Методы анализа и структурированного распознавания лиц в естественных условиях
Распознавание лица на основании анализа изображения как одна из проблем в реализациях компьютерного зрения. Алгоритмы распознавания лиц, представленные научными школами и коммерческими разработками. Оценка качества и скорости использования наборов данных.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 12.01.2018 |
Размер файла | 342,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Условия применения и технические требования для работы программно-аппаратной платформы. Система распознавания лиц VOCORD Face Control. Система распознавания текста ABBYY FineReader. Алгоритмы и методы, применяемые в программе. Алгоритм хеширования MD5.
дипломная работа [1,8 M], добавлен 19.01.2017Процессы распознавания символов. Шаблонные и структурные алгоритмы распознавания. Процесс обработки поступающего документа. Обзор существующих приложений по оптическому распознаванию символов. Определение фиксированного шага и сегментация слов.
дипломная работа [3,3 M], добавлен 11.02.2017Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.
презентация [31,6 K], добавлен 06.01.2014Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.
курсовая работа [16,2 M], добавлен 21.06.2014Как работает система оптического распознавания. Деление текста на символы. Образ страницы и распознавание по шаблонам, особенности коррекции ошибок. Увеличение скорости бесклавиатурного ввода документов в технологиях электронного документооборота.
контрольная работа [15,6 K], добавлен 29.04.2011Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.
презентация [469,2 K], добавлен 15.03.2015Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.
курсовая работа [2,7 M], добавлен 15.08.2011Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.
курсовая работа [2,1 M], добавлен 20.09.2014Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.
реферат [413,6 K], добавлен 10.04.2010Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа [887,3 K], добавлен 26.11.2013Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.
дипломная работа [554,8 K], добавлен 06.04.2014Фильтрация шумов изображения. Алгоритмы его бинаризации и поворота. Формирование информативных признаков для распознавания нот. Схема программного обеспечения. Описание классов, функций, методов, реализованных в программе. Тестирование приложения.
курсовая работа [2,0 M], добавлен 17.12.2013Обзор математических методов распознавания. Общая архитектура программы преобразования автомобильного номерного знака. Детальное описание алгоритмов: бинаризация изображения, удаление обрамления, сегментация символов и распознавание шаблонным методом.
курсовая работа [4,8 M], добавлен 22.06.2011Оптическое распознавание символов как механический или электронный перевод изображений рукописного, машинописного или печатного текста в последовательность кодов. Компьютерные программы для оптического распознавания символов и их характеристика.
презентация [855,2 K], добавлен 20.12.2011Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа [3,0 M], добавлен 14.11.2013Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.
презентация [523,7 K], добавлен 14.08.2013Разработка программной базы для исследований в области распознавания речи и поиска ключевых слов в ней. Расчет mel-фильтров. Скрытые марковские модели. Применение в алгоритме сверточного декодирования Витерби. Методы визуализации и обработки аудиоданных.
курсовая работа [1,1 M], добавлен 01.06.2015Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.
дипломная работа [332,2 K], добавлен 30.11.2012Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.
курсовая работа [1,4 M], добавлен 11.04.2012