Уверенность в решении: моделирование и экспериментальная проверка

Ознакомление с процессом выполнения наблюдателем сенсорных задач. Описание модели принятия решения с оценкой уверенности в его правильности. Выполнение пороговых задач на материале зрительного различения пространственных и временных признаков стимулов.

Рубрика Психология
Вид статья
Язык русский
Дата добавления 14.06.2018
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

© Московский городской психолого-педагогический университет

© PsyJournals.ru, 2010 39

© Московский городской психолого-педагогический университет

© PsyJournals.ru, 2010 39

Экспериментальная психология

УВЕРЕННОСТЬ В РЕШЕНИИ: МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА

ШЕНДЯПИН В. М., Центр экспериментальной психологии МГППУ, Москва

БАРАБАНЩИКОВ В. А., Институт психологии РАН, Центр экспериментальной психологии МГППУ, Москва

СКОТНИКОВА И. Г., Институт психологии РАН, Москва

В работе анализируется процесс выполнения наблюдателем сенсорных задач. Кратко представлено описание разработанной с позиции теории обнаружения сигнала (ТОС) модели принятия решения с оценкой уверенности в его правильности. В парадигму ТОС введено понятие уверенности идеального наблюдателя. Для реального наблюдателя обоснован подход к измерению уверенности через сумму эвристических свидетельств. Показано, что вероятность правильности уверенных ответов превышает вероятность правильности всех (уверенных и неуверенных) ответов. В экспериментальном исследовании выполнения двух видов пороговых задач на материале зрительного различения пространственных признаков стимулов (размеров окружностей) и временных (длительностей световых сигналов) это предсказание модели подтвердилось. Пилотажное диагностическое исследование позволило высказать гипотезу, что контроль за правильностью сенсорных решений с помощью переживаний уверенности-сомнений у рефлективных лиц выше, чем у импульсивных.

Ключевые слова: моделирование уверенности, принятие решения, контроль правильности сенсорных решений, эвристическое сенсорное свидетельство, сенсорное различение, импульсивность, рефлективность.

сенсорный задача уверенность стимул

CONFIDENCE IN DECISION: MODELING AND EXPERIMENTAL VERIFICATION

SHENDYAPIN V. M., Center of Experimental Psychology, MCUPE, Moscow

BARABANSCHIKOV V. A, Institute of Psychology RAS, Center of Experimental Psychology, MCUPE, Moscow

SKOTNIKOVA I. G., Institute of Psychology RAS, Moscow

The article is dedicated to the analysis of the process of performing sensory tasks by an observer. An overview of a model of decision making with the assessment of confidence in its correctness based on signal detection theory (SDT) is presented. The concept of the confidence of an ideal observer is introduced in the paradigm. For a real observer, an approach of measuring confidence with the use of the amount of heuristic evidence is justified. It is shown that the probability of correct, confident responses exceeds the probability of the correctness of all the confident and non-confident responses. In the experimental study of performing two types of threshold tasks on visual discrimination of spatial features of stimuli (size of circles) and time (duration of light signals), the prediction of the model was confirmed. This pilot diagnostic study has allowed to set forth the hypothesis that control over the accuracy of sensory decisions based on confidence-doubts feeling is higher among the reflective persons than among the impulsive ones.

Keywords: modeling of confidence, decision making, control of the correctness of sensory decisions, heuristic sensory evidence, sensory discrimination, impulsiveness, reflexivity

Введение

Настоящая работа продолжает исследования уверенности при решении сенсорных задач, результаты которых были представлены ранее (Шендяпин, 2007, 2010; Шендяпин, Барабанщиков, 2008; Шендяпин, Скотникова, 2003, 2006; Шендяпин и др., 2008, 2010). Целью данных исследований является теоретическая разработка и экспериментальная проверка математической модели процесса решения сенсорной задачи порогового различения близких по величине признаков объектов с наиболее детальным описанием важнейшей подсистемы этого процесса - принятия решения, включающего оценку уверенности в его правильности. Рассматривается базовый аспект уверенности в суждениях, отражающий такую важную внешне регистрируемую ее характеристику, как вероятность правильности решений.

Очевидна актуальность изучения принятия решения как базового звена выполнения любой когнитивной задачи. Последовательная реализация принципа системности в психологии способствует развитию исследований интегративных психических образований, структур, механизмов и функциональных систем (Барабанщиков, 2005), к которым в настоящее время относят и процессы принятия решения (Карпов, 2003). Одним из направлений таких исследований является разработка моделей психических процессов, достаточно интенсивно развивавшаяся в отечественной науке в 70-80-х годах XX века, однако позже ушедшая на второй план. Преодоление такого рода упущений в различных областях психологического знания приобретает особое значение для современной науки. И здесь немаловажную роль играет разработка методического материала, системных методов и средств анализа психических процессов, одним из которых является, с нашей точки зрения, метод математического моделирования; кроме того, его разработка имеет также практическое значение для превращения технологии научно-исследовательской деятельности в технологию организации жизненной сферы человека (Барабанщиков, 2005).

Исследования в рамках теории принятия решения достаточно активно развиваются за рубежом начиная с середины ХХ века; позже к ним добавилось также изучение уверенности в принятом решении (в частности, на материале сенсорно-перцептивных задач порогового типа), в результате чего были разработаны математические модели принятия решения и оценки уверенности в нем (Balakrishnan, Ratcliff, 1996; Bjorkman et al., 1993; Ferrel, McGoey, 1980, Ferrel, 1995; Heath, 1984; Heath, Fulham, 1988; Lacouture, Marley, 2000; Link, Heath, 1975; Link, 2003; Usher, Zakay, 1993; Usher, McClelland, 2001; Van Zandt, MaldonadoMolina, 2000; Vickers, Lee, 1998, 2000; Vickers, 2003 и др.).

