоки информации в каналах связи, решают небольшие расчетные инженерные задачи и т.д. В ряде случаев для решения конкретных задач пользователь сам на базе микропроцессорных комплектов создает специализированные контроллеры и ЭВМ.

Рассмотрим очень коротко основное отличие структур больших ЭВМ общего назначения и малых ЭВМ (миниЭВМ), появившихся в начале 70-х годов.

1.6 Большие ЭВМ общего назначения

На первых этапах внедрения ЭВМ в деятельность человека решаемые задачи, в основном, можно было разделить на два больших класса:

научные и технические расчеты - для них типичным является возможность работы со словами фиксированной длины, относительно небольшие объемы входной информации (исходных данных) и выходной информации (результатов расчета) и очень большое количество разнотипных вычислительных операций, которые необходимо выполнить в процессе решения;

планово-экономические расчеты, статистика носят совсем иной характер. Они связаны с вводом в машину очень большого количества (массивов) исходных данных. Сама же обработка требует сравнительно небольшого числа простейших логических и арифметических операций. Однако в результате обычно выводится и печатается большое количество информации, причем, как правило, в отредактированной форме - в виде таблиц, ведомостей, различных форм и т.д. Задачи такого типа получили название задач обработки данных. ЭВМ, предназначенные для их решения, часто называли системами автоматизированной обработки данных. Подобные ЭВМ составляли основу систем АСУ.

Для систем обработки данных важно иметь возможность ввода, хранения, обработки и вывода большого количества текстовой (алфавитно-цифровой) информации, которая представлена словами переменной длины. Кроме того, для таких систем важно наличие значительного числа периферийных запоминающих устройств, хранящих большое количество информации (накопители на дисках и лентах), а также высокопроизводительных устройств ввода и вывода данных.

Для решения этих двух типов задач первоначально строили ЭВМ, которые различались уже на уровне аппаратного обеспечения. Однако резкое расширение сферы использования ЭВМ, совершенствование аппаратного и программного обеспечения, расширение понятия научно-технических расчетов привели к стиранию границ между этими двумя типами задач, а следовательно, и типами ЭВМ. В результате появились ЭВМ общего назначения (mainframe), которые стали выполнять основной объем вычислительных работ и машинной обработки информации в различных ВЦ и АСУ.

ЭВМ общего назначения универсальны и могут использоваться как для решения научно-технических задач численными методами, так и в режиме автоматической обработки данных в АСУ. Такие ЭВМ имеют высокое быстродействие, память большого объема, гибкую систему команд и способов представления данных, широкий набор периферийных устройств. Появление персональных компьютеров на некоторое время (3-4 года) снизило интерес к подобным ЭВМ, и их производство стало сокращаться. Однако уже к концу 80-х годов стало ясно, что персональные компьютеры не могут полностью заменить мэйнфреймы. В настоящее время многие фирмы (в том числе IBM) продолжают разрабатывать и выпускать новые модели мэйнфреймов, на долю которых, по мнению некоторых авторов, и приходится основной объем перерабатываемой в мире информации.

Для того чтобы понять радикальные отличия структуры первых микро- и миниЭВМ, появившихся в начале 70 годов, от структур основных типов ЭВМ, существовавших в то время - ЭВМ общего назначения, необходимо рассмотреть структуру типичных представителей этих ЭВМ (например, ЕС-ЭВМ), прототипами которых были машины IBM 360/370. Их быстродействие составляло от 200 тысяч оп/с (ЕС 1030) до 5000 тысяч оп/с (ЕС 1065) и более для старших моделей машин этого семейства. Характерной особенностью подобных ЭВМ было наличие большого количества как "быстрых", так и "медленных" периферийных устройств, которые функционировали параллельно с центральным процессором и требовали специальных средств управления. Упрощенная структура ЭВМ серии ЕС изображена на рис. 1.3.

Собственно обработка данных производилась в центральном процессоре (ЦП), содержащем АЛУ и УУ. Это самая быстродействующая часть ЭВМ, поэтому возникала проблема взаимодействия быстродействующего процессора с большим числом сравнительно медленно действующих периферийных устройств (ПУ). Для эффективного использования всего вычислительного комплекса требовалось организовать параллельную во времени работу ЦП и ПУ. Такой режим в ЭВМ общего назначения организовывался при помощи специализированных вспомогательных процессоров ввода/вывода, называемых каналами. Периферийные устройства связывались с каналами через собственные блоки управления (УПУ) -их часто называли контроллерами ПУ- и систему сопряжения, называемую интерфейсом. Коротко рассмотрим функции этих устройств.

Поскольку каналы предназначались для освобождения центрального процессора от вспомогательных операций, не связанных с вычислениями, они имели непосредственный доступ к ОП параллельно ЦП, естественно со своими приоритетами. Ввиду того что ПУ различаются по быстродействию и режимам работы, каналы подразделялись на байт-мультиплексные, блок-мультиплексные и селекторные.

