Исследование повышения разрешения изображений с помощью обучения сверточных фильтров
Использование одиночного сверточного фильтра для повышения разрешения изображения. Сверточные фильтры, метрики качества. Однослойная нейронная сеть. Модель Raiser. Двухслойная нейронная сеть. Фильтры оператора Лапласа. Сущность бикубической интерполяции.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 23.09.2018 |
Размер файла | 7,0 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Эффективность применения объектного подхода для программных систем. Детальное проектирование и реализация системы, реализующей процессы создания и взаимодействия объектов. Распознавание компьютером печатных букв с помощью многослойной нейронной сети.
курсовая работа [38,0 K], добавлен 09.03.2009Программная реализация статической нейронной сети Хемминга, распознающей символы текста. Описание реализации алгоритма. Реализация и обучение сети, входные символы. Локализация и масштабирование изображения, его искажение. Алгоритм распознавания текста.
контрольная работа [102,3 K], добавлен 29.06.2010Определение понятий видеопиксела, разрешения изображения и разрешения монитора. Шаг точки (зерно) и размер пятна от луча. Сравнение разрешения изображения и шага точки. Характеристика цветовых моделей: модель RGB, вычитающая модель и модель HSB.
презентация [78,2 K], добавлен 06.01.2014Формирование растровых изображений. Изменение их разрешения путем интерполяции. Понятие глубины цвета. Редактирование рисунков с помощью масок, каналов и фильтров. Характеристика инструментов выделения, ретуширования и работы со слоями в Adobe Photoshop.
курсовая работа [294,1 K], добавлен 18.05.2016Обзор программных продуктов для анализа изображений: ABBYY FineReader и OCR CuneiForm. Понятие и виды нейронных сетей. Алгоритм обучения персептрона. Результаты исследований и описание интерфейса программы. Расчет себестоимости программного обеспечения.
дипломная работа [590,7 K], добавлен 17.08.2011Зарождение и развитие криптографии. Симметричное шифрование и его особенности. Нейронная сеть и области ее использования, основные составляющие. Математическая модель нейронной сети на базе базисно-радиальных функций. Алгоритм симметричного шифрования.
курсовая работа [809,4 K], добавлен 30.09.2016Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.
реферат [162,9 K], добавлен 30.09.2013Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация [98,6 K], добавлен 16.10.2013Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.
дипломная работа [6,1 M], добавлен 03.06.2022Применение методов искусственного интеллекта при определении цвета глаз будущего ребенка. Сущность нейросетевых технологий, обучение нейросимуляторов. Зависимость погрешности обучения от погрешности обобщения. Оценка значимости входных параметров.
презентация [287,2 K], добавлен 14.08.2013Проблема гидроакустической классификации целей как актуальная проблема современной гидроакустики. Применение нейросетевых алгоритмов и отдельных парадигм для решения научно-технических задач. Выбор структуры нейронной сети для распознавания изображений.
реферат [284,2 K], добавлен 04.05.2012К ретуши относятся операции повышения резкости и размытия. Резкость делает изображение выразительным, так как к контрастным, резким деталям человеческий глаз более внимателен. Использование для увеличения резкости изображения фильтров группы "Резкость".
контрольная работа [71,7 K], добавлен 12.09.2010Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат [158,2 K], добавлен 16.03.2011Основные способы представления изображений. Обработка цифровых и отсканированных фотоснимков, создание многослойного изображения, фотомонтаж с помощью графического редактора Adobe Photoshop. Вид рабочего окна программы, палитры, фильтры, их применение.
курсовая работа [2,5 M], добавлен 22.09.2010Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
контрольная работа [1,4 M], добавлен 28.01.2011История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.
реферат [45,1 K], добавлен 20.11.2009Сущность понятия "локальная сеть". Совместное использование файла с помощью сети. Простота распространения приложений между служащими офиса как одно из крупных достижений локальных сетей. Основные преимущества электронной почты перед телефонной связью.
контрольная работа [14,0 K], добавлен 14.11.2010Обзор и анализ распространенных искусственных нейронных сетей. Функциональное назначение слоев сети, алгоритмы обучения. Описание функциональных возможностей разработанной программной системы. Анализ исследовательской эксплуатации и возможных применений.
дипломная работа [1,3 M], добавлен 19.05.2011Сущность данных и информации. Особенности представления знаний внутри ИС. Изучение моделей представления знаний: продукционная, логическая, сетевая, формальные грамматики, фреймовые модели, комбинаторные, ленемы. Нейронные сети, генетические алгоритмы.
реферат [203,3 K], добавлен 19.06.2010