Обработка графов
Решение прикладных задач при помощи процедур анализа графовых моделей. Задачи поиска кратчайших путей на основе алгоритма Флойда и нахождения минимального охватывающего дерева. Масштабирование и распределение подзадач обработки графов по процессорам.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лекция |
Язык | русский |
Дата добавления | 17.09.2013 |
Размер файла | 704,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Изучение основных понятий и определений теории графов. Рассмотрение методов нахождения кратчайших путей между фиксированными вершинами. Представление математического и программного обоснования алгоритма Флойда. Приведение примеров применения программы.
контрольная работа [1,4 M], добавлен 04.07.2011Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.
реферат [39,6 K], добавлен 06.03.2010Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.
презентация [22,8 K], добавлен 16.09.2013Постановка задач линейного программирования. Примеры экономических задач, сводящихся к задачам линейного программирования. Допустимые и оптимальные решения. Алгоритм Флойда — алгоритм для нахождения кратчайших путей между любыми двумя узлами сети.
контрольная работа [691,8 K], добавлен 08.09.2010Теоретическое обоснование теории графов. Методы нахождения медиан графа. Задача оптимального размещения насосной станции для полива полей. Алгоритм Флойда, поиск суммарного расстояния до вершин. Функция нахождения индекса минимального значения в массиве.
курсовая работа [336,8 K], добавлен 28.05.2016Методология и технология разработки программного продукта. Решение задачи поиска кратчайших путей между всеми парами пунктов назначения, используя алгоритм Флойда. Разработка интерфейса программы, с использованием среды Delphi Borland Developer Studio.
курсовая работа [2,0 M], добавлен 26.07.2014Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.
курсовая работа [1,1 M], добавлен 26.06.2012В статье рассмотрен подход к созданию моделей композитного документооборота на основе аппарата теории графов. Описаны методы детерминирования множеств для разработанной модели, предложена алгебра документооборота с использованием графов.
статья [346,4 K], добавлен 19.04.2006Анализ алгоритмов нахождения кратчайших маршрутов в графе без отрицательных циклов: Дейкстры, Беллмана-Форда и Флойда-Уоршалла. Разработка интерфейса программы на языке C++. Доказательство "правильности" работы алгоритма с помощью математической индукции.
курсовая работа [1,5 M], добавлен 26.07.2013Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.
курсовая работа [195,5 K], добавлен 08.11.2009Теория графов и её применения. Разработка программного продукта для решения задач нахождения минимального пути. Анализ надежности и качества ПП "метода Дейкстры". Математическая модель задачи. Алгоритмы Дейкстры на языке программирования Turbo Pascal.
курсовая работа [1,6 M], добавлен 26.03.2013Графы: определения, примеры, способы изображения. Смежные вершины и рёбра. Путь в ориентированном и взвешенном графе. Матрица смежности и иерархический список. Алгоритм Дейкстры - алгоритм поиска кратчайших путей в графе. Работа в программе "ProGraph".
презентация [383,8 K], добавлен 27.03.2011Понятие и сущность графы, методы решения задач по поиску кратчайших путей в ней. Особенности составления программного кода на языке программирования Pascal с использованием алгоритма Форда-Беллмана, а также порядок ее тестирования с ручным просчетом.
курсовая работа [1,2 M], добавлен 31.07.2010Модификация алгоритма RPC таким образом, чтобы он не требовал входного параметра, но сохранил свою гибкость при решении задачи нахождения максимальной клики для разных графов. Метод ветвей и границ. Построение функции-классификатора. Листинг алгоритма.
курсовая работа [197,8 K], добавлен 06.10.2016Алгоритмы нахождения кратчайшего пути: анализ при помощи математических объектов - графов. Оптимальный маршрут между двумя вершинами (алгоритм Декстры), всеми парами вершин (алгоритм Флойда), k-оптимальных маршрутов между двумя вершинами (алгоритм Йена).
курсовая работа [569,6 K], добавлен 16.01.2012Представление задач в виде графов AND/OR, примеры. Задача с ханойской башней. Формулировка процесса игры в виде графа. Основные процедуры поиска по заданному критерию. Эвристические оценки и алгоритм поиска. Пример отношений с определением задачи.
лекция [154,6 K], добавлен 17.10.2013Области применения теории графов. Алгоритм решения задачи поиска инвариантного и полного графа. Реализация программы с графическим интерфейсом пользователя на основе алгоритма. Реализация редактора графа и вывод полученных результатов в понятной форме.
курсовая работа [493,3 K], добавлен 27.12.2008Численные методы решения нелинейных уравнений, используемых в прикладных задачах. Составление логической схемы алгоритма, таблицы индентификаторов и программы нахождения корня уравнения методом дихотомии и методом Ньютона. Ввод программы в компьютер.
курсовая работа [220,0 K], добавлен 19.12.2009Возникновение информатики во второй половине XX столетия. Теория графов. Понятие и терминология теории графов. Некоторые задачи теории графов. Математическая логика и теория типов. Теория вычислимости и искусственный интеллект.
реферат [247,4 K], добавлен 15.08.2007Использование информационных технологий для планирования размещения оптимальных точек водоснабжения, используя теорию графов. Функциональные возможности разрабатываемого приложения. Программная реализация основных модулей на основе алгоритма Флойда.
курсовая работа [818,3 K], добавлен 31.01.2012