Основы инженерно-технической защиты информации
Понятие о конфиденциальной информации, основные свойства. Демаскирующие признаки объектов защиты. Классификация источников и носителей информации. Источники функциональных сигналов, побочные электромагнитные излучения. Виды угроз безопасности информации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | книга |
Язык | русский |
Дата добавления | 08.03.2013 |
Размер файла | 538,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Во втором варианте закладные устройства дистанционно включаются на излучение по внешнему радиосигналу, подаваемому злоумышленником. Эти закладные устройства обеспечивают повышенную скрытность и более длительное время работы. Однако для их эффективного применения надо иметь дополнительный канал утечки сведений о времени циркулирования конфиденциальной информации в помещении, где установлено закладное устройство. Например, надо достаточно точно знать время, когда будут вестись в помещении конфиденциальные разговоры. Так как дистанционно-управляемые закладки содержат радиоприемник для приема управляющих радиосигналов. То они наиболее сложные и, следовательно, дорогие.
Рациональным решением задачи обеспечения закладных устройств электропитанием является подключение их к устройствам питания радио и электроприборов, в которые устанавливаются закладки. Широко применяются подобные закладные устройства в телефонных аппаратах, закамуфлированные под их элементы (конденсаторы, телефонные капсюли и др.), в тройниках для подключения нескольких приборов к одной розетке электросети. По оценке, приведенной в [50], в 75% закладных устройств используется автономное (батарейное) питание, 8% _питание от сети и 17% - питание от телефонной линии.
Следует отметить, что применяются, пока редко, также пассивные закладки, - без собственных источников электропитания. Для их активизации производится облучение их внешним электромагнитным полем частоты, соответствующей резонансной частоте колебательного контура закладки, образованного элементами ее конструкции. Модуляция радиосигнала производится в результате воздействия акустической волны на частотнозадающие элементы конструкции закладки.
Жесткие требования к габаритам, массе, энергопотреблению закладных устройств ограничивают мощности излучения их передатчиков. Наиболее часто (более 80%) применяются радиомикрофоны, мощность излучения которых находится в интервале 3-11 мВт, закладки с более высокой мощностью - до 22 мВт составляют менее 10% [50]. Встречаются закладки и большей мощности излучения (до 200 мВт и более), однако их доля крайне незначительна. Малая мощность излучения передатчиков радиозакладок определяет относительно небольшую дальность приема их сигналов. Около 75% образцов обеспечивает функционирование канала на расстояниях 50-350м, 16% - на расстояниях 460-600 м, 7% - на расстояниях 740-800м и только около 2% - на расстояние до 1000 и более метров.
В общем случае технические данные закладных устройств находятся в следующих пределах [29]:
- частотный диапазон - 27-900 МГц;
- мощность - 0.2-500 мВт;
- дальность - 10-1500 м;
- время непрерывной работы - от нескольких часов до нескольких лет;
- габариты - 1-8 дм3
- вес - 5-350 г
Основной проблемой оперативного применения закладных устройств является их рациональное размещение в помещении или в радиоэлектронном средстве. Рациональность достигается при обеспечении:
- поступления на вход закладки сигнала с уровнем, необходимым для качественной передачи звуковой или иной информации;
- скрытности размещения и работы закладки, по крайней мере, в течение времени подслушивания интересующей злоумышленника информации.
Эффективность выполнения этих условий зависит от удаленности места установки закладки от источников звука и наличия между ними звукопоглощающих и звукоизолирующих экранов, от чувствительности микрофона, размеров и параметров акустики, прежде всего, временем реверберации помещения и от времени, которым располагает злоумышленник для установки. Чувствительность современных малогабаритных микрофонов обеспечивают достаточно качественный прием акустических сигналов на удалении до 10 м при отсутствии экранов на пути распространения акустической волны.
Установка закладных устройств возможна с заходом злоумышленника в помещение, где производится их размещение, или без захода. Первый вариант позволяет более рационально разместить закладку как с точки зрения энергетики, так и скрытности, но связана с повышенным риском для злоумышленника. Поэтому в случаях, когда создаются предпосылки для дистанционной (беззаходовой) установки закладки, их забрасывают в помещение или ими выстреливают из пневматического ружья или лука. Например, комплект PS фирмы Sipe Electronic состоит из специального бесшумного пневматического пистолета с прицельным расстоянием 25 м и радиозакладкой, укрепленной на стреле. Стрела после выстрела надежно прикрепляется с помощью присоски к поверхностям из металла, дерева, пластмассы, бетона и других гладких строительных и облицовочных материалов. Микрофон обеспечивает съем речевой информации с расстояния до 10 м, а передатчик - ее передачу на расстояние до 100 м.
Несмотря на сравнительно малые габариты и вес закладных устройств они могут быть обнаружены при тщательном визуальном осмотре помещения. С целью продления времени их оперативного использования, а также приближения микрофонов к источнику звука закладные устройства камуфлируют под предметы, не вызывающие подозрение у окружающих людей. Трудно назвать предметы личного пользования, средства оргтехники, средства бытовой радиоэлектроники, в которые не вмонтировались бы различные устройства для подслушивания. Некоторые из таких средств подслушивания приведены в табл. 3.13.
Таблица 3.13
Наименование |
Тип, фирма |
Характеристики |
|
Радиопередатчики в: |
ELECTRONIC: |
||
стакане |
PK535 |
65х100 мм, 210 г, солнечные батареи |
|
пепельнице |
PK565-S |
90х45 мм, 480 г, солнечные батареи |
|
подсвечнике |
PK580 |
100х175 мм, 650 г, солнечные батареи |
|
калькуляторе |
PK620-S |
135х100 мм, радиус действия 150-200 м |
|
розетке |
PK550 |
140х60х40 мм, 380 г, дальность до 600 м |
|
настольной зажигалке |
PK575 |
80х32х52 мм, 150 г, время работы до 80 ч |
|
лампочке |
PK560 |
дальность до 250 м. |
|
гвозде |
PK520 |
35х6 мм, 96 г, 36 часов, до 200 м |
|
шарик. ручке |
PK585 |
135х11 мм, 25 г, 6 часов, до 300 м |
|
часах |
PK1025-S |
88ѕ108 или 130ѕ150 МГц, 6 часов. |
|
ремне |
PK850-S |
139 МГц, до 800 м. |
|
Радиопередатчик в запонках, булавке для галстука |
STG 4140, STG |
15-150 МГц, мощность 5 мВт. |
|
Радиопередатчик видеокассете |
UM 007.3, SMIRAB ELECTRONIC |
136-146 МГц, до 300 м, время непрырывной работы 3 суток |
|
Магнитофон в книге |
PK660, ELECTRONIC |
200х250х65 мм, 1200 г, время записи 2х90 мин. |
|
Магнитофон в пачке сигарет |
PK1985, ELECTRONIC |
55х87х21 мм, 160 г, время работы 11ч. |
д). Средства лазерного подслушивания
Лазерное подслушивание является сравнительно новым методом подслушивания (первые рабочие образцы появились в 60-е годы), и предназначено для съема акустической информации с плоских вибрирующих под действием акустических волн поверхностей. К таким поверхностям относятся, прежде всего, стекла закрытых окон.