Байт-мультиплексный канал мог обслуживать одновременно несколько сравнительно медленно действующих ПУ - печатающих, УВВ с перфокарт и перфолент, дисплеев и др. Этот канал попеременно организовывал с ними сеансы связи для передачи между ОП и ПУ небольших порций информации фиксированной длины (обычно 1-2 слова или байта). В простейшем случае происходил циклический опрос ПУ, например при работе с дисплейной станцией. В более сложном варианте байт-мультиплексный канал начинал обслуживать ПУ по их запросу, причем первым опрашивался ПУ с высшим приоритетом, а затем по очереди шло обращение ко всем остальным ПУ. Таким образом, байт-мультиплексный канал работал с "медленными" устройствами, способными ожидать обслуживание без потери информации.

Селекторный и блок-мультиплексный каналы связывали ЦП и ОП с ПУ, работающими с высокой скоростью передачи информации (магнитные диски, ленты и др.).

Селекторный канал предназначался для монопольного обслуживания одного устройства. При работе с селекторным каналом ПУ после пуска операции оставалось связанным с каналом до окончания цепи операций. Запросы на обслуживание других ПУ, так же как и новые команды пуска операций ввода-вывода от процессора, в это время не воспринимались каналом: до завершения цепи операций селекторный канал по отношению к процессору представлялся занятым устройством. Таким образом, селекторный канал предназначался для работы с быстродействующими устройствами, которые могут терять информацию вследствие задержек или прерываний в обслуживании.

Блок-мультиплексный канал обладал тем свойством, что операции, не связанные с передачей данных (установка головок на цилиндр, поиск записи и т.д.), выполнялись для нескольких устройств в мультиплексном режиме, а передача блока информации происходила в монопольном (селекторном) режиме.

Аппаратные средства каналов разделялись на две части: средства, предназначенные для обслуживания отдельных ПУ, подключенных к каналу, и оборудование, являющееся общим для устройств и разделяемое всеми устройствами во времени. Средства канала, выделенные для обслуживания одного ПУ, назывались подканалами.

Связи всех устройств ЭВМ друг с другом осуществлялись, как и в современных ЭВМ, с помощью интерфейсов. Интерфейс представляет собой совокупность линий и шин сигналов, электронных схем и алгоритмов, предназначенную для осуществления обмена информацией между устройствами. От характеристик интерфейсов во многом зависят производительность и надежность ЭВМ.

В заключение следует отметить, что все вышесказанное относится к серийно выпускаемым в свое время крупным ЭВМ общего назначения серии ЕС (IBM 360/370). Однако в этот же период были разработаны и серийно производились суперЭВМ типа Крэй1, Крэй2, Кибер-205, "Эльбрус", ПС-2000, и т.д. Их колоссальная производительность достигалась за счет уникальных структур аппаратного и программного обеспечения. Эти ЭВМ выпускались в незначительных количествах, как правило, под конкретный заказ. Более подробно о многопроцессорных ЭВМ речь пойдет в отдельном разделе данного курса.

1.7 Малые ЭВМ

Наиболее массовое внедрение ЭВМ в деятельность человека началось тогда, когда в конце 60-х годов удалось построить небольшие, достаточно простые, надежные и дешевые вычислительные устройства, элементной базой которых были микросхемы. Уменьшение объема аппаратуры и стоимости машины было достигнуто за счет укорочения машинного слова (8-16 разрядов вместо 32-64 в машинах общего назначения), уменьшения по сравнению с ЭВМ общего назначения количества типов обрабатываемых данных (в некоторых моделях только целые числа без знака), ограниченного набора команд, сравнительно небольшого объема ОП и небольшого набора ПУ.

Укорочение машинного слова повлекло за собой множество проблем, связанных с представлением данных, адресацией, составом и структурой команд, логической структурой процессора, организацией обмена информацией между устройствами ЭВМ. В процессе эволюции ЭВМ эти проблемы, так или иначе, решались, что привело к созданию малых ЭВМ, структура которых существенно отличалась от структуры больших машин.

Следует отметить, что структуры современных микро - и миниЭВМ весьма сложны и в ряде случаев мало отличаются от структуры мощных ЭВМ - все зависит от мощности используемого процессора, объема и быстродействия ОП, производительности подсистем ввода-вывода и т.д. Однако первые мини - и микроЭВМ, появившиеся в начала 70-х годов, имели весьма простую структуру, радикально отличавшуюся от структуры больших машин того времени.

Типичная структура такой микроЭВМ изображена на рис. 1.4.

...

Подобные документы

  • Принципы программного управления компьютером. Модульная и функциональная организация, аппаратная реализация электронно-вычислительной машины. Назначение устройств ввода и вывода информации. Функции процессора; устройства внутренней и внешней памяти.

    презентация [2,2 M], добавлен 27.11.2013

  • Принципы организации и построения электронно-вычислительной машины. Основные характеристики и режимы работы ЭВМ. Организация интерфейса. Устройства управления в процессоре. Вычислительные системы и арифметико-логическое устройство. Микрооперация сдвига.

    курс лекций [880,9 K], добавлен 31.05.2014

  • Функциональный состав микро-ЭВМ, разработка системы команд. Описание взаимодействия всех блоков электронно-вычислительной машины при выполнении команд программы. Арифметико-логическое устройство, кэш-память процессора, функциональное моделирование.