Однако проведенный анализ предлагаемых моделей уверенности выявил следующие проблемы:

1. Несмотря на то, что все эти модели признают уверенность случайной величиной, значения которой при измерениях меняются от пробы к пробе, между ними не существует единства в оценке этой величины. Так, модели ряда авторов (Balakrishnan, Ratcliff, 1996; Bjorkman et al., 1993; Ferrel, McGoey, 1980; Ferrel, 1995), базирующиеся на теории обнаружения сигнала (ТОС) (Иган, 1983; Green, Swets, 1974), задают величину уверенности в правильности ответа как расстояние на оси значений сенсорного впечатления от точки полученного в данный момент впечатления до точки принятия решения. В моделях случайных блужданий (Heath et al., 1984, 1988; Link et al., 1975, 2003) и аккумуляторной (Vickers, Lee, 1998, 2000; Vickers, 2003) уверенность определяется через специально введенные величины свидетельств, связанные с сенсорными впечатлениями. Таким образом, названные модели признают связь уверенности с величиной сенсорного впечатления, полученного наблюдателем в данной пробе, однако несогласованность в вопросе определения величины уверенности, а также отсутствие ответа на вопрос, какое же из двух определений предпочтительнее для объяснения феномена уверенности, являются, на наш взгляд, серьезной проблемой в исследованиях данного феномена.

2. Еще одним недостатком данных моделей является отсутствие анализа связи величины уверенности в правильности принимаемого наблюдателем в данной пробе решения с величиной условной вероятности его правильности. Между тем в ТОС давно доказано, что условная вероятность правильности принятого решения (обозначаемая как апостериорная вероятность присутствия сигнала) зависит от отношения правдоподобия, соответствующего конкретному значению сенсорного впечатления. Поскольку вышеуказанные модели признают, что уверенность тоже зависит от величины сенсорного впечатления, то тем самым они признают, что связь величины уверенности с величиной условной вероятности правильности существует. Однако конкретный вид этой связи пока не установлен. Таким образом, остаются без ответа важные исследовательские вопросы: может ли наблюдатель, контролируя уровень своей уверенности, влиять на правильность принимаемых решений, и если это влияние возможно, то как должно быть изменено обоснованное в ТОС описание механизма принятия решения, не учитывающего влияние уверенности на правильность решения.

Для преодоления подобных проблем и поиска ответов на поставленные вопросы мы использовали строгий формальный подход к моделированию уверенности, опирающийся на аппарат ТОС, что позволило установить ранее не проясненную аналитическую связь между уверенностью идеального наблюдателя и вероятностью правильности принимаемых им решений. Полученные результаты способствовали получению ясно обоснованных эвристик для измерения уверенности реального наблюдателя.

При решении сенсорных задач испытуемого часто просят оценить уверенность в своем ответе с помощью конечного набора дискретных значений субъективной вероятности правильности вынесенного им ответа (Adams, 1957). Тем самым, с одной стороны, в психофизике фактически признается связь уверенности с вероятностью правильности в виде монотонной зависимости одной величины от другой, однако, с другой стороны, в психологических исследованиях принятия решения было не раз показано, что для человека нетипично математическое вычисление вероятности достижения цели.

В результате многочисленных исследований был сделан вывод о том, что, принимая решения в условиях неопределенности, человек на самом деле использует эвристические способы, которые сводят сложные задачи оценки субъективных вероятностей к более простым и интуитивно понятным операциям суждения (Тверски, Канеман, 2005), чему можно найти лишь одно объяснение - вычислительные возможности человека крайне ограниченны. Таким образом, применительно к нашей задаче для разработки новой модели уверенности необходимо найти простой эвристический механизм оценки вероятности, основанный на суждениях о сенсорных впечатлениях, получаемых от предъявляемых стимулов.

Для этого вначале нами была разработана идеальная модель принятия решения и оценки вероятности его правильности (Шендяпин, Барабанщиков, 2008; Шендяпин и др., 2008), которая описывает поведение рационального наблюдателя. Модели такого типа в математической психологии принято называть нормативными, так как в них отображается не то, что происходит на самом деле во время разворачивания некоего процесса, а скорее то, что прогностически должно было бы происходить в том случае, если справедливы некоторые исходные гипотезы (Ломов, 1981). Нормативная модель принятия решения, не учитывающая уверенность, известна в рамках ТОС давно (см., например, Иган, 1983). Однако наша нормативная модель, кроме правила принятия решения, содержит также аналитическую формулу для получения вероятности правильности принятого решения, что и составляет новизну данного психофизического исследования.

Идея нашего подхода состояла в том, чтобы, используя аппарат ТОС и гипотезу о монотонной зависимости вероятности правильности от уверенности, аналитическим путем найти формальную переменную ТОС, которая удовлетворяет этому априорно заданному свойству уверенности; найденную переменную можно было бы принять за рационально обоснованную модель уверенности.

В процессе поиска математического выражения зависимости вероятности правильного обнаружения сигнала от параметров задачи мы обнаружили, что такой переменной является натуральный логарифм произведения отношения априорных вероятностей предъявляемых стимулов на отношение правдоподобия, зависящее от сенсорного впечатления. Увеличение этой переменной вызывает монотонный рост вероятности правильности принятого решения. Найденную переменную мы назвали уверенностью идеального наблюдателя, так как именно данная переменная, вернее, знание ее величины позволяет идеальному наблюдателю вычислять вероятность обнаружения сигнала. Идеальность наблюдателя выражается в том, что он имеет все необходимые знания и вычислительные ресурсы для решения своей задачи: он может точно вычислять и уверенность, и зависящую от нее вероятность правильности. Так как принятие рациональных решений целиком основано на знании вероятности правильности принимаемого решения, то для идеального наблюдателя уверенность не имеет исключительного значения, она является всего лишь одной из промежуточных переменных, необходимых ему для вычисления вероятности.

У реального же наблюдателя таких ресурсов для выполнения сложных вычислений не существует, и он вынужден оценивать величину вероятности, имея только приближенное, полученное эвристическим путем, значение реально существующей уверенности, основанное на сенсорных впечатлениях. Поэтому уверенность является для него исключительно важным инструментом, с помощью которого он в конечном итоге и принимает решение.

