Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 29.05.2017 |
Размер файла | 275,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа [1019,5 K], добавлен 05.05.2015Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".
дипломная работа [3,0 M], добавлен 02.03.2010Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа [2,3 M], добавлен 13.10.2015Обучение нейронных сетей как мощного метода моделирования, позволяющего воспроизводить сложные зависимости. Реализация алгоритма обратного распространения ошибки на примере аппроксимации функции. Анализ алгоритма обратного распространения ошибки.
реферат [654,2 K], добавлен 09.06.2014Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа [36,1 K], добавлен 05.10.2010Математическая модель искусственной нейронной сети. Структура многослойного персептрона. Обучение без учителя, методом соревнования. Правило коррекции по ошибке. Метод Хэбба. Генетический алгоритм. Применение нейронных сетей для синтеза регуляторов.
дипломная работа [1,5 M], добавлен 17.09.2013Построение векторной модели нейронной сети. Проектирование и разработка поискового механизма, реализующего поиск в полнотекстовой базе данных средствами нейронных сетей Кохонена с применением модифицированного алгоритма расширяющегося нейронного газа.
курсовая работа [949,0 K], добавлен 18.07.2014Исследование задачи и перспектив использования нейронных сетей на радиально-базисных функциях для прогнозирования основных экономических показателей: валовый внутренний продукт, национальный доход Украины и индекс потребительских цен. Оценка результатов.
курсовая работа [4,9 M], добавлен 14.12.2014Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.
дипломная работа [3,1 M], добавлен 21.03.2011Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа [2,2 M], добавлен 07.06.2012Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.
курсовая работа [2,6 M], добавлен 29.04.2009Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа [549,7 K], добавлен 03.03.2015Технологии решения задач с использованием нейронных сетей в пакетах расширения Neural Networks Toolbox и Simulink. Создание этого вида сети, анализ сценария формирования и степени достоверности результатов вычислений на тестовом массиве входных векторов.
лабораторная работа [352,2 K], добавлен 20.05.2013Монтаж и прокладывание локальной сети 10 Base T. Общая схема подключений. Сферы применение компьютерных сетей. Протоколы передачи информации. Используемые в сети топологии. Способы передачи данных. Характеристика основного программного обеспечения.
курсовая работа [640,0 K], добавлен 25.04.2015Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат [1,4 M], добавлен 05.12.2010