Система лазерного подслушивания состоит из лазера в инфракрасном диапазоне и оптического приемника. Лазерный луч с помощью оптического прицела направляется на окно помещения, в котором ведутся интересующие злоумышленника разговоры. При отражении лазерного луча от вибрирующей поверхности происходит модуляция акустическим сигналом угла отраженного луча лазера или его фазы.
В варианте угловой модуляции вектор отраженного от колеблющейся поверхности стекла меняется в соответствии с амплитудой акустической волны. Отраженный луч принимается оптическим приемником, размещаемым в соответствии с усредненным углом отражения. Положение светочувствительного элемента (фотокатода) оптического приемника юстируется таким образом, чтобы пятно отраженного лазерного луча при отсутствии колебаний стекла освещало половину экрана. В этом случае изменения направления отраженного луча при колебаниях стекла вызывают соответствующие изменения площади пятна света на фотокатоде оптического приемника и появление в светочувствительном слое модулированного по амплитуде электрического сигнала. Сигнал после усиления прослушивается и записывается на магнитную ленту. На практике юстировка производится по субъективному ощущению оператором разборчивости речи.
Второй вариант построения системы лазерного подслушивания предусматривает реализацию в оптическом приемнике фазовой демодуляции путем сравнения фаз облучающего и отраженного лучей. С этой целью исходный луч с помощью полупрозрачного зеркала расщепляется на два луча. Одним из них облучается стекло, другой направляется к приемнику в качестве опорного. В точке приема в результате интерференции опорного и отраженного лучей на поверхности светочувствительного слоя в нем возникают электрические заряды, величина которого соответствует разности фаз лучей. Второй вариант обеспечивает более высокую чувствительность системы подслушивания, но сложнее в реализации.
Примером системы лазерного подслушивания является система РК_1035 фирмы PK Electronic. Система состоит из лазерных передатчика и приемника, магнитофона для записи перехваченной информации. Передатчик и приемник системы устанавливаются на треноге. Лазерный передатчик имеет размеры 65х250 мм, вес 1.6 кг, мощность_ 5 мВт, длина волны излучения_ 850 мкм. Лазерный приемник имеет размеры 65х260 мм, вес 1.5 кг. Электропитание - от сети и автономное.
Данные о возможностях систем лазерного подслушивания противоречивые. В рекламных материалах дальность указывается для разных систем от сотен метров до км. Однако без ссылки на уровень внешних акустических шумов эти величины можно рассматривать как потенциально достижимые в идеальных условиях. В городских условиях, когда принимаются дополнительные меры по звукоизоляции помещений от шума улицы, дальности будут существенно меньшими. Следует также иметь ввиду сложности практической установки излучателя и приемника, при которых обеспечивается попадание зеркально отраженного от стекла невидимого лазерного луча на фотоприемник. Уровни же диффузно отраженных от стекла лучей столь малы, что их не удается принять на фоне городских акустических шумов. Кроме того, следует отметить, что соотношение между стоимостью системам лазерного подслушивания и затрат на эффективной защиты от них не в пользу рассматриваемого метода добывания информации.
Следовательно, системы лазерного подслушивания, несмотря на их достаточно высокие потенциальные возможности имеют ограниченное реальное применение, в особенности разведкой коммерческих структур.
е). Средства высокочастотного навязывания
Добывание информации путем высокочастотного навязывания достигается в результате дистанционного воздействия высокочастотным электромагнитным полем или электрическими сигналами на элементы, способные модулировать их информационные параметры первичными электрическими или акустическими сигналами с речевой информацией. В качестве таких элементов могут использоваться различные полости с электропроводной поверхностью, представляющие собой высокочастотные контура с распределенными параметрами и объем которых меняется под действием акустической волны. Если частота такого контура совпадает с частотой высокочастотного навязывания, а поверхность полости находится под воздействием акустической информацией, то эквивалентный контур переизлучает и модулирует внешнее поле.
Более часто в качестве модулирующего применяется нелинейный элемент, в том числе в схеме телефонного аппарата. В этом случае высокочастотное навязывание обеспечивается подведением к телефонному аппарату высокочастотного гармонического сигнала путем подключения к телефонному кабелю высокочастотного генератора. В результате взаимодействия высокочастотного колебания с речевыми сигналами на нелинейных элементах телефонного аппарата происходит модуляция высокочастотного колебания речевым низкочастотным сигналом. Принципы этого явления аналогичны работе смесителя радиоприемника. После преобразования появляются сигналы, частоты которых представляют различные комбинации частот исходных сигналов. Эти сигналы модулированы сигналами речевой информации и могут перехвачены приемником злоумышленника.
3.4 Способы и средства добывания информации о радиоактивных веществах
Добыванием информации о радиоактивных веществах занимается радиационная разведка. Для обнаружения радиоактивных излучений она использует специальные дозиметрические приборы. Структура типового прибора радиационной разведки приведена на рис. 3.16.
Рис. 3.16 Структура прибора радиационной разведки
Детектор преобразует энергию радиоактивного излучения в электрические сигналы, которые после усиления поступают на стрелочный или цифровой индикатор. В качестве детектора используются ионизационные камеры, газоразрядные и сцинтилляционные счетчики, кристаллы полупроводника, фотопленка,
Ионизационные камеры (Вильсона, пузырьковые, искровые) представляют сосуд цилиндрической или прямоугольной формы, заполненные газом с пересыщенным паром (в камере Вильсона), жидким водородом (в пузырьковой камере) и инертным газом (в искровой камере). В искровой камере имеются, кроме того, плоскопараллельные близко расположенные друг к другу пластины, на которые подается высокое напряжение, чуть ниже пробойного. Когда через камеру Вильсона и пузырьковую камеру пролетает электрически заряженная частица, на возникаюших на ее пути ионах конденсируются маленькие капельки жидкости, видимые при боковом освещении. При пролете быстрой частицы через искровую камеру вдоль ее траектории между пластинами проскакивают искры, создавая огненный трек.