Конечно, нормативная модель отражает только объективные стороны решаемой задачи и не учитывает всей специфики реализации результатов, полученных конкретным человеком. Теоретическое значение нашей модели идеального наблюдателя, полученной с помощью ТОС, состоит не только в объяснении того, как рациональный наблюдатель должен реализовывать процесс решения сенсорных задач, но и в ответе на интересующий нас вопрос: от какой переменной зависит вероятность правильности принятого решения в конкретной пробе?

Практическое значение нормативной модели состоит в том, что она гарантирует существование и дает описание точного метода вычисления величины уверенности идеального наблюдателя, повышение которой приводит к монотонному росту вероятности правильности решения, принятого в конкретной экспериментальной пробе. Наличие же точного метода позволяет искать обоснованные эвристики для упрощения вычислений. Заметим лишь, что проведенный затем анализ возможностей упрощения идеальной модели действительно позволил получить эвристический способ нахождения оценки уверенности, обеспечивающий разумную близость деятельности человека к идеальному результату (Шендяпин, Барабанщиков, 2008).

В настоящей работе проверялась гипотеза об уверенности как факторе, напрямую связанном с правильностью решений, которая была подтверждена как в рамках полученной в парадигме ТОС теоретической зависимости вероятности правильности уверенных решений от ширины зоны сомнений на оси принятия решения, так и в ходе экспериментальной проверки на материале выполнения сенсорных задач "больше-меньше" и "одинаковые- разные".

Идеальная модель принятия решения и оценки вероятности его правильности

Неопределенность. Неопределенность в сенсорной задаче различения заключается в том, что наблюдателю достоверно не известно, какой из двух возможных стимулов он наблюдает. При различении двух близких по величине стимулов предъявление того из них, который порождает на выходе сенсорной системы наблюдателя меньшее по среднему значению впечатление, называется событием n (noise, т.е. шум). А предъявление другого стимула, порождающего на выходе сенсорной системы большее среднее впечатление, называется событием sn (signal + noise, т.е. сигнал + шум). Так как к среднему, т.е. детерминированному, отклику сенсорной системы на предъявляемый стимул всегда добавляется внутренний шум самой системы, то любая величина реакции сенсорной системы x может быть вызвана как событием n, так и событием sn.

Априорные вероятности. В ТОС предполагается, что наблюдателю известна априорная вероятность появления события sn, равная P(sn). Априорная вероятность появления дополнительного к нему события n при этом равна P(n) = 1 - P(sn). Отношение априорных вероятностей:

l0 = P(sn)/P(n) (1)

показывает, насколько событие sn появляется чаще или реже, чем событие n. Величина l0 в концентрированном виде выражает ту информацию, которой наблюдатель обладает еще до самого наблюдения. Если l0 > 1, то наблюдателю следует прогнозировать, что скорее всего будет событие sn, а не событие n. И чем больше логарифм отношения априорных вероятностей ln(l0), тем больше должна быть его уверенность в этом прогнозе. Если же l0 < 1, то скорее всего будет событие n. И чем больше логарифм обратного отношения априорных вероятностей ln(1/l0), тем больше должна быть уверенность в этом прогнозе.

Наблюдение. Описание сенсорного впечатления человека при наблюдаемых событиях задается в ТОС в виде случайной величины X, принимающей значения x, распределенные по закону f(x|n) при событии n, либо по закону f(x|sn) при событии sn (рис. 1).

Размещено на http://www.allbest.ru/

© Московский городской психолого-педагогический университет

© PsyJournals.ru, 2010 39

© Московский городской психолого-педагогический университет

© PsyJournals.ru, 2010 39

Рис. 1. Распределения значений сенсорных впечатлений

Величина отношения правдоподобия для конкретного значения x, равная отношению плотностей вероятностей l(x)= f(x|sn)/f(x|n), показывает, насколько чаще данное значение сенсорного впечатления x появляется при событии sn, чем при событии n.

Апостериорные вероятности

Апостериорной вероятностью P(sn|x) в

- ТОС называют вероятность события sn x при событиях n (шум) и sn (сигнал + шум). при условии, что на выходе сенсорной системы было получено значение сенсорного впечатления x. P(n|x) = 1 - P(sn|x) - апостериорная вероятность дополнительного к нему события n. Апостериорные вероятности событий можно выразить через известные априорные вероятности и полученное в результате наблюдения отношение правдоподобия.

Обозначим через g(sn,x) функцию плотности вероятности совпадения двух событий:

а) попадания полученного значения x в элементарный интервал dx и б) реализации события sn. Используя формулу для вероятности совпадения этих событий, получаем, что:

g(sn,x) dx = P(sn) f(x|sn) dx = f(x) dx P(sn|x). (2)

При этом f(x) = P(sn) f(x|sn) + P(n) f(x|n) = P(sn) f(x|sn) {1 + [l(x) l0] -1}.

Отсюда получаем апостериорные вероятности:

В дальнейшем нам будет также удобно использовать отношение апостериорных вероятностей:

c(x) = P(sn|x)/P(n|x) = P(sn|x)/(1 - P(sn|x)) = l(x) l0 . (5)

Введенное отношение апостериорных вероятностей оказалось равным произведению отношения априорных вероятностей и отношения правдоподобия. Заменяя в (3) l(x) l0 на c(x), получаем, что апостериорную вероятность P(sn|x) можно выразить через отношение апостериорных вероятностей c(x):

P(sn|x) = c(x)/[1 + c(x)]. (6)

Выражения (5) и (6) показывают, как с рациональной точки зрения следует действовать наблюдателю для вычисления вероятности присутствия сигнала P(sn|x) в данной пробе. После завершения наблюдения физического стимула и получения величины сенсорного впечатления x он должен действовать по следующему алгоритму:

а) вычислить отношение правдоподобия l(x) = f(x|sn)/f(x|n),

б) по формуле (5) вычислить отношение апостериорных вероятностей c(x) = l(x) l0,

в) по формуле (6) вычислить P(sn|x) - апостериорную вероятность события sn,

г) вычислить P(n|x) - апостериорную вероятность дополнительного события n. Таким образом, полученная информация позволяет идеальному наблюдателю принять рационально обоснованное решение, конечно, реальный наблюдатель такие сложные вычисления не проводит, что будет показано ниже.