    курсовая работа [981,4 K], добавлен 27.05.2013

  • Разработка вычислительной системы, предназначенной для реализации заданного алгоритма обработки входных цифровых данных. Особенности ее построения на базе процессора x86 (К1810) в минимальном режиме. Описание микропроцессорного комплекта серии К1810.

    курсовая работа [318,4 K], добавлен 15.08.2012

  • Современные семейства ПЛИС фирмы Xilinx, их характеристики и значимость в процессе построения систем цифровой обработки сигналов. Создание базы параметров, фактов и запрещенных комбинаций для решения открытой задачи поискового проектирования модели ПЛИС.

    курсовая работа [3,6 M], добавлен 14.12.2012

  • Общий вид вычислительной системы. Начальная последовательность действий. Элементы организации основных блоков ЭВМ. Архитектурная организация процессора ЭВМ. Организация систем адресации и команд ЭВМ. Система внешних устройств. Средства вывода информации.

    курсовая работа [39,5 K], добавлен 28.01.2012

  • Логические элементы как устройства, предназначенные для обработки информации в цифровой форме. Определение основных отличительных особенностей и преимуществ двоичной и троичной систем счисления по сравнению с десятичной системой счисления, их типы.

    реферат [30,5 K], добавлен 20.11.2011

  • Команды вычислительной машины, которые интерпретируются микропроцессором или микропрограммами. Правила для записи чисел цифровыми знаками. Способы кодирования информации. Практическое применение машинных кодов, систем счисления, кодировки информации.

    курсовая работа [1,6 M], добавлен 15.03.2015

  • Проектирование механизма обработки прерываний. Контроллер прерываний Intel 82C59A. Ввод-вывод по прерыванию. Программируемый контроллер интерфейса Intel 82C55A. Роль процессора в обработке прерывания ввода-вывода. Обзор алгоритма обработки прерывания.

    контрольная работа [8,0 M], добавлен 19.05.2010

  • Характеристики элементов вычислительной машины для выполнения офисных операций. Выбор процессора, расчет его мощности на 60 GFLOPS. Выбор материнской платы, системы охлаждения для процессора, физической и оперативной памяти для хранения информации.

    контрольная работа [43,6 K], добавлен 11.11.2015

  • Система счисления как способ записи (изображения) чисел. История появления и развития различных систем счисления: двоичная, восьмеричная, десятичная и шестнадцатеричная. Основные принципы и правила алгоритма перевода из одной системы счисления в другую.

    курсовая работа [343,1 K], добавлен 11.11.2014

  • Периоды применения средств вычислительной техники. Переход к новому поколению электронно-вычислительных машин. Системы, основанные на знаниях. Экспертные системы и искусственный интеллект. Этапы обработки данных на ЭВМ. Иерархическая структура знания.

    презентация [170,6 K], добавлен 14.08.2013

  • Разновидности систем счисления данных, особенности позиционной системы. Порядок перехода между основными системами счисления и реализации целочисленных операций. Представление отрицательных чисел. Представление отрицательных чисел в двоичном коде.

    лабораторная работа [142,3 K], добавлен 06.07.2009

  • Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа [37,3 K], добавлен 13.02.2009

  • Агентно-ориентированная программная архитектура систем обработки потоковых данных. Обеспечение гибкости и живучести программного обеспечения распределенных информационно-управляющих систем. Спецификации программных комплексов распределенной обработки.

    реферат [1,1 M], добавлен 28.11.2015

  • Понятие информации, автоматизированных информационных систем и банка данных. Общая характеристика описательной модели предметной области, концептуальной модели и реляционной модели данных. Анализ принципов построения и этапы проектирования базы данных.

    курсовая работа [1,7 M], добавлен 18.01.2012

  • Особенности конструирование модуля первого уровня электронно-вычислительной машины. Анализ назначения, области применения, условий эксплуатации ЭВМ. Принципиальная схема и характеристики ИМС и РЭ, выбор аппаратных средств, типа конструкции печатной платы.

    курсовая работа [1,0 M], добавлен 06.02.2011

  • Структура памяти и адресация данных. Особенности модели проектируемой машины базы данных. Схема формирования адреса среза, поиска отмеченных строк и их ускоренной передачи. Структура управляющего процессора. Кодированная граф-схема операции MARK.NE.

    курсовая работа [677,2 K], добавлен 28.10.2011

  • Роль и практическое значение автоматизации вычислений и обработки данных. Представление информации в компьютере, сущность системы счисления. Перевод числа из одной системы счисления в другую. Арифметические операции в позиционных системах счисления.

    контрольная работа [1,2 M], добавлен 23.10.2009

  • Обработка информации и вычислений в вычислительной машине. Непозиционные и позиционные системы счисления. Примеры перевода десятичного целого и дробного числа в двоичную систему счисления. Десятично-шестнадцатеричное и обратное преобразование чисел.

    контрольная работа [41,2 K], добавлен 21.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.