В малогабаритных приборах радиационной разведки применяются в основном газоразрядные счетчики (счетчики Гейгера-Мюллера). Газоразрядные счетчики представляют собой стеклянную герметичную трубку, заполненную смесью газовой смесью (аргона и воздуха, аргона и паров и др.) под давлением 0.1 атмосферы. Внутренняя поверхность трубки металлизирована. Внутри трубки протянута металлическая нить, на которую подается высокое положительное напряжение 1000-1500 В постоянного тока, а к поверхности счетчика - отрицательное напряжение. Когда в газоразрядную трубку попадает ионизирующая частица, происходит лавинообразный процесс образования ионов, между электродами возникает короткий импульс тока, который подается на вход усилителя. В результате вторичной ионизации обеспечивается высокая чувствительность детектора. Импульсы тока усиливаются и регистрируются в простейшем варианте в виде звуковых щелчков, в более совершенных дозиметрических приборов частость импульсов преобразуется в значение уровня излучения, отображаемое с помощью стрелочных или цифровых индикаторов.
Счетчики Гейгера-Мюллера для регистрации -излучения имеют очень тонкое (0.002-0.003 мм) слюдяное окно, через которое частицы без существенного поглощения попадают в трубку. Для регистрации - излучения окно трубки делают из алюминиевой фольги толщиной 0.1-0.2 мм, которая поглощает -частицы. Трубки для регистрации - излучения закрыты слоем алюминия толщиной 1 мм, поглощающей - излучение.
Сцинтиляционные детекторы представляют собой экран (пластину) из стекла, покрытый флюоресцирующим веществом (сульфидом цинка, антраценом или другими веществами, преобразующими кинетическую энергию радиоактивных частиц в энергию световой вспышки). Путем размещения за экраном фотоумножителя вспышки света могут преобразовываться в электрические сигналы с последующим измерением их интенсивности электронным счетчиком. Преимущество сцинтилляционного детектора состоит в том, что он может раздельно считать частицы, поступающие через очень короткие промежутки времени (10-8-10-9 с вместо 10-5-10-6 с у счетчиков Гейгера- Мюллера). Дальнейшим развитием сцинтилляционного счетчика является люминисцентная камера, которая не только считает частицы в течение очень короткого времени (10-13-10-14 с), но и с помощью соответствующего электронно-оптического устройства регистрирует их траектории.
Широкое распространение получили кристаллические полупроводниковые детекторы, основу которых составляют полупроводниковый кристалл кремния или германия с различными добавками. Электропроводность кристалла изменяется под действием ионизирующего излучения.
В качестве фотодетекторов применяют также рентгеновскую фотопленку, по степени почернения которой за определенное время судят об уровне излучения.
Приборы для обнаружения и измерения радиоактивных излучений в зависимости от назначения делятся на индикаторы радиоактивности, радиометры и дозиметры. По способу индикации интенсивности излучения - на стрелочные и цифровые.
Индикаторы излучений информируют оператора световой или звуковой индикацией о наличии в зоне поиска радиоактивных веществ, радиометры предназначены для обнаружения и измерения радиоактивного заражения среды, а дозиметры - для измерения дозы облучения.
Величина, которую измеряют радиометры, называют мощностью экспозиционной дозы (МЭД) гамма-излучения. Экспозиционная доза -излучения равна отношению заряда, созданного гамма-квантами в воздухе при нормальных условиях, к массе этого воздуха. В качестве единицы измерения в системе СИ принята мера в кулон/кг (Кл/кг). Широко применяется несистемная единица измерения - рентген и ее доли (миллирентген и микрорентген). Соотношение между этими единицами равно: 1Р=2.58. 10-4 Кл/кг.
Мощностью экспозиционной дозы называется величина экспозиционной дозы в единицу времени. Фоновая мощность излучения космоса и радионуклидов земли составляет в среднем 5-30 мкР/ч. Энергия и -частиц оценивается также в электрон-вольтах (эВ) и см пробега Один эВ равен кинетической энергии, получаемой электроном под действием разности потенциалов 1 В. Энергия альфа-частиц, излучаемых различными естественными радиоактивными элементами, составляет 4-9 МэВ (1 МэВ =106 эВ). что обеспечивает их пробег ав атмосфере воздуха при нормальных условиях 2.5-8.6 см.
На рынке имеются разнообразные радиометры, в том числе бытовые «Белка», «Эксперт», «Сосна» и другие. Разнообразные прфессиональные приборы выпускает Обнинский приборный завод “ Сигнал”. Например, измеритель мощности дозы гамма-излучения ИМД-2 применяется в стационарных условиях, на летательных аппаратах, подвижных объектах и для пешей разведки, Индикация уровня производится с помощью светящегося сектора на шкале прибора. Он имеет следующие характеристики:
- диапазон измерения МЭД 10 мкР/ч-1000 Р/ч;
- погрешности измерения 30 %;
- диапазон температур окружающей среды, 0С -50...+50;
- вес прибора, кг 1.6 кг;
- габариты, мм 198х180х82.
Величина поглощения энергии излучения в единице биологической массы (ткани) называется основной дозиметрической величиной (дозой). Единица измерения дозы в системе СИ - зиверт (Зв) и несистемная единица измерения - бэр, причем 1 бэр=100 Зв.
По биологическому воздействию поглощенная биологической тканью доза, измеренная в бэрах, примерно равна экспозиционной дозе, измеренной в рентгенах. Поэтому уровни радиоактивного заражения оценивают как в рентгенах, так и бэрах.
Малогабаритные дозиметры (ДРС_01, ДКС_04, ДЭГ_8,ДРГ_01Т1, ДРГ_05М и др.) постоянно применяются людьми, имеющие дело с радиоактивными веществами, для измерения принятой ими дозы в течение определенного времени работы, например, месяца. Пороговое значение дозы за год не должно превышать 5 бэр.
Глава 4. Технические каналы утечки информации
Информация, записанная на распространяющихся в пространстве носителях, может быть перенесена этими носителями от источника к несанкционированному получателю. В таком случае говорят об утечке информации по аналогии с утечкой жидких или газообразных веществ. Однако по сравнению с ними утечка информации имеет ряд особенностей.
4.1 Особенности утечки информации
Под утечкой информации понимается несанкционированный процесс переноса информации от источника к злоумышленнику.
Понятие “утечка” широко распространено, Говорят об утечке воды, газа, материальных ценностей со склада, информации из различных структур и т. д. Утечка информации возможна путем ее разглашения людьми, утерей ими носителей с информацией, переносом информации с помощью полей, потоков элементарных частиц, веществ в газообразном, жидком или твердом виде. Например, желание сотрудников поделиться последними новостями о работе с родными или близкими создают возможности утечки конфиденциальной информации. Переносчиками информации могут быть любые ее носители.