Если от отношений l0, l(x) и c(x) перейти к их натуральным логарифмам: L0 = ln(l0), L(x) = ln[l(x)] и C(x) = ln[c(x)], то вместо формул (4), (5) и (6) можно получить более наглядные и удобные для анализа выражения:

C(x) = L(x) + L0 , (7)

P(sn|x) = exp[C(x)] {1+exp[C(x)]}-1 = 0,5 + 0,5 th{[C(x)]/2}, (8)

P(n|x) = 0,5 - 0,5 th{[C(x)]/2}. (9)

Формула для определения зависимости P(sn|x) и P(n|x) от C(x) в виде гиперболического тангенса получена в рамках парадигмы ТОС впервые.

Графики зависимостей P(sn|x) и P(n|x) от C(x), рассчитанные по формулам (8) и (9), показаны на рис. 2. Видно, что с ростом C(x) вероятность P(sn|x) монотонно растет от 0 до 1, а P(n|x) монотонно убывает от 1 до 0. При значении x, удовлетворяющем условию L(x) = -L0, C(x)= = 0, вероятности событий sn и n совпадают и равны 0,5. При значении x, удовлетворяющем условию L(x) = 0, отношение правдоподобия равно 1: l(x) = 1.

Подставляя l(x) = 1 в формулы (3) и (4), получаем P(sn|x) = P(sn) и P(n|x) = =P(n), т.е. апостериорные вероятности событий при этом равны априорным.

Принятие решения. Принятие решения начинается после наблюдения и внешне выглядит как оценка истинности утверждения "данное значение x было вызвано событием sn". Если наблюдатель согласен с этим утверждением, то должен сказать "да". Если же он скорее не согласен, то должен сказать "нет". Решение в виде ответа "да" является событием Y (yes - да), а решение в виде ответа "нет" - событием N (no - нет).

Ситуация после получения значения x описывается двумя несовместными сочетаниями событий: (sn|x) и (n|x). После принятия решения и появления события Y или

N ситуация описывается уже четырьмя несовместными сочетаниями: (sn,Y|x), (sn,N|x), (n,Y|x) и (n,N|x). Несовместность сочетаний событий означает, что в каждой пробе при данном значении x реализуется только одно из четырех возможных совпадений. Решающее правило для вынесения ответа разбивает X - множество всех получаемых в результате наблюдения значений x - на три непересекающихся подмножества: XY, XN и X0. При x, принадлежащих XY, выносится ответ Y. Таким образом, на подмножестве XY может возникнуть только одно из двух совпадений: (sn,Y|x) или (n,Y|x). При x, принадлежащих XN, выносится ответ N. Соответственно на XN может возникнуть только одно из двух совпадений: (sn,N|x) или (n,N|x). При x, принадлежащих X0, невозможно дать однозначный ответ.

Поскольку в каждой пробе сенсорное впечатление х может быть результатом как события sn, так и события n, то решающее правило для вынесения ответа зависит только от x и не зависит от имевшего место события sn или n, т.е. при вынесении ответа информация о событии не используется. При этом в соответствии с теоремой вероятности совпадения двух независимых событий вероятность совпадения события sn и ответа Y при данном x равна:

P(sn,Y|x) = P(sn|x) P(Y|x),

где P(Y|x) - условная вероятность ответа Y при данном x.

В силу детерминированности решающего правила условная вероятность P(Y|x) принимает на всем множестве X только два возможных значения: 0 и 1. Фактически P(Y|x) играет роль функции принадлежности для подмножества XY: для x, принадлежащих XY, она равна 1, а на подмножествах XN и X0 она обращается в нуль. Тогда P(n,N|x) = P(n|x) P(N|x), где P(N|x) - функция принадлежности x к XN, которая обращается в 0 на XY и X0.

Аналогично:

P(n,Y|x) = P(n|x) P(Y|x) и P(sn,N|x) = P(sn|x) P(N|x).

Сочетание (sn,Y|x) называется правильным обнаружением сигнала (события sn) при данном значении x. Сочетание (n,Y|x) - ложной тревогой (ошибочным обнаружением события sn). Сочетание (sn,N|x) - пропуском сигнала (ошибочным обнаружением события n). Сочетание (n,N|x) - правильным отрицанием (правильным обнаружением события n). Сумма безусловных вероятностей всех возможных сочетаний событий и решений равна 1:

P(sn,Y) + P(n,Y) + P(sn,N) + P(n,N) = 1.

При этом безусловная вероятность получения правильных решений P(Cor) (correct - правильный) независимо от того, при каком x они были получены и каким было само решение, задается суммой:

Величина P(Cor) зависит от того, как наблюдатель разобьет X на XY и XN своим решающим правилом. Из рис. 2 и формул (8), (9) видно, что в принципе при любом значении x можно принять как решение Y (вероятность его правильности будет равна P(sn|x) > 0), так и решение N (вероятность его правильности равна P(n|x) > 0).

Однако если наблюдатель хочет получить максимум вероятности правильных решений P(Cor), то в каждой пробе из двух возможных при данном значении x альтернатив ответа он должен выбирать ту, которая приносит ему большую вероятность правильности ответа.

Поэтому если при данном значении x выполняется неравенство P(sn|x) > P(n|x), то он должен выбрать решение Y, так как тогда он получит вероятность правильности P(sn,Y|x) бульшую, чем вероятность правильности альтернативного решения P(n,N|x). А если P(sn|x) < P(n|x), то он должен выбрать решение N, так как тогда он получит P(sn,Y|x) < P(n,N|x).

