Программное обеспечение для моделирования нейрокомпьютерных сетей
Исследование принципа работы с аналитической платформы Deductor для создания законченных прикладных решений. Определение входных и выходных переменных. Методы нормализации данных и обучения нейронной сети. Запуск программы и способы вывода решений.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 18.10.2014 |
Размер файла | 1,3 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Описание платформы Deductor, ее назначение. Организационная структура аналитической платформы Deductor, состав модулей. Принципы работы программы, импорт и экспорт данных. Визуализация информации, сценарная последовательность и мастер обработки.
курсовая работа [3,7 M], добавлен 19.04.2014Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Решение задачи аппроксимации поверхности при помощи системы нечёткого вывода. Определение входных и выходных переменных, их термы; алгоритм Сугено. Подбор функций принадлежности, построение базы правил, необходимых для связи входных и выходных переменных.
курсовая работа [1,8 M], добавлен 31.05.2014Концепция систем поддержки принятия решений. Диапазон применения Analytica 2.0. Программное обеспечение количественного моделирования. Графический интерфейс для разработки модели. Основные способы моделирования. Диаграмма влияния и дерево решений.
контрольная работа [1,1 M], добавлен 08.09.2011Теоретические аспекты функционирования Business intelligence - систем в сфере логистики. Анализ условий для разработки системы поддержки принятия решений. Характеристика процесса создания программного продукта, применение аналитической платформы QlikView.
курсовая работа [2,5 M], добавлен 09.09.2017Разработка программы для автоматизации складского учета. Описание предметной области и технологии функционирования информационной системы. Физическое проектирование базы данных. Создание экранных форм ввода-вывода, отчетов, модулей для прикладных решений.
курсовая работа [3,6 M], добавлен 08.12.2013Определение понятия знания, модели его представления – фреймовая, продукционная, семантическая. Разбор аналитической платформы Deductor. Описание демо-примера программы Deductor– прогнозирование с помощью линейной регрессии, использование визуализатора.
курсовая работа [1,1 M], добавлен 07.06.2011Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011"Наивная" модель прогнозирования. Прогнозирование методом среднего и скользящего среднего. Метод опорных векторов, деревьев решений, ассоциативных правил, системы рассуждений на основе аналогичных случаев, декомпозиции временного ряда и кластеризации.
курсовая работа [2,6 M], добавлен 02.12.2014Технологии и языки программирования, используемые при разработке программы. Проектирование и реализация социальной сети. Описание и обоснование выбора организации входных и выходных данных. Алгоритм функционирования программы, таблицы базы данных.
курсовая работа [3,5 M], добавлен 10.06.2014Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.
дипломная работа [3,8 M], добавлен 27.06.2011Управление электронным обучением. Технологии электронного обучения e-Learning. Программное обеспечение для создания e-Learning решений. Компоненты LMS на примере IBM Lotus Learning Management System и Moodle. Разработка учебных курсов в системе Moodle.
курсовая работа [146,6 K], добавлен 11.06.2009Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.
контрольная работа [2,0 M], добавлен 13.06.2014Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Основы проверки и расчета входных данных и вывода выходных данных программы, их блок-схемы. Реализация функции считывания числовых данных из файла, управление (создание, уничтожение и редактирование) визуальными компонентами во время выполнения программы.
контрольная работа [1,3 M], добавлен 12.06.2009Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Комбинированный тип данных для хранения входных данных о студентах и информация, содержащаяся в полях. Пример структуры входных и выходных данных. Алгоритм работы и программный код программы по успеваемости студентов, описание используемых функций.
курсовая работа [135,9 K], добавлен 28.12.2012Написание программы для работы с клиентами средствами языка Delphi, которая предусматривает ввод, редактирование и удаление информации. Разработка алгоритма решения задачи, описание переменных, вспомогательных процедур, входных и выходных данных.
курсовая работа [355,7 K], добавлен 21.09.2010Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013