Использование методов локальных гистограмм и интерполяции изображений для распознания лиц
Методы интерполяции изображений и их применение для улучшения работы метода локальных гистограмм для распознавания лиц на различных изображениях в случае их необходимого масштабирования. Интегральное представление изображения, выполнение алгоритмов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 07.12.2019 |
Размер файла | 1,1 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ существующих методов масштабирования изображений. Повышение скорости обработки и изменения картинок. Алгоритм масштабирования с использованием параллелизма. Отбор пикселей для правильного расчета градиента. Выбор метода интерполяции изображения.
курсовая работа [5,8 M], добавлен 17.06.2017Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.
дипломная работа [6,1 M], добавлен 03.06.2022Сравнительная оценка существующих программ, повышающих разрешение изображений на языке Borland Delphi. Выбор оптимального инструментария для разработки логической схемы. Форма поиска файлов, преобразования изображений и реализации алгоритмов интерполяции.
дипломная работа [3,0 M], добавлен 29.11.2011Программа визуализации космических изображений. Файлы формата LAN. В программе реализован инструмент ресинтеза цветного изображения, отображаемого в главном окне, инструмент выравнивания гистограмм яркости каналов и диалоговое окно вывода гистограмм.
курсовая работа [2,9 M], добавлен 12.05.2012Работа с бинарными изображениями, методы их преобразования в полутоновые. Сущность бинаризации изображений и роль правильного выбора порога квантования. Применение полноцветных, полутоновых и бинарных изображений, способы построения гистограмм.
лабораторная работа [1,3 M], добавлен 30.09.2009Анализ системы получения изображений микропрепарата Атлант-микро. Разработка модели, алгоритмов совмещения фрагментов. Разработка пользовательского интерфейса системы. Оценка качества совмещения фрагментов алгоритмом с бинаризацией на основе гистограмм.
дипломная работа [8,0 M], добавлен 23.09.2012Обнаружение деталей и их границ изображения. Применение ранговых алгоритмов. Использование алгоритмов адаптивного квантования мод в режиме пофрагментной обработки. Обобщенная линейная фильтрация изображений. Восстановление отсутствующих участков.
курсовая работа [1,8 M], добавлен 17.06.2013Выбор методов обработки и сегментации изображений. Математические основы примененных фильтров. Гистограмма яркости изображения. Программная реализация комплексного метода обработки изображений. Тестирование разработанного программного обеспечения.
курсовая работа [1,3 M], добавлен 18.01.2017Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.
презентация [360,4 K], добавлен 11.10.2013Яркость точек и гистограммы изображения. Изменение яркости и контрастности. Метод ранговой фильтрации с оценкой середины диапазона. Наложение шумов на изображение. Преобразование изображения в негатив. Получение матрицы яркостей и построение гистограмм.
курсовая работа [1,5 M], добавлен 11.12.2012Общий алгоритм сравнения двух изображений. Метод максимальных площадей. Метод гистограмм. Подготовка изображения к распознаванию. Моделирование многомерной функции. Распределение векторов. Деформируемые модели. Реализация программного обеспечения.
дипломная работа [384,2 K], добавлен 29.09.2008Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.
курсовая работа [890,9 K], добавлен 07.12.2013Построение интерполяционных объектов и их свойства. Линейные операции над множествами по Минковскому. Вывод формулы поворота вектора. Основные числовые характеристики изображений. Усовершенствованный метод интерполяции. Исследование исходных множеств.
дипломная работа [1,8 M], добавлен 18.05.2013Изучение и программная реализация в среде Matlab методов обработки, анализа, фильтрации, сегментации и улучшения качества рентгеновских медицинских изображений. Цифровые рентгенографические системы. Разработка статически обоснованных алгоритмов.
курсовая работа [4,7 M], добавлен 20.01.2016Применение различных методов компрессии изображений и анимации. Определение наиболее подходящего формата сжатия. Выбор кодеков при помощи программы RIOT. Применение дополнительных способов оптимизации с использование программ OptiPNG, PNGOUT и TweakPNG.
лабораторная работа [1,5 M], добавлен 31.05.2013Понятие и характеристика некоторых методов интерполяции. Вычисление значения функции между заданными точками несколькими методами. Алгоритм линейной интерполяции. Алгоритм локальной интерполяции по формуле Лагранже. Инструкция пользования программой.
курсовая работа [186,5 K], добавлен 30.05.2015Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа [887,3 K], добавлен 26.11.2013Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.
курсовая работа [2,1 M], добавлен 20.09.2014Положения алгоритмов сжатия изображений. Классы приложений и изображений, критерии сравнения алгоритмов. Проблемы алгоритмов архивации с потерями. Конвейер операций, используемый в алгоритме JPEG. Характеристика фрактального и рекурсивного алгоритмов.
реферат [242,9 K], добавлен 24.04.2015