Часто под утечкой понимают случайный процесс, вроде вытекания воды из неисправного крана. Такой подход представляется упрощенным. В криминальной практике известны факты организации утечки, например, бензина с последующим списыванием его на случайную неисправность в нефтепроводе или хранилище. Практикуются в политической жизни общества организация утечки информации из правительственных структур с целью зондирования или подготовки общественного мнения перед принятием непопулярных решений.
Утечка информации по сравнению с утечкой (хищением) материальных объектов имеет ряд особенностей, которые надо учитывать при организации защиты информации:
- утечка информации может происходить только при попадании ее к заинтересованному в ней несанкционированному получателю (злоумышленнику), в отличии, например, от утечки воды или газа.
- при утечке информации происходит ее тиражирование, которое не изменяет характеристики носителя информации (не уменьшается количество листов документа, не сокращается число пикселей изображения, не меняются размеры, цвет и другие демаркирующие признаки продукции и т. д.);
- цена информации при ее утечке уменьшается за счет тиражирования;
- факт утечки информации, как правило, обнаруживается спустя некоторое время, по последствиям, когда меры по обеспечению ее безопасности принимать могут оказаться неэффективными;
Первая особенность имеет существенное значение для безопасности информации, так как сами по себе факты утери документа, разглашения сведений, распространения носителей за пределы контролируемой зоны и другие действия далеко не всегда приводят к утечке информации. Например, если конфиденциальный разговор во время совещания в кабинете руководителя организации слышен в приемной из-за неплотно закрытой двери, а в приемной нет людей, то утечки информации нет, хотя носитель информации (акустическая волна) выходит за пределы контролируемой зоны - помещения. Если в приемной находится добросовестно выполняющий свои обязанности секретарь руководителя, который после совещания будет оформлять его результаты, то утечка информации также отсутствует, так как информации не попадет к злоумышленнику. Только в том случае, когда в приемной будет находиться сотрудник организации или посетитель, который воспользуется информацией из услышанного разговора в личных целях или поделиться ею с другими заинтересованными в ней людьми, то происходит утечка информации из кабинета руководителя. В общем случае можно говорить об утечке информации как факте нарушения ее безопасности только в том случае, если она попадает к злоумышленнику независимо от того, знает или не знает об этом владелец информации. Если по какой-то причине на этом пути передачи информации происходит разрыв в цепочке, то информация исчезает вместе с ее носителем, а утечки информации не происходит.
Следовательно, под утечкой следует понимать не процесс распространения носителя информации за пределы определенной области пространства вообще, а частный случай распространения, когда информация попадает к злоумышленнику. Выход же носителя за пределы заданной области создает предпосылки для утечки информации и повышает угрозу ее безопасности.
Замечание о несанкционированности получателя имеет также принципиальное значение. Если получатель информации санкционирован, то речь идет не об утечке, а о передаче информации по так называемому функциональному каналу связи, специально создаваемому для обеспечения коммуникаций в человеческом обществе.
Часто хищение и утечку информации рассматривают как автономные процессы. Если под хищением понимать умышленное присвоение чужой собственности без разрешения ее законного владельца, то утечка информации представляет собой один из способов ее хищения. Действительно, если человек на государственной земле находит клад, слиток из драгоценных металлов или драгоценный камень, которые по закону являются собственностью государства, то он обязан их сдать соответствующему государственному органу. В противном случае его действия классифицируются как хищение и он может быть привлечен к ответственности. Аналогичная ситуация с утечкой информации. Когда злоумышленник находит утерянный документ с грифом “секретно” и сознательно продает его зарубежной спецслужбе, то он привлекается к уголовной ответственности за хищение государственной тайны.
Физический путь переноса информации от ее источника к несанкционированному получателю называется каналом утечки. Если запись информации на носитель канала утечки и съем ее с носителя производится с помощью технических средств, то такой канал называется техническим каналом утечки.
Несанкционированный перенос информации полями различной природы, макро- и микрочастицами производится в рамках технических каналов утечки информации.
4.2 Характеристики технических каналов утечки информации
Для передачи информации носителями в виде полей и микрочастиц по любому техническому каналу (функциональному или каналу утечки) последний должен содержать 3 основные элемента: источник сигнала, среду распространения носителя и приемник. Обобщенная типовая структура канала передачи информации приведена на рис. 4.1.
Рис. 4.1 Структура канала передачи информации
На вход канала поступает информация в виде первичного сигнала. Первичный сигнал представляет собой носитель с информацией от ее источника или с выхода предыдущего канала. В качестве источника сигнала могут быть:
- объект наблюдения, отражающий электромагнитные и акустические волны;
- объект наблюдения, излучающий собственные (тепловые) электромагнитные волны;
- передатчик функционального канала связи;
- закладное устройство;
- источник опасного сигнала;
- источник акустических волн, модулированных информацией;
Указанные на рисунке стрелками пути входа и выхода информации обозначают вход и выход первичных сигналов с информацией. Так как информация от источника поступает на вход канала на языке источника (в виде буквенно-цифрового текста, символов, знаков, звуков, сигналов и т. д.), то передатчик производит преобразование этой формы представления информации в форму, обеспечивающую запись ее на носитель информации, соответствующий среде распространения. Кроме того, он выполняет следующие функции:
- создает (генерирует) поля (акустическое, электромагнитное) или электрический ток, которые переносят информацию;
- производит запись информации на носитель (модуляцию информационных параметров носителя);
- усиливает мощность сигнала (носителя с информацией);
- обеспечивает передачу (излучение) сигнала в среду распространения в заданном секторе пространства.
Запись информации производится путем изменения параметров носителя в соответствии с уровнем первичного сигнала, поступающего на вход. Если носителями информации являются субъекты и материальные тела (макрочастицы), то передатчик соответствует первоначальному смыслу этого слова - передавать или переносить, т. е. выполняет функцию носителя. В случае когда информацию переносят сигналы (поля, электрический ток и элементарные частицы), то передатчики являются источниками сигналов.
Источниками сигналов могут быть как источники функциональных каналов связи, так и опасных сигналов. К опасным сигналам относятся сигналы с конфиденциальной информацией, появление которых является для источника информации случайным событием и им не контролируется.
Среда распространения носителя - часть пространства, в которой перемещается носитель. Она характеризуется набором физических параметров, определяющих условия перемещения носителя с информацией. Основными, которые надо учитывать при описании среды распространения, являются:
- физические препятствия для субъектов и материальных тел;
- мера ослабления (или пропускания энергии) сигнала на единицу длины;
- частотная характеристика (неравномерность ослабления частотных составляющих спектра сигнала);
- вид и мощность помех для сигнала.