Так как в соответствии с рис. 2 неравенство P(sn|x) > P(n|x) эквивалентно неравенству C(x) > 0, а неравенство P(sn|x) < P(n|x) эквивалентно неравенству C(x) < 0, то решающее правило идеальной модели ТОС можно сформулировать следующим образом: если x принадлежит XY = {C(x) > 0}, то принимается решение Y, если x принадлежит XN = {C(x) < 0}, то принимается решение N. При этом в соответствии с найденными нами формулами (8) и (9) вероятности правильности принятых решений Y и N вычисляются следующим образом:

P(sn,Y|x) = 0,5 + 0,5 th{[C(x)]/2},

при C(x) > 0, (11) P(n,N|x) = 0,5 - 0,5 th{[C(x)]/2}, при C(x) < 0. (12)

А вероятности ошибочности принятых решений Y и N вычисляются по формулам:

P(n,Y|x) = 0,5 - 0,5 th{[C(x)]/2}, при C(x) > 0, (13)

P(sn,N|x) = 0,5 + 0,5 th{[ C(x)]/2}, при C(x) < 0. (14)

При x, принадлежащем X0 = {C(x) = 0}, невозможно сделать однозначный выбор решения, так как вероятности правильности обоих ответов одинаковы и равны 0,5.

Отметим, что полученное решающее правило конкретизировало определение подмножеств XY, XN и X0: XY содержит все x, удовлетворяющие неравенству C(x) > 0, аналогично XN = {C(x) < 0}, а X0 = {C(x) = 0} содержит решения уравнения C(x) = 0.

Уверенность в правильности принятого решения. Мы получили, что в идеальной модели ТОС имеется переменная C(x) = L(x) + L0, позволяющая при данном значении x принимать решение и по формулам (11), (12) оценивать вероятность его правильности. Именно таким свойством (быть инструментом для оценки вероятности правильности), как мы предполагали, обладает психологическая уверенность человека в правильности принятого решения. Напомним, что по своему формальному определению величина C(x) равна натуральному логарифму отношения P(sn|x)/P(n|x). Если переменная C(x) = 0, то ни одно из альтернативных решений не имеет преимущества, так как вероятности их правильности одинаковы и равны 0,5. Естественно считать, что человек, находясь в такой ситуации, полностью не уверен в своем выборе, т.е. его субъективная уверенность равна 0.

Если C(x) > 0, т.е. P(sn|x) > P(n|x), то, согласно решающему правилу идеальной модели, принимается решение Y. Так как вероятность его правильности P(sn,Y|x) превышает вероятность его ошибочности P(n,Y|x), то субъективная уверенность человека в правильности принятого решения Y должна быть положительной величиной. Причем чем больше C(x), тем значительнее P(sn,Y|x) превышает P(n,Y|x) и, следовательно, тем большей должна быть величина субъективной уверенности человека в правильности принятого решения.

Если же C(x) < 0, то принимается решение N, и вероятность его правильности P(n,N|x) превышает вероятность его ошибочности. И опять, чем больше абсолютная величина C(x), тем значительнее превышение вероятности правильности решения над вероятностью его ошибочности и тем увереннее должен быть человек в правильности принятого решения.

Как мы убедились, величина C(x) психологически точно описывает уверенность человека, принимающего рациональные решения. Поэтому ее совершенно обоснованно можно назвать уверенностью идеального наблюдателя.

Эвристическая модель принятия решения и оценки уверенности в его правильности

Полученная идеальная модель ТОС является универсальной, что позволяет использовать ее результаты для принятия решения и вычисления вероятности его правильности с помощью любых устройств, способных измерять значения x и обладающих необходимыми вычислительными средствами для вычисления логарифма отношения апостериорных вероятностей. Такими устройствами могут быть как объекты неживой природы (например, технические автоматы), так и живые существа.

Однако можно ли использовать полученную в ТОС уверенность идеального наблюдателя C(x) = L(x) + L0 для моделирования поведения реального человека? Как уже отмечалось, многие психологи, занимающиеся проблемой принятия решений, согласны в том, что люди в реальной жизни редко используют математический аппарат теории вероятности. Такие авторитетные исследователи, как А. Тверски и Д. Канеман, считают, что при принятии решений в условиях неопределенности "люди полагаются на ограниченное число эвристических принципов, которые сводят сложные задачи оценки вероятностей и прогнозирования значений величин к более простым операциям суждения" (Тверски и Канеман, 2005, с. 17).

Еще один известный специалист в области теории принятия решений Ю. Козелецкий также считает, что "использование, даже упрощенное, правил теории вероятностей затруднительно и часто требует применения больших мыслительных усилий, перегружая кратковременную и долговременную память" (Козелецкий, 1979, с. 161). Соглашаясь с тем, что "эвристические принципы действительно не позволяют оценивать вероятности событий с такой же точностью, как это позволяет делать теория вероятностей", Козелецкий объясняет факт широкого использования приближенных эвристик тем, что "они, как правило, достаточно легки для интуитивного понимания и использования" (там же).

В связи с такими выводами экспертов в области принятия решений возникает вопрос: нельзя ли как-то упростить процесс вычисления логарифма отношения правдоподобия L(x) и свести его к простым вычислительным эвристикам, более свойственным людям? Анализ этой проблемы показал, что возможности упростить процесс вычисления L(x) действительно имеются.

