Применение методов машинного обучения для предсказания пространственной структуры белков

Предсказание трехмерной структуры белка. Предсказание матрицы контактов белка с помощью информации об ограничениях, содержащейся в матрице контактов. Применение моделей машинного обучения XGBoost, CatBoost, Logistic Regression, CNN, ResNet, BiLSTM, LSTM.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 25.08.2020
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Человеко-машинный интерфейс. Текстовый и смешанный (псевдографический) интерфейсы. Применение человеко-машинного интерфейса в промышленности. Программные средства для разработки человеко-машинного интерфейса. Среда разработки мнемосхем GraphworX32.

    дипломная работа [5,3 M], добавлен 19.03.2010

  • Инструменты компьютерной визуализации. Реализация и применение технологии обработки информации. Разработка инфологической структуры. Анализ эффективности применения инфологических моделей на информационных порталах и в средствах электронной коммерции.

    дипломная работа [7,3 M], добавлен 29.11.2015

  • Історія машинного перекладу як науково-прикладного напряму. Теорія машинного перекладу. Особливості використання систем, орієнтованих на персональні комп’ютери. Напрямки розвитку та застосування машинного перекладу. Приклади систем машинного перекладу.

    реферат [21,5 K], добавлен 19.02.2011

  • Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.

    курсовая работа [1020,6 K], добавлен 30.11.2016

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

  • История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.

    курсовая работа [30,0 K], добавлен 19.06.2015

  • Понятие сетей Петри, их применение и возможности. Сетевое планирование, математические модели с использованием сетей Петри. Применение сетевых моделей для описания параллельных процессов. Моделирование процесса обучения с помощью вложенных сетей Петри.

    курсовая работа [1,0 M], добавлен 17.11.2009

  • Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.

    дипломная работа [917,1 K], добавлен 31.01.2015

  • Понятие базы знаний для управления метаданными. Особенности баз знаний интеллектуальной системы. Языки, используемые для разработки интеллектуальных информационных систем. Классические задачи, решаемые с помощью машинного обучения и сферы их применения.

    реферат [16,9 K], добавлен 07.03.2010

  • Применение современных компьютерных технологий в процессе обучения иностранным языкам. Использование Интернет-ресурсов, скайпа, социальных сетей в обучении и интернет-сайта для поиска дополнительно новой информации. Общение онлайн с носителями языка.

    статья [15,8 K], добавлен 23.06.2015

  • Оценка качества подготовки программистов и снижение трудозатрат на подготовку и проверку их лабораторных работ. Разработка проекта по автоматизации процесса обучения программированию с помощью интегрированной среды оценки структуры и качества программы.

    дипломная работа [2,5 M], добавлен 07.06.2012

  • Принципы компьютерной стеганографии. Классификация методов сокрытия информации. Популярность метода замены наименьшего значащего бита. Сущность методов расширения палитры и блочного сокрытия. Применение методов в GIF изображениях. Реализация алгоритмов.

    курсовая работа [589,7 K], добавлен 17.02.2013

  • Получение навыков работы в Mathcad при использовании интерполяции и регрессии. Постройте функции сглаживания и предсказания данных с помощью различных встроенных функций. Применение операций как калькулятор, математический анализ, матрица и вычисление.

    лабораторная работа [205,1 K], добавлен 23.12.2014

  • История возникновения, эволюция машинного перевода. Основные требования к коммуникативной эквивалентности. Последовательность формальных операций в системе машинного перевода, ее концепции развития. Переводчик для офиса. Преимущества электронных словарей.

    презентация [455,3 K], добавлен 22.10.2013

  • Использование классификаторов машинного обучения для анализа данных. Создание модели, которая на основании параметров, влияющих на течение диабета, выявляет показатель возвращения больного в ухудшенное состояния после оказанного лечения (реадмиссию).

    дипломная работа [625,2 K], добавлен 10.06.2017

  • Автоматизований та машинний види перекладу. Можливості подолання мовного бар’єру у спілкуванні. Існуючі класифікації систем машинного перекладу. Лінгвістичне дослідження міри автоматизованості перекладацької системи. Словник і синтаксис вхідної мови.

    статья [23,5 K], добавлен 14.08.2017

  • Получение и обработка данных о веб-сайте. Иерархическая классификация, алгоритмы машинного обучения. Решающие деревья, плоские классификаторы. Метрики оценки качества. Полная точность (accuracy), кросс-валидация. Параллельные вычисления, хранение данных.

    курсовая работа [276,8 K], добавлен 04.09.2016

  • Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.

    курсовая работа [436,9 K], добавлен 14.12.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.