Приемник выполняет функцию, обратные функции передатчика. Он производит:
- выбор (селекцию) носителя с нужной получателю информацией;
- усиление принятого сигнала до значений, обеспечивающих съем информации;
- съем информации с носителя (демодуляцию, декодирование);
- преобразование информации в форму сигнала, доступную получателю (человеку, техническому устройству), и усиление сигналов до значений, необходимых для безошибочного восприятия ими.
Если получатель информации человек, то информация с выхода приемника должна быть представлена на языке общения людей; если техническое устройство, то форма представления информации должна быть понятна этому устройству. Например, если получатель - ЭВМ, то с выхода приемника на ЭВМ подается двоичная последовательность в кодах, например, таблицы ASCII.
Канал утечки информации отличается от функционального канала передачи получателем информации. Если получатель санкционированный, то канал функциональный, в противном случае - канал утечки. Классификация каналов утечки информации дана на рис. 4.2.
Рис. 4.2 Классификация каналов утечки информации
Основным классификационным признаком технических каналов утечки информации является физическая природа носителя. По этому признаку они делятся на:
- оптические;
- радиоэлектронные;
- акустические;
- материально-вещественные.
Носителем информации в оптическом канале является электромагнитное поле в диапазоне 0,46-0,76 мкм (видимый свет) и 0.76-13 мкм (инфракрасные излучения).
В радиоэлектронном канале утечки информации в качестве носителей используются электрические, магнитные и электромагнитные поля в радиодиапазоне, а также электрический ток, распространяющийся по проводникам из меди, железа, алюминия. Диапазон колебаний этого вида носителя чрезвычайно велик: от звукового диапазона до десятков ГГц. Часто этот канал называют электромагнитным, что представляется недостаточно корректным, так как носителями информации в оптическом канале являются также электромагнитные поля, но в более высокочастотном диапазоне. Кроме того, широко используется в качестве носителя информации модулированный поток электронов (электрический ток). Объединяя эти два носителя информации в канале одного вида, целесообразно назвать его «радиоэлектронный» (электромагнитное поле в радиодиапазоне и электроны электрического тока).
Носителями информации в акустическом канале являются механические акустические волны в инфразвуковом (менее 16 Гц), звуковом (16 Гц - 20 кГц) и ультразвуковом (свыше 20 кГц) диапазонах частот, распространяющиеся в атмосфере, воде и твердой среде.
В материально-вещественном канале утечка информации производится путем несанкционированного распространения за пределы организации вещественных носителей с секретной или конфиденциальной информацией, прежде всего, выбрасываемых черновиков документов и использованной копировальной бумаги, забракованных деталей и узлов, демаскирующих веществ. Последние в виде твердых, жидких и газообразных отходов или промежуточных продуктов содержат химические элементы, по которым в принципе можно определить состав, структуру и свойства новых материалов или восстановить технологию их получения.
Когда речь идет о распространении за пределы организации отходов производства в широком смысле, то следует отличать технический канал утечки от агентурного, в рамках которого вынос носителя с информацией производится проникшим к источнику злоумышленника, завербованным сотрудником организации или сотрудником, стремящимся продать информации любому ее покупателю. Граница между каналами достаточно условна, однако при утечке информации в агентурном канале переносчиком информации является лицо, сознающее противоправные действия, а в техническом материально-вещественном канале - носители вывозятся из организации с целью освобождения ее от отходов или отходы распространяются в результате действия природных сил. В качестве таких сил могут быть воздушные потоки, разносящие газообразные отходы, или водные потоки рек или водоемов, куда сбрасываются недостаточно очищенные жидкие или взвешенные в воде твердые частицы демаскирующих веществ.
Каждый из технических каналов имеет свои особенности, которые необходимо знать и учитывать для обеспечения эффективной защиты информации от распространения в них.
По информативности каналы утечки делятся на информативные, малоинформативные и неинформативные. Информативность канала оценивается ценностью информации, которая передается по каналу.
По времени проявления каналы делятся на постоянные, периодические и эпизодические. В постоянном канале утечка информации носит достаточно регулярный характер. Например, наличие в кабинете источника опасного сигнала может привести к передаче из кабинета речевой информации до момента обнаружения этого источника. Периодический канал утечки может возникнуть при условии, например, размещения во дворе не укрытой продукции, демаскирующие признаки о которой составляют тайну, во время пролетов разведывательных космических аппаратов. К эпизодическим каналам относятся каналы, утечка информации в которых имеет разовый случайный характер.
Канал утечки информации, состоящий из передатчика, среды распространения и приемника, является одноканальным. Однако возможны варианты, когда утечка информации происходит более сложным путем - по нескольким последовательным или параллельным каналам. При этом используется свойство информации переписываться с одного носителя на другой. Например, если в кабинете ведется конфиденциальный разговор, то утечка возможна не только по акустическому каналу через стены, двери, окна, но и по оптическому - путем съема информации лазерным лучом со стекла окна или по радиоэлектронному с использованием установленной в кабинете радиозакладки. В двух последних вариантах образуется составной канал, образованный из последовательно соединенных акустического и оптического (на лазерном луче) или акустического и радиоэлектронного (радиозакладка - среда распространения - радиоприемник) каналов. Для повышения дальности канала утечки может также использоваться ретранслятор, совмещающий функции приемника одного канала утечки информации и передатчика следующего канала. Например, для повышения дальности подслушивания с использованием радиозакладки можно разместить ретранслятор в портфеле, сдаваемый якобы на хранение в камеру хранения закрытого предприятия.
Как любой канал связи канал утечки информации характеризуется следующими основными показателями:
- пропускной способностью;
- дальностью передачи информации.
Пропускная способность канала связи оценивается количеством информации, передаваемой по каналу в единицу времени с определенным качеством. В теории связи пропускная способность канала в бодах (битах в секунду) определяется по формуле [4]:
С=Flog2 (1+Pс/Pп),
где F-ширина полосы пропускания канала связи;
Pс и Pп - мощность сигнала и помехи (в виде белого шума) в полосе пропускания канала соответственно.
Следовательно, пропускная способность канала связи является интегральной характеристикой, учитывающей как ширину полос частот сигнала, которую пропускает канал, так и его энергетику. Чем меньше отношение мощностей сигнала и помехи, тем больше ошибок в принятом сообщении и тем меньше количество переданной информации.
По ширине полосы частот пропускания каналы делятся на узкополосные и широкополосные. Стандартный телефонный канал для передачи речевой информации имеет полосу 300-3400 Гц и относится к узкополосным, шириной 8 МГц для передачи телевизионных сигналов - к широкополосным. Чем шире канал, тем больше информации можно передать за единицу времени. Так как для добывания информации с требуемым качеством необходимо обеспечить на входе приемника канала минимально-допустимое для каждого вида информации и носителя отношение сигнал/помеха, то это отношение достигается на различном удалении от источника сигнала, в зависимости от мощности сигнала и помехи, а также величины (коэффициента) ослабления (затухания) сигнала в канале. Носители информации существенно отличаются по величине затухания в среде распространения: в наибольшей степени уменьшается энергия акустической волны, в наименьшей - электромагнитная волна в длинноволновом диапазоне частот.