Нормальное приближение для сенсорного впечатления. Если условные плотности распределений вероятностей f(x|sn) и f(x|n) близки к нормальным и у них примерно одинаковые дисперсии, то при условии, что среднее впечатление от события n совпадает с нулем (см. рис.1), выражение для отношения правдоподобия сильно упрощается (Иган, 1983):

l(x) = f(x|sn)/f(x|n) = exp[d' (x - d'/2)] , (15)

где d' - различимость этих равновариативных нормальных распределений, а x - сенсорное впечатление, нормированное на их среднее квадратическое отклонение. Натуральный логарифм отношения правдоподобия при этом может быть приближенно вычислен по очень простой формуле:

L(x) ? d' (x - d'/2), (16) которая вполне соответствует функциональным возможностям мозга человека. Эвристическая модель уверенности. Окончательно переходя от идеальной модели ТОС к разрабатываемой нами эвристической модели принятия решения, получаем, что при условии справедливости нормального приближения не идеальный наблюдатель, обладающий очень ограниченными вычислительными возможностями (например, умеющий выполнять только арифметические операции), может использовать для вычисления уверенности C(x) простую эвристическую формулу в виде суммы:

C(x) ? d' (x - d'/2) + L0. (17)

Соотношение с аккумуляторной моделью. Первое слагаемое суммы (17) по смыслу можно соотнести со свидетельствами в пользу сравниваемых альтернатив решения, введенными Д. Викерсом (Vickers, Lee, 1998) в его аккумуляторной модели принятия сенсорных решений с оценкой уверенности, являющейся в настоящее время одной из наиболее авторитетных за рубежом (см. об этом: Шендяпин и др., 2008). Поэтому вслед за Викерсом будем называть полученную нами переменную e = d' (x - d'/2) сенсорным свидетельством. Различие же между ними состоит в том, что у свидетельств, введенных Викерсом, нет множителя d'. При этом смысл величины свидетельства в обоих случаях вполне понятен: если e = d' (x - d'/2) > 0, то значение e действительно можно считать равным весу свидетельства в пользу события sn, а если e = d' (x - d'/2) < 0, то это может свидетельствовать скорее в пользу события n, чем в пользу sn (см. рис. 1). И чем больше абсолютная величина свидетельства, тем более обоснован выбор в ответе соответствующего события.

Множитель d' в данном случае играет роль детерминированного сомножителя сенсорного свидетельства, а (x - d'/2) - его случайного сомножителя. Таким образом, на величину сенсорного свидетельства, на основе которого рациональный наблюдатель с ограниченными вычислительными возможностями принимает решение, влияют два фактора: отклонение сенсорного впечатления x от порога d'/2 и различимость предъявляемых стимулов d'.

Необходимо отметить, что замена уверенности идеального наблюдателя на свидетельства в пользу рассматриваемых альтернатив решения является очень плодотворной: так как на процесс принятия решения и на величину вероятности правильности принятого решения влияет именно сумма e + L0, то L0 также можно рассматривать как свидетельство. Только в отличие от апостериорного сенсорного свидетельства e его следует считать априорным свидетельством. При L0 > 0 априорное свидетельство эквивалентно приращению положительного сенсорного свидетельства, а при L0 < 0 оно эквивалентно приращению отрицательного сенсорного свидетельства.

Поэтому в отличие от идеальной модели, где уверенность C(x) выступает просто как формальная переменная, не имеющая очевидного практического смысла, в эвристической модели уверенность можно рассматривать как сумму интуитивно хорошо понимаемых свидетельств (величина которых линейно зависит от величины сенсорного впечатления) в пользу рассматриваемых альтернатив ответа.

Математическая эквивалентность переменных x и C, вытекающая из соотношения (17), позволяет получить характеристики и закон распределения случайной величины C. Так как первое слагаемое переменной C распределено по нормальному закону, а второе является константой, то и сама переменная C также распределена по нормальному закону (см. графики нормальных распределений g(C|sn) и g(C|n) на рис. 3). Среднее значение сенсорного свидетельства e = d'(x - d'/2) в случае события sn равно + 0,5(d')2, а в случае события n равно - 0,5(d')2. Соответственно, среднее значение C равно + 0,5(d')2 + L0 при событии sn, а при событии n оно равно - 0,5(d')2 + L0. Дисперсии величин C в обоих случаях равны (d')2.

Таким образом, различимость распределений g(C|sn) и g(C|n) так же, как и для f(x|sn) и f(x|n), равна d'. Это известное свойство нормальных распределений: распределения логарифма отношения правдоподобия для нормальных распределений с одинаковыми дисперсиями являются также нормальными и имеют такую же различимость, как и исходные распределения сенсорных впечатлений (Иган, 1983). Если же уверенность C нормировать по ее среднему квадратическому отклонению d', то условные законы распределений g(u|sn) и g(u|n) для нормированной переменной u:

u = C/d' = (x - d'/2) + L0 /d' (18)

по форме полностью совпадут с распределениями f(x|sn) и f(x|n) для x. При равновероятных событиях sn и n распределения g(u|sn) и g(u|n) расположены симметричным образом относительно оси ординат u = 0 (рис. 4).

Выделение блока принятия решения. В полученной эвристической модели случайная сумма свидетельств C и случайное сенсорное впечатление от стимула x связаны простой линейной зависимостью (17). При этом зависимость (17) можно рассматривать как формулу перехода от нескольких независимых переменных сенсорного блока (x, d' и L0) к единой собственной переменной C блока принятия вполне достаточно для описания всей работы блока принятия решения, который включает в себя решающее правило и формулу 0,5 +0,5 th[(|C|)/2] для оценки вероятности правильности принятого решения.

Полученное ранее решающее правило для идеального наблюдателя просто прогнозирует наиболее вероятное из двух возможных событий sn и n, так, при любом C > 0 принимается решение Y, а при любом C < 0 принимается решение N. Однако в реальной жизни встречаются ситуации, требующие учета дополнительных условий при выборе решения.

Блок принятия решения осторожного наблюдателя. В нашей работе проверяется гипотеза об уверенности как факторе, напрямую влияющем на правильность принимаемых решений. Если в какой-то пробе уверенность C оказалась слишком близкой к нулю, то вероятность правильности решения, вынесенного в этой пробе, лишь немного превышает вероятность его ошибочности. В этой ситуации рациональный наблюдатель, стремящийся снизить риск ошибочного решения и для этого контролирующий уровень своей уверенности, должен отказываться от принятия решения.

