Схемы Рунге-Кутты
Изучение и анализ влияния величины шага на точность интегрирования методами Рунге–Кутты второго и четвертого порядков. Ознакомление с основными программными модулями. Исследование поведения ошибки интегрирования, как функции независимой переменной.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.12.2015 |
Размер файла | 682,2 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Опытное исследование свойств методов Рунге-Кутты. Реализация численных методов приближенного интегрирования обыкновенных дифференциальных уравнений, наиболее часто применяющихся в практике моделирования и проектирования систем автоматизации и управления.
курсовая работа [311,5 K], добавлен 05.03.2009Решение системы обыкновенных дифференциальных уравнений в программе Matlab. Применение метода Рунге–Кутты. Априорный выбор шага интегрирования. Построение трехмерного графика движения точки в декартовой системе координат и создание видеофайла формата AVI.
контрольная работа [602,8 K], добавлен 04.05.2015Реализация решения обыкновенных дифференциальных уравнений 1-го и 2-го порядка методом Рунге-Кутты. Построение на ЭВМ системы отображения результатов в табличной форме и в виде графика. Архитектура и требования к разрабатываемым программным средствам.
курсовая работа [2,7 M], добавлен 05.11.2011Численное решение задачи Коши для обыкновенного дифференциального уравнения первого и второго порядка методом Эйлера и Рунге-Кутты и краевой задачи для ОДУ второго порядка с применением пакета MathCad, электронной таблицы Excel и программы Visual Basic.
курсовая работа [476,2 K], добавлен 14.02.2016Изучение численных методов решения нелинейных уравнений. Построение годографа АФЧХ, графиков АЧХ и ФЧХ с указанием частот. Практическое изучение численных методов интегрирования дифференциальных уравнений высокого порядка, метод Рунге-Кутта 5-го порядка.
курсовая работа [398,3 K], добавлен 16.06.2009Составление программы на алгоритмическом языке Turbo Pascal. Разработка блок-схемы алгоритма её решения. Составление исходной Pascal-программы и реализация вычислений по составленной программе. Применение методов Рунге-Кутта и Рунге-Кутта-Мерсона.
курсовая работа [385,0 K], добавлен 17.09.2009Аналитическое и численное исследование уравнения Дуффинга и его странных аттракторов. Регулярные и хаотические явления в вынужденном осцилляторе Дуффинга. Стробоскопическое исследование явления. Метод Рунге-Кутты решения дифференциальных уравнений.
дипломная работа [4,3 M], добавлен 29.06.2012Математическое описание задачи решения обыкновенного дифференциального уравнения численным явным методом Рунге-Кутта, разработка схемы алгоритма и написание программы в среде программирования Microsoft Visual Studio 2010. Тестирование работы программы.
курсовая работа [1,1 M], добавлен 22.01.2014Особенности метода численного интегрирования обыкновенных дифференциальных уравнений. Расчет переходного процесса в нелинейной электрической цепи, вызванного ее включением или отключением. Метод численного интегрирования Рунге-Кутта с переменным шагом.
отчет по практике [740,1 K], добавлен 10.10.2011Анализ преимуществ и недостатков различных численных методов решения дифференциальных уравнений высших порядков. Обоснование выбора метода Рунге-Кутта четвертого порядка. Разработка программы, моделирующей физическое и математическое поведение маятника.
курсовая работа [1,6 M], добавлен 11.07.2012Исследование внутренней сходимости численного интегрирования методами Симпсона и трапеций различных функций, задаваемых с помощью функций языка C. Результаты исследования, их анализ, описание применения. Условия и характеристики выполнения программы.
курсовая работа [385,2 K], добавлен 14.03.2011Реализация интегрирования функции методами прямоугольников, трапеций, Симпсона. Построение графика сравнения точности решения методов интегрирования в зависимости от количества разбиений. Алгоритм расчета энтропии файлов с заданным расширением.
контрольная работа [1011,0 K], добавлен 04.05.2015Методи чисельного розв'язання рівнянь. Рух тіла у в’язкому середовищі. В'язкість (внутрішнє тертя) і в'язкопружність. Метод Рунге-Кутти четвертого порядку. Функції та макроси вводу та виводу даних у стилі мови програмування Сі. Параметри фізичної моделі.
курсовая работа [947,5 K], добавлен 23.08.2014Розгляд та аналіз основних способів розв’язання звичайних диференціальних рівнянь за методом Рунге-Кутта з автоматичним вибором кроку. Способи оцінки погрішності і збіжності методу Рунге-кутти четвертого порядку з автоматичним вибором довжини кроку.
контрольная работа [31,0 K], добавлен 18.01.2013Математическое моделирование. Изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования. Интегрирование функций MATLAB.
курсовая работа [889,3 K], добавлен 27.09.2008Решение задачи Коши для дифференциального уравнения методом Рунге-Кутта и Адамса с автоматическим выбором шага и заданным шагом. Интерполирование табличной функции. Численное решение системы линейных алгебраических уравнений методами простой итерации.
методичка [35,8 K], добавлен 15.03.2009Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа [3,0 M], добавлен 21.05.2013Рассмотрение методов приближенного численного анализа. Формулы интегрирования, прямоугольников, трапеций, формула Симпсона. Оценка погрешностей интегрирования. Вычисление интеграла по формуле трапеций с тремя десятичными знаками и по формуле Симпсона.
курсовая работа [995,7 K], добавлен 09.07.2012Обыкновенное дифференциальное уравнение первого порядка. Задача Коши, суть метода Рунге-Кутта. Выбор среды разработки. Программная реализация метода Рунге-Кутта 4-го порядка. Определение порядка точности метода. Применение языка программирования C++.
курсовая работа [163,4 K], добавлен 16.05.2016Постановка задачи численного интегрирования. Классификация методов интегрирования: методы Ньютона-Котеса; методы статистических испытаний; сплайновые методы; методы наивысшей алгебраической точности. Метод Симпсона: суть; преимущества и недостатки.
реферат [165,3 K], добавлен 01.03.2011