4.3 Оптические каналы утечки информации
Структура оптического канала утечки информации имеет вид, показанный рис. 4.3.
Рис. 4.3 Структура оптического канала утечки информации
Объект наблюдения в оптическом канале утечки информации является одновременно источником информации и источником сигнала в том смысле, что световые лучи, несущие информацию о видовых признаках объекта, представляют собой отраженные объектом лучи внешнего источника или его собственные излучения.
Отраженный от объекта свет содержит информацию о его внешнем виде (видовых признаках), а излучаемый объектом свет - о параметрах излучений (сигнальных признаках). Запись информации производится в момент отражения падающего света путем изменения яркости и спектрального состава отраженного луча света. Излучаемый свет содержит информацию об уровне и спектральном составе источников видимого света, а в инфракрасном диапазоне по характеристикам излучений можно также судить о температуре элементов излучения.
В общем случае объект наблюдения излучает электромагнитные волны и отражает свет другого источника как в видимом, так и ИК-диапазонах. Однако в конкретных условиях соотношения между мощностью собственных и отраженных излучений в видимом и ИК-диапазонах существенно отличаются.
В видимом диапазоне мощность излучения определяется в подавляющем большинстве случаев мощностью отраженного света и содержащихся в объекте искусственных источников света. Например, габариты автомобиля в ночное время обозначаются включенными фонарями красного цвета, укрепленными по краям автомобиля. Объект наблюдения или его элементы излучают собственные электромагнитные излучения в видимом диапазоне, вызванные тепловым движением электронов, при высокой температуре. В ближней (0.75-3 мкм) и средней (3-6 мкм) диапазонах ИК-излучения объектов значительно меньше мощности отраженного от объекта потока солнечной энергии. Однако с переходом в длинноволновую область ИК-излучения мощность теплового излучения объектов может превышать мощность отраженной солнечной энергии. Основным и наиболее мощным внешним источником света является Солнце. При температуре поверхности около 60000 Солнце излучает огромное количество энергии в достаточно широкой полосе частот - от ультрафиолетового до инфракрасного (0.17-4 мкм). Максимум солнечного излучения приходится на 0.47 мкм, в ультрафиолетовой части оно резко убывает, в инфракрасной - регистрируется в виде широкой и пологой кривой.
При прохождении через атмосферу солнечные лучи взаимодействуют с содержащими в ней молекулами газов, частицами пыли, дыма, кристалликами льда, каплями воды. В результате такого взаимодействия часть солнечной энергии поглощается, другая - рассеивается.
Процессы рассеяния и поглощения солнечной энергии уменьшают интенсивность солнечной радиации на поверхности Земли и меняют спектр солнечного света, освещающего наземные объекты. В кривой излучения этого света, характеризующей интенсивность излучения в зависимости от длины волны, появляются участки поглощения и пропускания. Последние называются окнами прозрачности. Излучения длиной менее 0.27 полностью поглощаются озоном. Атмосферное рассеяние света уменьшает прямую солнечную радиацию и повышает рассеянное (диффузное) излучение атмосферы. Рассеяние в коротковолновой части спектра сильнее, чем в длинноволновой. Особенно сильно оно в голубой и ультрафиолетовой областях, Поэтому небо имеет голубой цвет. Интенсивность рассеяния солнечного света в ближнем инфракрасном диапазоне незначительная.
Задымленность приповерхностного слоя атмосферы мало влияет на излучения ближнего ИК-диапазона, если размеры твердых частиц дыма в атмосфере не превышают 1 мкм. Туман и облака очень сильно рассеивают ИК-излучение в этом интервале длин, так как водяные капли и имеют размер около 4 мкм. Молекулярное и аэрозольное рассеяние солнечного света вызывает ее свечение, которое называют дымкой. Рассеянное излучение создает освещенность теневых участков земной поверхности, увеличивая их относительную яркость.
Облачность существенно влияет на суммарную освещенность. Наличие облачности высоких ярусов, не закрывающих солнечный диск, повышает рассеянное излучение и при сохранении значения прямой освещенности увеличивает суммарную величину на (20-30)% по сравнению с освещенностью при безоблачном небе. Низкая облачность так же, как и тени облаков, снижают суммарную освещенность в 2-5 раз, в зависимости от высоты Солнца. При снежном покрове и облачности многократное отражение ими излучения повышает суммарную освещенность, особенно в теневых участках.
Освещенность в дневное время земной поверхности Солнцем составляет в зависимости от его высоты, облачности атмосферы 104 - 105 лк. С движением Солнца к горизонту Земли, когда зенитное расстояние между ними достигает максимума, освещенность, создаваемая Солнцем, составляет приблизительно 10 лк. При этом изменяется и спектр солнечного света, так как при прохождении толщи атмосферы синие и фиолетовые лучи ослабеваются сильнее, чем оранжевые и красные, вследствие чего максимум излучения Солнца смещается в красную область цвета. С заходом Солнца за горизонт и наступлением сумерек освещенность убывает вплоть до наступления астрономических сумерек, за которыми следует наиболее темное время суток - ночь.
В лунную ночь при безоблачном небе, когда так называемую естественную ночную освещенность (ЕНО) создает отраженный от Луны солнечный свет составляет около 0.3 лк в полнолуние. Величина ЕНО, создаваемая светом Луны, в течение месяца меняется приблизительно в 100 раз в зависимости от взаимного положения Луны, Солнца и Земли. Лунный месяц разделяется по уровню освещенности на четыре части, каждая длительностью около недели.
Источниками излучения в безлунную ночь при безоблачном небе, называемым звездным светом, являются солнечный свет, отраженный от планет и туманностей, свет звезд, а также свечение кислорода и азота в верхних слоях атмосферы на высоте 100-300 км. Освещенность поверхности Земли звездным светом составляет в среднем 0.001 лк.
В инфракрасном диапазоне мощность излучения объекта зависит от температуры тела или его элементов, мощности падающего на объект света и коэффициента отражения объекта в этом диапазоне. Коэффициент теплового излучения для реальных объектов не постоянен по спектру и определяется в соответствии с законом Кирхгофа отношением спектральной плотности энергетической яркости объекта к спектральной плотности энергетической яркости абсолютно черного тела. Абсолютно черное тело обладает максимумом энергии теплового излучения по сравнению со всеми другими источниками при той же температуре.
