курсовая работа Применение формулы трапеций и формулы средних прямоугольников для решения задач численного интегрирования
Формула трапеций и формула средних прямоугольников. Применение численного интегрирования. Теория приближенного решения математических задач. Вычисление значения определенного интеграла по формуле Ньютона-Лейбница. Формула трапеций с постоянным шагом.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.06.2013 |
Размер файла | 481,8 K |
Подобные документы
Рассмотрение методов приближенного численного анализа. Формулы интегрирования, прямоугольников, трапеций, формула Симпсона. Оценка погрешностей интегрирования. Вычисление интеграла по формуле трапеций с тремя десятичными знаками и по формуле Симпсона.
курсовая работа [995,7 K], добавлен 09.07.2012Методы левых и правых прямоугольников численного интегрирования для вычисления интегралов. Геометрический смысл определённого интеграла. Программная реализация, блок-схемы алгоритмов. Результат работы тестовой программы. Решение задачи с помощью ЭВМ.
курсовая работа [180,4 K], добавлен 15.06.2013Реализация интегрирования функции методами прямоугольников, трапеций, Симпсона. Построение графика сравнения точности решения методов интегрирования в зависимости от количества разбиений. Алгоритм расчета энтропии файлов с заданным расширением.
контрольная работа [1011,0 K], добавлен 04.05.2015Сущность и особенности применения метода средних треугольников. Порядок расчета по методу трапеций и Ньютона-Котеса. Формула Чебышева и значения узлов ее квадратуры. Составление блок-схемы программы и ее основных процедур различными численными методами.
курсовая работа [482,7 K], добавлен 03.01.2010Составление блок-схемы и алгоритма программы для решения уравнения с приближенным значением корня по методу Ньютона, расчета приближенного значения интеграла по формуле трапеций, вычисления уравнения длины вектора. Типы формул общего члена суммы.
курсовая работа [41,3 K], добавлен 15.12.2012Идея численного интегрирования. Создание программы, вычисляющей определенный интеграл методом трапеций. Листинг программы, результаты работы. Проверка в среде Mathcad. Зависимость точности вычисления от количества отрезков разбиения, расчет погрешности.
отчет по практике [106,8 K], добавлен 28.04.2013Знакомство с наиболее известными технологиями программирования. Особенности разработки программ для вычисления интеграла по формуле средних прямоугольников. Общая характеристика методов структурного программирования. Рассмотрение формулы Симпсона.
курсовая работа [1,3 M], добавлен 03.03.2015Исследование внутренней сходимости численного интегрирования методами Симпсона и трапеций различных функций, задаваемых с помощью функций языка C. Результаты исследования, их анализ, описание применения. Условия и характеристики выполнения программы.
курсовая работа [385,2 K], добавлен 14.03.2011Применения численного интегрирования. Интерполяционные методы нахождения значений функции. Методы прямоугольников, трапеций и парабол. Увеличение точности, методы Гаусса и Гаусса-Кронрода. Функциональные модели и программная реализация решения задачи.
курсовая работа [450,9 K], добавлен 25.01.2010Формула Симпсона как интеграл от интерполяционного многочлена второй степени, рассмотрение сфер использования. Знакомство с основными особенностями и этапами написания программы для численного интегрирования с помощью формулы Симпсона, анализ примеров.
практическая работа [153,8 K], добавлен 16.03.2015Математическое описание, алгоритм и программа вычисления определенного интеграла методом трапеций. Расчет n-значений исследуемой функции и вывод их в виде таблицы. Технические и программные средства. Входные и выходные данные, функциональное назначение.
курсовая работа [21,0 K], добавлен 03.01.2010Разработка прикладного программного обеспечения для решения расчетных задач для компьютера. Численное интегрирование - вычисление значения определённого интеграла. Проектирование алгоритма численного метода. Тестирование работоспособности программы.
курсовая работа [1,1 M], добавлен 03.08.2011Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.
курсовая работа [1,3 M], добавлен 21.09.2011Разработка программы нахождения значения определенного интеграла с помощью метода трапеций. Оценка абсолютной погрешности метода. Использование среды программирования Visual Studio Community 2015 для написания программы. Работа с графическим интерфейсом.
курсовая работа [573,8 K], добавлен 17.03.2016Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа [3,0 M], добавлен 21.05.2013Формулирование и создание программы по вычислению определенного интеграла по формуле трапеций с тремя десятичными знаками и по формуле Симпсона. Выбор Delphi как программного средства разработки программы. Создание алгоритма и листинг программы.
курсовая работа [990,9 K], добавлен 15.06.2009Разработка программы, выполняющей интегрирование методом входящих прямоугольников с кратностями и методом Симпсона. Расчет определённого интеграла приближенным и точным методами. Оценка погрешности при вычислении приблизительного значения интеграла.
контрольная работа [71,7 K], добавлен 13.02.2016- Разработка программы, вычисляющей определенный интеграл методом трапеций для подынтегральной функции
Разработка алгоритма решения определенного интеграла методом трапеций для подынтегральной функции и моделирования задачи вынужденных колебаний без затухания. Описание интерфейса программы в среде Delphi и MathCad; идентификаторы, модули и приложения.
курсовая работа [500,4 K], добавлен 28.05.2013 Численные методы. Создание программного продукта, использование которого позволит одновременно исследовать два метода вычисления определенных интегралов: метод трапеций и метод Симпсона. Рассмотрен ход вычисления интеграла в виде кода программы.
курсовая работа [834,6 K], добавлен 14.04.2019Постановка задачи численного интегрирования. Классификация методов интегрирования: методы Ньютона-Котеса; методы статистических испытаний; сплайновые методы; методы наивысшей алгебраической точности. Метод Симпсона: суть; преимущества и недостатки.
реферат [165,3 K], добавлен 01.03.2011