Аппроксимация функции методом наименьших квадратов (МНК)
Методические рекомендации по аппроксимации методом наименьших квадратов. Метод последовательного исключения неизвестных (метод Гаусса). Количественная оценка погрешности аппроксимации. Алгоритм и код программы. Методика решения нормальных уравнений.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.10.2017 |
Размер файла | 383,2 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).
курсовая работа [473,6 K], добавлен 09.02.2015Обзор методов аппроксимации. Математическая постановка задачи аппроксимации функции. Приближенное представление заданной функции другими, более простыми функциями. Общая постановка задачи метода наименьших квадратов. Нахождение коэффициентов функции.
курсовая работа [1,5 M], добавлен 16.02.2013Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет коэффициентов аппроксимации, детерминированности в Microsoft Excel. Построение графиков функций, линии тренда.
курсовая работа [590,9 K], добавлен 10.04.2014Метод Гаусса и одно из его приложений в экономике (простейшая задача о рационе). Модель Леонтьева межотраслевого баланса. Алгебраический метод наименьших квадратов. Анализ данных эксперимента. Метод наименьших квадратов в Excel и аппроксимация данных.
курсовая работа [598,7 K], добавлен 11.07.2015Аппроксимация – процесс замены таблично заданной функции аналитическим выражением кривой. Алгоритм нахождения зависимости между заданными переменными. Условия сходимости итераций к решению системы уравнений. Методы Якоби и Гаусса. Тестирование программы.
курсовая работа [1,4 M], добавлен 28.08.2012Развитие навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью электронно-вычислительных машин. Схема алгоритма. Назначение функции Линейн и метода наименьших квадратов.
курсовая работа [340,4 K], добавлен 17.12.2014Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет аппроксимаций в табличном процессоре Excel. Описание программы на языке Turbo Pascal; анализ результатов ее работы.
курсовая работа [390,2 K], добавлен 02.01.2015Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.
курсовая работа [956,7 K], добавлен 04.03.2013Определение зависимости между экспериментальными данными при помощи аппроксимации, особенности решения поставленной задачи различными способами, проведение расчетов с помощью табличного процессора Microsoft Excel и среды программирования Turbo Pascal 7.0.
курсовая работа [765,0 K], добавлен 25.02.2012Основные методы и алгоритмы исследования. Нахождение минимума среднеквадратичного отклонения. Особенности решения нормальных уравнений. Параметры линейной аппроксимирующей функции. Расчет значений аппроксимирующей функции и среднеквадратичного уклонения.
курсовая работа [749,3 K], добавлен 08.06.2019Метод наименьших квадратов. Возможные варианты расположения экспериментальных точек. Аппроксимация экспериментальных данных в программах Microsoft Excel, MathCAD и MatLAB. Вычисление средних значений и их сумм. Коэффициенты корреляции и детерминации.
курсовая работа [890,9 K], добавлен 30.10.2012Определение параметров линейной зависимости из графика. Метод парных точек. Метод наименьших квадратов. Блок-схема программного комплекса в Microsoft Visual Studio и Microsoft Excel. Инструкция пользователя, скриншоты. Общий вид программного кода.
курсовая работа [2,1 M], добавлен 29.11.2014Описание математических методов расчета. Решение задачи аппроксимации, метод решения по частотной выборке и наименьших квадратов. Контрольный расчет амплитудно-частотной характеристики. Программы расчета фильтров нижних частот на языке среды MathCAD.
курсовая работа [87,1 K], добавлен 21.12.2012Матричная форма записи системы линейных уравнений, последовательность ее решения методом исключений Гаусса. Алгоритмы прямого хода и запоминания коэффициентов. Решение задачи о сглаживании экспериментальных данных с помощью метода наименьших квадратов.
курсовая работа [610,7 K], добавлен 25.06.2012Построение аппроксимирующей зависимости методом наименьших квадратов. Расчет интеграла по Ричардсону. Последовательность действий при аппроксимации экспоненциальной зависимостью. Определение корня уравнения методом простых итераций и решение задачи Коши.
курсовая работа [550,5 K], добавлен 13.03.2013Определение зависимости одной физической величины от другой. Применение метода наименьших квадратов с помощью программного обеспечения Mathcad. Суть метода наименьших квадратов. Корреляционный анализ, интерпретация величины корреляционного момента.
курсовая работа [63,8 K], добавлен 30.10.2013Традиционные языки высокоуровневого программирования. Обзор методов интегрирования. Оценка апостериорной погрешности. Численное решение систем линейных уравнений. Аппроксимация функций методом наименьших квадратов. Решение дифференциальных уравнений.
методичка [6,4 M], добавлен 23.09.2010Анализ методов идентификации, основанных на регрессионных процедурах с использованием метода наименьших квадратов. Построение прямой регрессии методом Асковица. Определение значения дисперсии адекватности и воспроизводимости, коэффициентов детерминации.
курсовая работа [549,8 K], добавлен 11.12.2012Аппроксимация функции зависимости крутящего момента косозубого шестеренного пневмодвигателя К3М от числа оборотов вала в безразмерных величинах с помощью Microsoft Excel и PTC MathCad. Суть метода наименьших квадратов. Оценка точности аппроксимации.
курсовая работа [1,2 M], добавлен 10.03.2012Отделение корней методом простых интеграций. Дифференцирование и аппроксимация зависимостей методом наименьших квадратов. Решение нелинейного уравнения вида f(x)=0 методом Ньютона. Решение системы линейных уравнений методом Зейделя и методом итераций.
курсовая работа [990,8 K], добавлен 23.10.2011