Средняя температура поверхности Земли близка к 17 градусов по Цельсию. Максимум ее вторичного теплового излучения приходится на 9.7 мкм. Объекты под действием солнечной радиации в течение дня по-разному отдают накопленное тепло в окружающее пространство. Различия в температуре излучения могут рассматриваться как демаскирующие признаки.
Объекты могут иметь собственные источники тепловой энергии, например, высокотемпературные элементы машин, дизель-электростанции и др., температура которых значительно выше температуры фона. Максимум теплового излучения таких объектов смещается в коротковолновую область, что служит демаскирующим признаком для таких объектов.
Длина (протяженность) канала утечки зависит от мощности света от объекта, свойств среды распространения и чувствительности фотоприемника. Среда распространения в оптическом канале утечки информации возможна трех видов:
- безвоздушное (космическое) пространство;
- атмосфера;
- оптические световоды.
Оптический канал утечки информации, среда распространения которого содержит участки безвоздушного пространства, возникает при наблюдении за наземными объектами с космических аппаратов. Граница между космическим пространством и атмосферой достаточно условна. На высотах 200-300 км существуют еще остатки газов, проявляющиеся в тормозящем действии на космические аппараты.
Сложный состав атмосферы определяет ее пропускные способности. В общем случае прозрачность атмосферы зависит от соотношения длины проходящего сквозь нее излучений и размеров взвешенных в атмосфере частиц. Если размеры частиц соизмеримы с длиной волны света (больше половины длины волны), то пропускание значительно ухудшается. Уровень пропускания меняется в зависимости от длины световой волны.
В видимой области прохождению света препятствуют абсорбирующие молекулы кислорода и воды. Коэффициент пропускания в ней немногим более 60%. В ближней ИК-области пропускание несколько большее - до 70%. Адсорбентом в этой области являются пары воды. В средней ИК-области, в диапазоне 3-4 мкм, пропускание достигает почти 90%. Высокое пропускание имеет довольно обширный участок в дальней ИК-области (8 до 13 мкм). Абсорбентом в нем являются молекулы кислорода и воды, а также углекислого газа и озона в атмосфере.
Метеорологическая видимость даже в окнах прозрачности зависит от наличия в атмосфере взвешенных частиц пыли и влаги, образующих мглу и туман, капелек и кристаллов воды в виде дождя и снега, а также аэрозолей и дымов, содержащих твердые частицы. Все это вызывает замутнение атмосферы и ухудшает видимость. Прозрачность атмосферы как канала распространения света оценивается метеорологической дальностью видимости. Под последней понимается предельно большое расстояние, начиная с которого при данной прозрачности атмосферы в светлое время суток абсолютно черный предмет с угловыми размерами 20'х20' сливается с фоном у горизонта и становится невидимым. В зависимости от состояния атмосферы дальность видимости, определяющая протяженность оптического канала утечки, имеет значения, приведенные в табл. 4.1.
Таблица 4.1
Метеорологическая дальность видимости, км |
Оценка видимости, балл |
Визуальная оценка замутненности атмосферы и видимости |
|
Менее 0.05 |
0 |
Очень сильный туман |
|
0.05 - 0.2 |
1 |
Сильный туман |
|
0,2 - 0.5 |
2 |
Умеренный туман |
|
0.5 - 1.0 |
3 |
Слабый туман |
|
1.0 - 2.0 |
4 |
Очень сильная замутненность (очень плохая видимость) |
|
2.0 - 4.0 |
5 |
Сильная замутненность (плохая видимость) |
|
10.0 |
6 |
Умеренная замутненность (умеренная видимость) |
|
20.0 |
7 |
Удовлетворительная видимость |
|
50.0 |
8 |
Хорошая видимость |
|
Более 50.0 |
9 |
Исключительно хорошая видимость |
|
Около 300 |
10 |
Чистый воздух |
Использование метеорологической дальности для оценок прозрачность атмосферы удобно тем, что ее величина периодически определяется на станциях метеорологической службы. Оценка видимости оценивается в метрах или в баллах и передается радиостанциями. Если объект наблюдения и наблюдатель находятся на земле, то протяженность канала утечки определяется не только состоянием атмосферы, но и ограничивается влиянием кривизны Земли. Дальность прямой видимости Дпр в км с учетом кривизны Земли можно рассчитать по формуле [10]:
Например, для hо=3 м и hн=5 м Dпр=14 км, что меньше метеорологической дальности при хорошей видимости. Эта формула не учитывает неровности Земли и различные инженерные сооружения (башни, высотные здания и т. д.), создающие препятствия для света.
К свойствам среды распространения, влияющих на длину канала утечки, относятся:
- характеристики прозрачности среды распространения;
- спектральные характеристики света.
Ослабление света при прохождении через атмосферу характеризуется коэффициентом пропускания атмосферы.
Типовые варианты оптических каналов утечки информации приведены в табл. 4.2.
Таблица 4.2
Объект наблюдения |
Среда распространения |
Оптический приемник |
|
Документ, продукция в помещении |
Воздух Воздух + стекло окна |
Глаза человек + бинокль, фотоаппарат |
|
Продукция во дворе, на машине, ж/платформе |
Воздух Атмосфера + безвоздушное пространство |
То же Фото, ИК, телевизионная аппаратура на КА |
|
Человек в помещении, во дворе, на улице |
Воздух Воздух + стекло |
Глаза человека+бинокль, фото, кино, телев. ап-ра |
До недавнего времени атмосфера и безвоздушное пространство были единственной средой распространения световых волн. С разработкой волоконно-оптической технологии появились направляющие линии связи в оптическом диапазоне, которые в силу огромных их преимуществ по отношению к традиционным электрическим проводникам рассматриваются как более совершенная физическая среда для передачи больших объемов информации. Линии связи, использующие оптическое волокно, устойчивы к внешним помехам, имеют малое затухание, долговечны, обеспечивают значительно большую безопасность передаваемой по волокну информации.
Волокно представляет нить диаметром около 100 мкм, изготовленного из кварца на основе двуокиси кремния [11]. Волокно состоит из сердцевины и оболочки с разными показателями преломления. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое.
В одномодовом волокне световодная жила имеет диаметр порядка 8-10 мкм, по которой может распространяться только один луч (одна мода). В многомодовом волокне диаметр световодной жилы составляет 50-60 мкм, что делает возможным распространение в нем большого числа лучей (много мод).
Любое волокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией. Затухание измеряется в децибелах на километр (дБ/км) и определяется потерями на поглощение и рассеяние излучения в оптическом волокне. Потери на поглощение зависят от чистоты материала, а потери на рассеяние - от неоднородностей его показателя преломления. Лучшие образцы волокна имеют затухание порядка 0.15-0.2 дБ/км, разрабатываются еще более « прозрачные» волокна с теоретическим пределом затухания порядка 0.02 дБ/км для волны длиной 2.5 мкм. При таком затухании сигнала могут передаваться на расстояние в сотни км без ретрансляции.