Решающее правило осторожного наблюдателя, выносящего свои решения с учетом уверенности в их правильности, выглядит следующим образом: если C > CY > 0, то принимается решение Y; если C < CN < 0, то принимается решение N; если же CN < C < CY, то ни одно из решений Y или N не может быть принятым, так как вероятности их правильности слишком низки. Константа CY задает минимально допустимый уровень уверенности наблюдателя и, соответственно, минимально допустимый уровень вероятности правильности для принятого им решения Y, а CN задает минимальный уровень уверенности и вероятности правильности для решения N.

Анализ решающего правила осторожного наблюдателя. Безусловная вероятность правильности решения, принятого на основе такого правила, P(Conf) (confidence - уверенность) равна:

P(Conf) = P(sn,Y) + P(n,Y) + P(sn,N) + P(n,N). (19)

Интервал (CN, CY) задает зону сомнений на оси C. При попадании случайного значения C внутрь этой зоны решение в данной пробе не принимается. Отказ от принятия решения обозначим событием D (doubt - сомнение). Безусловная вероятность такого события P(D) равна:

P(D) = 1 - P(Conf) = 1 - P(sn,Y) - P(n,Y) - P(sn,N) - P(n,N). (20)

Безусловная вероятность вынесения правильных решений P(Cor) вычисляется по формуле (10). При этом доля правильных решений среди уверенных равна P(Cor)/P(Conf).

Интервалу (CN, CY) по оси значений уверенности C однозначно соответствует интервал (uN, uY) по оси нормированных значений уверенности u. Если в соответствии с формулой (18) от сенсорного впечатления x, его распределений f(x|sn), f(x|n) и подмножеств XY, XN, X0, задающих области существования решений, перейти к нормированной уверенности u, ее распределениям g(u|sn), g(u|n) и соответствующим множествам UY = (uY, ?), UN = (-?, u zN), UD = (uN, uY), задающим на оси u соответствующие области реализации событий Y, N, D, то по аналогии с (10) можно получить P(Cor), выраженное через переменную u:

При выводе формулы (21) использовались равенства, описывающие вероятность совпадения двух событий, аналогичные равенству (2):

P(sn|u) g(u)du = P(sn) g(u|sn)du и P(n|u) g(u)du = P(n) g(u|n)du.

Аналогичным образом, переходя к оси u, можно конкретизировать выражение (19) для P(Conf):

Интегралы от нормальных плотностей условных распределений g(u|sn) и g(u|n), входящие в (21) и (22), легко вычисляются через табличную функцию Лапласа.

Для проверки гипотезы о том, что человек с помощью повышения минимального уровня своей уверенности может повышать правильность своих решений, была получена теоретическая зависимость доли правильных решений среди всего массива уверенных решений P(Cor)/P(Conf) от ширины зоны сомнений Дu = uY - uN на нормированной оси принятия решения u. Полученные для равновероятных событий sn, n и заданного значения их различимости d' = 1,4 зависимости P(Cor), P(Conf) и P(Cor)/P(Conf) от ширины зоны сомнений Дu приведены на рис. 5.

Итак, исходя из проведенного теоретического анализа эвристической модели принятия решения с оценкой уверенности, мы можем сделать следующий общий вывод: чем шире зона сомнений испытуемого на оси принятия решения (при неизменном числе проб), тем меньше среди ответов испытуемого остается уверенных ответов, однако, среди них чаще встречаются верные. Иначе говоря, позволяя наблюдателю отказываться от принятия уверенного решения в тех случаях, когда он чувствует неуверенность, можно существенно повысить правильность его уверенных решений.

Полученные графики позволяют не только дать качественное описание этой закономерности, но и количественно оценить полезный эффект сомнений. Конечно, величина зоны сомнений экспериментатору да и самому наблюдателю неизвестна, поэтому заранее величину прибавки частоты правильных ответов предсказать невозможно. Однако теоретическая модель однозначно прогнозирует, что среди уверенных ответов наблюдателя частота правильных ответов будет всегда выше, чем в общем массиве ответов, где присутствуют как уверенные, так и неуверенные ответы.

Постановка задачи для экспериментальных исследований

Для верификации эвристической модели была проведена экспериментальная проверка полученной прогностической модели на материале решения наблюдателями задач порогового различения сенсорных признаков объектов.

Различение близких по величине признаков объектов представляет собой один из основных видов сенсорных задач, имеющий наиболее общий характер, тогда как две другие задачи - обнаружение и опознание по психологическому содержанию - представляют собой частные случаи различения (Забродин и др., 1981). Все перечисленные ситуации являются предметом изучения в психофизике, а в повседневной жизни типичны для деятельности операторов информационных панелей, разработчиков видео- и аудиотехники, врачей, занимающихся диагностикой и коррекцией зрения и слуха, рентгенологией, дегустаторов и т.п.

Собственно различение бывает двух типов: с ответами "больше-меньше" и с ответами "одинаковые-разные". Причем различение по типу "одинаковые-разные" в психофизике изучено гораздо меньше, чем "больше-меньше". Задачи порогового типа представляют собой предельную для человека ситуацию: когда сравниваемые признаки едва различимы, весьма острым является дефицит входной сенсорной информации, и потому высока субъективная неопределенность, что вызывает у человека неуверенность, сомнения в ходе решения задачи.

Для выяснения того, как влияют сомнения на вероятность правильности принимаемого решения, наши испытуемые выполняли две основные типовые задачи по различению (при сравнении) зрительных стимулов: "больше-меньше" для пространственных признаков при одновременном предъявлении стимулов и "одинаковые-разные" для временных признаков при последовательном предъявлении стимулов.

В рамках первой задачи были организованы две экспериментальные ситуации. В первой ситуации испытуемые, несмотря на свои сомнения в правильности принимаемого решения, должны были выбрать определенный ответ из двух взаимоисключающих альтернатив - "больше" или "меньше" (двухкатегорийный метод констант). Во второй ситуации испытуемые в случае сомнения в правильности принимаемого решения могли проявить осторожность и отказаться от принятия определенного решения путем вынесения ответа "сомневаюсь" (трехкатегорийный метод констант). Так как в случае этого ответа экспериментатор не имел возможности оценить правильность решения, то он просто регистрировал отказ от решения "больше" или "меньше".

