Численные методы решения инженерных задач
Решение уравнения методом проб/половинного деления и методом хорд. Вычисление системы уравнений способами обратной матрицы, Гаусса, Жордана-Гаусса, итераций. Вычисление дифференциального уравнения методом Эйлера и интеграла методами трапеций, Симпсона.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 05.05.2018 |
Размер файла | 798,2 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Метод хорд решения нелинейных уравнений. Вычисление интеграла методом Симпсона. Процесс численного решения уравнения. Окно программы расчета корней уравнения методом хорд. Алгоритм вычисления интеграла в виде блок-схемы. Выбор алгоритма для вычислений.
курсовая работа [832,6 K], добавлен 24.07.2012Создание приложения, демонстрирующего решение нелинейного уравнения методом хорд, вычисление интеграла методом Симпсона. Характеристика системы программирования. Разработка мощных систем для работы с локальными и удаленными базами данных с помощью Delphi.
дипломная работа [846,0 K], добавлен 22.09.2012Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.
курсовая работа [1,3 M], добавлен 21.09.2011Решение уравнения методом половинного деления. Программа в Matlab для уравнения (x-2)cos(x)=1. Решение нелинейных уравнений методом Ньютона. Интерполяция заданной функции. Решение системы линейных алгебраических и обыкновенных дифференциальных уравнений.
курсовая работа [1,4 M], добавлен 15.08.2012Построение графика функции. Поиск корней уравнения методом половинного деления. Определение минимума функции методом перебора и значения аргумента. Вычисление определенного интеграла на заданном отрезке с использованием метода правых прямоугольников.
контрольная работа [316,1 K], добавлен 13.11.2014Решение систем алгебраических линейных уравнений методом Гаусса. Вычисление обратной матрицы и определителя. Декомпозиция задачи. Схема взаимодействия интерфейсных форм. Описание процедур и функций. Тестирование разработанного программного продукта.
курсовая работа [1,1 M], добавлен 05.06.2012Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.
курсовая работа [539,2 K], добавлен 15.06.2013Автоматизация решения системы уравнения методом Гаусса (классического метода решения системы линейных алгебраических уравнений, остоящего в постепенном понижении порядка системы и исключении неизвестных) и решения уравнения методами хорд и Ньютона.
курсовая работа [578,2 K], добавлен 10.02.2011Обзор существующих методов по решению нелинейных уравнений. Решение нелинейных уравнений комбинированным методом и методом хорд на конкретных примерах. Разработка программы для решения нелинейных уравнений, блок-схемы алгоритма и листинг программы.
курсовая работа [435,8 K], добавлен 15.06.2013Численные методы решения задач. Решение алгебраических и трансцендентных уравнений. Уточнение корня по методу половинного деления. Решение систем линейных уравнений методом итераций. Методы решения дифференциальных уравнений. Решение транспортной задачи.
курсовая работа [149,7 K], добавлен 16.11.2008Построение аппроксимирующей зависимости методом наименьших квадратов. Расчет интеграла по Ричардсону. Последовательность действий при аппроксимации экспоненциальной зависимостью. Определение корня уравнения методом простых итераций и решение задачи Коши.
курсовая работа [550,5 K], добавлен 13.03.2013Рассмотрение двух методов нахождения приближенного корня дифференциального уравнения, применение их на практике. Графическая интерпретация метода Эйлера. Решение задачи усовершенствованным методом Эйлера. Программная реализация, блок-схемы и алгоритм.
курсовая работа [246,8 K], добавлен 17.06.2013Программа вычисления интеграла методом прямоугольников. Решение задачи Коши для дифференциальных уравнений. Модифицированный метод Эйлера. Методы решения краевой задачи для обыкновенного дифференциального уравнения. Задачи линейного программирования.
методичка [85,2 K], добавлен 18.12.2014Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа [3,0 M], добавлен 21.05.2013Методика и основные этапы процесса поиска уравнения по методу половинного деления, его сущность и содержание, анализ результатов. Порядок вычисления экстремумов функции методом перебора. Расчет определенного интеграла по методу правых прямоугольников.
контрольная работа [200,9 K], добавлен 20.01.2014Разработка программы для нахождения корней нелинейных уравнений несколькими методами: методом хорд, касательных, половинного деления, итераций. Реализации программы с помощью системы программирования Delphi 7. Методика работы пользователя с программой.
курсовая работа [1,3 M], добавлен 11.02.2013Исследование количества, характера и расположения корней. Определение их приближенных значений итерационными методами: половинного деления (дихотомии) и хорд. Тексты программ. Решение уравнений на языках программирования Borland Delfi и Turbo Pascal.
курсовая работа [500,3 K], добавлен 15.06.2013Тестирование модуля отыскания корня уравнения методом половинного деления. Схема алгоритма тестирующей программы. Численное интегрирование по методу Симпсона с оценкой погрешности по правилу Рунге. Проверка условий сходимости методов с помощью MathCAD.
курсовая работа [1,1 M], добавлен 04.02.2011Численный метод для решения однородного дифференциального уравнения первого порядка методом Эйлера. Решение систем дифференциальных уравнений методом Рунге–Кутта. Решение краевой задачи. Уравнения параболического типа, а также Лапласа и Пуассона.
курсовая работа [163,5 K], добавлен 27.05.2013Решение нелинейного уравнения шаговым методом, методом половинного деления, методом Ньютона и простой итерации с помощью программы Mathcad. Разбиение промежутка на число n интервалов. Условия сходимости корня. Составление программы для решения на С++.
лабораторная работа [207,5 K], добавлен 10.05.2012