Мінорантні методи глобальної стохастичної оптимізації
Побудова мінорант для функцій математичного очікування з мірою, що залежить від детермінованих змінних. Обґрунтування стохастичних аналогів методів Піявского та гілок і границь для розв’язання задач стохастичної глобальної оптимізації, оцінка значень.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 28.08.2014 |
Размер файла | 44,1 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Постановка задачі багатокритеріальної оптимізації та її та математична модель. Проблеми і класифікація методів вирішення таких задач, способи їх зведення до однокритеріальних. Метод послідовних поступок. Приклад розв'язування багатокритеріальної задачі.
курсовая работа [207,3 K], добавлен 22.12.2013Метод розв’язків рівнянь більш високих порядків. Вибір методу розв'язання задачі Коші. Методи розв'язання крайових задач розглядаються на прикладі звичайного диференціального рівняння другого порядку. Вибір методу інструментальних засобів вирішення задач.
курсовая работа [132,0 K], добавлен 03.12.2009В роботі розглянуто наближені методи розв’язку нелінійних рівнянь. Для вказаних методів складено блок-схеми та написано програму, за якою розв’язується задане рівняння. Аналіз як самого рівняння і методів його розв’язання так і результатів обрахунку.
курсовая работа [302,8 K], добавлен 03.12.2009В роботі розглянуто наближені методи розв'язку нелінійних рівнянь для методів Ньютона та хорд, складено блок-схеми та написано програму, за допомогою якої розв'язується задане рівняння. Аналіз рівняння, методів його розв'язання і результатів обрахунку.
курсовая работа [380,9 K], добавлен 30.11.2009Засвоєння засобів аналізу трудомісткості обчислювальних алгоритмів. Побудова графа алгоритму з отриманої блок-схеми. Мінімізація графа, його подання у вигляді стохастичної матриці. Знаходження кількості звернень до файлів за допомогою Microsoft Excel.
лабораторная работа [681,5 K], добавлен 02.06.2011Ортогонaлізування функцій. Порівняння дискретного та хвильового перетворення. Інтерполяційні поліноми Лагранжа і Ньютона. Метод найменших квадратів. Побудова кривої для заданих результатів вимірювань. Розв’язання задачі по Лапласу операційним методом.
курсовая работа [2,2 M], добавлен 10.04.2012Види рівнянь та методи їх розв’язань. Чисельні методи уточнення коренів, постановка задачі. Рішення нелінійного рівняння методом простих та дотичних ітерацій. Використання програмних засобів. Алгоритми розв’язку задач. Програми мовою С++, їх тестування.
курсовая работа [232,2 K], добавлен 12.02.2013Огляд та аналіз методів розв’язання системи диференціальних рівнянь та вибір методів рішення. Алгоритми методів Ейлера. Вибір методу рішення задачі Коші. Рішення диференціальних рівнянь. Отримання практичних навиків програмування на мові Паскаль.
курсовая работа [174,3 K], добавлен 06.03.2010Стандартний спосіб розв’язання задачі Коші для звичайного диференціального рівняння першого порядку чисельними однокроковими методами. Геометричний зміст методу Ейлера. Побудова графіку інтегральної кривої. Особливість оцінки похибки за методом Рунге.
курсовая работа [112,9 K], добавлен 30.11.2009Лінійне програмування як один з найбільш популярних апаратів математичної теорії оптимального управління рішень. Опис існуючих методів розв’язку задач лінійного програмування. Завдання, основні принципи, алгоритми і головна мета лінійного програмування.
курсовая работа [363,8 K], добавлен 03.12.2009Розвиток виробництва і широке використання промислових роботів. Алгоритми методів, блок-схеми алгоритмів розв'язку даного диференційного рівняння. Аналіз результатів моделювання, прямий метод Ейлера, розв’язок диференціального рівняння в Mathcad.
контрольная работа [59,1 K], добавлен 30.11.2009Використання мови програмуванння Java при виконанні "задачі лінійного програмування": її лексична структура і типи даних. Методи розв’язання задачі. Особливості логічної структури програми, побудова її зручного інтерфейсу за допомогою симплекс методу.
курсовая работа [437,9 K], добавлен 24.01.2011Застосування симплекс-методу для розв’язання оптимізаційних задач лінійного програмування, що містять три змінні. Функції ітераційної обчислювальної процедури, що виконують приведення до зручного для розв’язання оптимального вигляду ЗЛП за кілька кроків.
курсовая работа [359,5 K], добавлен 18.09.2013Характеристика основних методів чисельного інтегрування та розв’язання інтегралу методом Чебишева третього, четвертого та п’ятого порядків. Оцінка похибок та порівняння їх з точним обчисленнями отриманими в математичному пакеті Mathcad 2001 Professional.
курсовая работа [127,7 K], добавлен 03.12.2009Створення системи експериментального дослідження математичних моделей оптимізації обслуговування складних систем. Визначення критеріїв оптимізації обслуговуваних систем та надання рекомендацій щодо часу проведення попереджувальної профілактики.
дипломная работа [3,0 M], добавлен 22.10.2012Характерна особливість ігрових задач. Основні види ігрових задач: з повною та неповною інформацією. Методи знаходження планів гри і оптимальних стратегій для таких ігор, як шахи, шашки, "хрестики-нулики". Способи побудови систем штучного інтелекту.
контрольная работа [588,5 K], добавлен 22.01.2015Оптимізація як цілеспрямована діяльність, що полягає в здобутті найкращих результатів за відповідних умов: критерії, постановка задачі, основні завдання. Розгляд методів дослідження функцій класичного аналізу. Особливості застосування принципу максимуму.
контрольная работа [377,6 K], добавлен 19.12.2012Постановка та описання алгоритму розв’язання задачі про оптимальне призначення, формулювання вимог. Обґрунтування вибору засобів програмування. Розробка структури програми та системи її візуалізації, тестування та верифікація, оцінка ефективності.
курсовая работа [1,1 M], добавлен 12.05.2013Алгоритми розв’язання задач у вигляді блок–схем. Використання мови програмування MS VisualBasic for Application для написання програм у ході вирішення задач на одномірний, двовимірний масив, порядок розв’язання задачі на використання символьних величин.
контрольная работа [742,9 K], добавлен 27.04.2010Створення нескладних програмних продуктів. Швидка побудова програм з використанням візуальних компонентів. Сценарій розв’язання задачі в Delphi. Програмування та програмний код в консольному режимі. Компоненти, їх властивості та структура взаємозв’язку.
курсовая работа [2,7 M], добавлен 10.06.2009