...

Подобные документы

  • Примерные варианты решения различных логических задач для тренировки внимания, памяти, мышления. Тренинги на определение правильности одного из заданных логических суждений согласно алгоритму. Выделение или замена ложного и истинного суждений.

    контрольная работа [508,0 K], добавлен 22.05.2009

  • Методы моделирования развития психической деятельности при решении текстовых задач. Влияние игровых задач на творчество детей. Решение текстовых задач способствуют развитию у детей мышления, памяти, внимания, творческого воображения.

    контрольная работа [16,2 K], добавлен 03.04.2006

  • Ознакомление с теоретическими основами проблемы эффективности групповой деятельности. Рассмотрение типов групповых задач, а также стилей руководства. Изучение взаимосвязи стиля руководства организатора и эффективности решения практических задач.

    курсовая работа [48,0 K], добавлен 01.05.2015

  • Психологическая характеристика подросткового возраста. Понятие уверенности и его психологическая характеристика. Социально-психологический статус. Основные виды проявления в межличностных отношениях. Развитие уверенности в себе в подростковом возрасте.

    курсовая работа [98,6 K], добавлен 10.03.2015

  • Особенности решения психологических задач на понимание личностных особенностей подростка. Измерение межстимульных различий и степень влияния ограничивающих факторов. Специфика сенсорного действия и особенности активности субъекта в процессе тренировки.

    реферат [23,0 K], добавлен 26.02.2010

  • Групповая задача как объект и источник принятия группового решения. Групповая дискуссия и ее роль в принятии групповых решений. Методы и стратегии коллективного принятия решений. Закономерности структурной организации принятия группового решения.

    реферат [46,7 K], добавлен 12.01.2008

  • Понятие лидерства в психологии. Основные качественные отличия уверенного и неуверенного в себе человека. Понимание себя и ситуации. Основные способы повышения самооценки и уверенности в себе. Причины возникновения неуверенного и агрессивного поведения.

    курсовая работа [43,5 K], добавлен 28.03.2014

  • Коммуникативная компетентность как критерий профессионализма и фактор решения задач по охране общественного порядка. Социально-психологические методы повышения коммуникативной компетентности у военнослужащих, выполняющих задачи патрульно-постовой службы.

    курсовая работа [556,3 K], добавлен 21.04.2015

  • Специфика зрительного восприятия человека. Зрительные иллюзии как искажение зрительного восприятия частных признаков тех или иных предметов. Разновидности оптико-геометрических иллюзий. Особенности метода установки на примере опыта Мюллера-Лайера.

    контрольная работа [318,5 K], добавлен 14.03.2010

  • Понятие тревожности и причины ее возникновения. Виды тревожности, способы ее избегания. Эмпирическое исследование влияния уровня тревожности на эффективность решения диагностических задач. Организация и методы исследования, результаты и их анализ.

    курсовая работа [322,8 K], добавлен 05.02.2012

  • Сущность, виды, свойства, эффекты восприятия. Функции и особенности зрительного восприятия. Проведение исследования среди студентов для выявления особенностей восприятия агрессивных стимулов в зависимости от предоставленной информации, анализ результатов.

    курсовая работа [54,2 K], добавлен 18.03.2015

  • Во всех сферах человеческой деятельности при решении различных задач в быту, на работе, отдыхе приходится наблюдать различные по своему содержанию и силе проявления конфликты. Изучение конфликтных ситуаций, определение их видов и путей разрешения.

    реферат [30,6 K], добавлен 25.02.2010

  • Характеристика психологического облика человека. Заниженная, завышенная и адекватная самооценка - оценка личностью самой себя, своих возможностей, качеств и места среди других людей. Выявление уровня уверенности молодежи в себе и её перспективы.

    реферат [37,5 K], добавлен 06.01.2011

  • Исследование взаимосвязи между образным и теоретическим мышлением. Возможность применения образного мышления для решения задач, научного исследования, изложения теоретического материала. Разработка приемов создания и преобразования учебных образов.

    дипломная работа [328,3 K], добавлен 04.05.2011

  • Происхождение застенчивости, трудности изучения ее генезиса, негативные последствия данной черты. Особенности личности застенчивых людей. Формы проявления застенчивости, методы ее диагностики и способы преодоления: пятнадцать шагов к уверенности в себе.

    курсовая работа [38,1 K], добавлен 12.02.2011

  • Интенсивность сдвигов в сторону уменьшения длительности выполнения задач, значительное превышение интенсивности сдвигов в сторону увеличения времени решения. Вопрос о лучшей организации психологической службы в школах по результатам опроса учителей.

    контрольная работа [143,3 K], добавлен 17.12.2010

  • Ознакомление с понятием и уровнями развития интуиции. Составляющие модели принятия решения в ситуации неопределенности. Характеристика когнитивных, эмоциональных и действенных компонент эмпатии как феномена общения. Понятие рефлексии и аттракции.

    курсовая работа [49,1 K], добавлен 01.09.2013

  • Рассмотрение специфики интеллектуального развития человека и показателей его интеллектуальных возможностей. Изучение методики диагностики социально-психологической адаптации К. Роджерса и Р. Даймонда. Основные способы вспитания уверенности в себе.

    контрольная работа [55,1 K], добавлен 27.10.2014

  • Изучение проблемы социализации подростка в группе. Уверенность в себе как критерий социальной компетентности. Характеристика статуса в системе межличностных отношений по Морено. Использование метода Дембо-Рубинштейн для анализа уровня развития самооценки.

    курсовая работа [791,5 K], добавлен 21.11.2019

  • Социальная ситуация развития детей 7-9 в связи с распространением экономических знаний в системе начального общего образования. Изучение содержания учебно-экономических задач в учебно-методических пособиях для начального общего образования в России.

    дипломная работа [2,7 M], добавлен 03.12.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.