Методы и модели Data Mining
Применение методов классификации, моделирования и прогнозирования, основанных на применении деревьев решений, искусственных нейронных сетей, генетических алгоритмов, эволюционного программирования. Задачи и возможности Data Miner в Statistica 8.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 19.12.2014 |
Размер файла | 349,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.
курсовая работа [3,2 M], добавлен 19.05.2011Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.
доклад [25,3 K], добавлен 16.06.2012Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.
контрольная работа [565,6 K], добавлен 02.09.2010Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.
дипломная работа [3,8 M], добавлен 27.06.2011Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.
реферат [187,4 K], добавлен 21.01.2014Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.
дипломная работа [1,4 M], добавлен 21.10.2013Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.
дипломная работа [2,5 M], добавлен 01.07.2017Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.
реферат [443,2 K], добавлен 13.02.2014Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.
презентация [3,9 M], добавлен 17.02.2016- Визуализация профиля пользователя социальной сети на основе обработки семантического описания данных
Анализ существующих музыкальных сетей, профиля музыкального файла. Технологии и возможности Web 2.0. Анализ алгоритмов в Data Mining. Структура социальной сети. Набор графических элементов, описывающий человека в зависимости от прослушиваемой музыки.
дипломная работа [3,7 M], добавлен 20.04.2012 Исследование задачи и перспектив использования нейронных сетей на радиально-базисных функциях для прогнозирования основных экономических показателей: валовый внутренний продукт, национальный доход Украины и индекс потребительских цен. Оценка результатов.
курсовая работа [4,9 M], добавлен 14.12.2014Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.
курсовая работа [1,3 M], добавлен 26.03.2016Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа [2,3 M], добавлен 13.10.2015Задача анализа деловой активности, факторы, влияющие на принятие решений. Современные информационные технологии и нейронные сети: принципы их работы. Исследование применения нейронных сетей в задачах прогнозирования финансовых ситуаций и принятия решений.
дипломная работа [955,3 K], добавлен 06.11.2011Data Mining как процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). Его закономерности и этапы реализации, история разработки данной технологии, оценка преимуществ и недостатков, возможности.
эссе [36,8 K], добавлен 17.12.2014Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.
курсовая работа [835,9 K], добавлен 17.06.2014Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.
реферат [136,2 K], добавлен 25.04.2016