Дисперсия, т. е. зависимость скорости распространения сигналов от длины волны, ухудшает качество сигнала, следовательно, информации на выходе длинного световолокна. Так как светодиод или лазер, являющиеся источниками сигнала для этой среды распространения, излучают некоторый спектр длин волн, дисперсия приводит к расширению импульсов при их распространению по волокну и тем самым к искажению сигналов. Дисперсия ограничивает дальность передачи и верхнее значение частоты передаваемого сигнала.
Волокна объединяют в волоконно-оптические кабели, покрытые защитной оболочкой. По условиям эксплуатации кабели подразделяются на монтажные, станционные, зоновые и магистральные. Кабели первых двух типов используются внутри зданий и сооружений. Зоновые и магистральные кабели прокладываются в колодцах кабельных коммуникаций, в грунтах, на опорах, под водой.
Хотя возможность утечки информации из волоконно-оптического кабеля существенно ниже, чем из электрического, но при определенных условиях такая утечка возможна. Для съема информации в месте доступа к кабелю разрушают его защитную оболочку, прижимают фотодетектор приемника к очищенной площадке и изгибают кабель на угол, при котором часть световой энергии направляется на фотодетектор приемника.
...Подобные документы
Графическая структура защищаемой информации. Пространственная модель контролируемых зон, моделирование угроз информации и возможных каналов утечки информации в кабинете. Моделирование мероприятий инженерно-технической защиты информации объекта защиты.
курсовая работа [2,9 M], добавлен 19.06.2012Выявление потенциальных угроз информационной безопасности в помещении для проведения переговоров и совещаний. Виды и источники информации в здании коллекторского агентства ООО "Должник"; разработка мер по совершенствованию инженерно-технической защиты.
курсовая работа [1,5 M], добавлен 12.08.2012Характеристика инженерно-технической защиты информации как одного из основных направлений информационной безопасности. Классификация демаскирующих признаков объектов защиты, способы их защиты и обнаружения. Сущность и средства процесса защиты объекта.
реферат [37,0 K], добавлен 30.05.2012Основные демаскирующие признаки и их классификация. Распространение и перехват сигнала. Основные классификационные признаки технических каналов утечки информации. Виды радиоэлектронных каналов утечки информации. Структуры каналов утечки информации.
курсовая работа [666,9 K], добавлен 17.12.2013Анализ вероятных способов и средств наблюдения, подслушивания информации. Моделирование каналов утечки сведений, ранжирование видов угроз в кабинете руководителя. Использование системы видеоконтроля и контрольно-пропускного пункта с целью защиты объектов.
контрольная работа [1,9 M], добавлен 21.04.2011Информация-это отражение разнообразия, присущего объектам и явлениям реального мира. Понятие информации. Свойства информации. Классификация информации. Формы представления информации. Информация-мера определенности в сообщении. Достоверность информации.
контрольная работа [24,9 K], добавлен 24.09.2008Задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации. Способы их воздействия на объекты защиты информации. Традиционные и нетрадиционные меры и методы защиты информации. Информационная безопасность предприятия.
курсовая работа [347,8 K], добавлен 08.09.2008Объекты защиты информации. Технические каналы утечки информации. Экранирование электромагнитных волн. Оптоволоконные кабельные системы. Особенности слаботочных линий и сетей как каналов утечки информации. Скрытие информации криптографическим методом.
реферат [937,8 K], добавлен 10.05.2011Актуальность защиты информации от утечек по электромагнитному каналу. Пассивные и активные способы защиты речевой информации в выделенных помещениях. Технология виброакустической маскировки. Проектирование системы защиты информации на предприятии.
презентация [2,0 M], добавлен 17.05.2016Угрозы функционирования беспроводных систем передачи информации с кодовым разделением. Исследование стохастического формирования сигналов и методов защиты информации от радиоэлектронных угроз. Недостатки ансамблей дискретных ортогональных сигналов.
курсовая работа [207,6 K], добавлен 14.11.2014Меры противодействия информационным угрозам. Акустические и виброакустические каналы утечки речевой информации. Разновидности радиолокационной разведки. Классификация методов и средств защиты информации от радиолакационных станций бокового обзора.
презентация [88,0 K], добавлен 28.06.2017Описание выявленных функциональных каналов утечки информации. Методологические подходы к оценке эффективности защиты речевой информации. Расчет возможности существования естественного акустического канала утечки информации по методу Н.Б. Покровского.
курсовая работа [3,6 M], добавлен 06.08.2013Основные задачи физических средств защиты информации, их классификация. Виды объектов охраны. Технические средства и системы охраны. Системы контроля и управления доступом. Методы биометрической идентификации. Радиолучевые и радиоволновые системы.
презентация [1,9 M], добавлен 15.04.2014Создание системы защиты речевой информации на объекте информатизации. Пути блокирования акустического, акусто-радиоэлектронного, акустооптического, радиоэлектронного каналов утечки данных. Технические средства защиты информации от подслушивания и записи.
курсовая работа [2,3 M], добавлен 06.08.2013Информация, подлежащая защите, определение источников информации. Рассмотрение нормативной базы в области построения комплексной системы защиты информации. Анализ информационных потоков и ресурсов. Анализ защищаемого помещения и каналов утечки.
отчет по практике [410,6 K], добавлен 17.10.2013Оценка безопасности информационных систем. Методы и средства построения систем информационной безопасности, их структура и основные элементы, принципы и значение. Криптографические методы защиты информации, виды и основные направления их обеспечения.
курсовая работа [32,9 K], добавлен 12.03.2011Радиоэлектронный канал. Структура радиоэлектронного канала утечки информации. Передатчики функциональных каналов связи. Виды утечки информации. Антенные устройства. Классификация помех. Экранирующие свойства некоторых элементов здания.
доклад [41,7 K], добавлен 20.04.2007Математическая основа построения систем защиты информации в телекоммуникационных системах. Особенности методов криптографии. Принципы, методы и средства реализации защиты данных. Основы ассиметричного и симметричного шифрования-дешифрования информации.
курсовая работа [46,9 K], добавлен 13.12.2013Проектирование помещения для хранения ценной информации. Возможные каналы утечки данных. Характеристики средств защиты информации. Съем информации за счет электромагнитных излучений проводных линий 220 B, выходящих за пределы контролируемой зоны.
курсовая работа [2,9 M], добавлен 14.08.2015Виды угроз в телефонных сетях. Потенциально возможные злоумышленные действия. Факторы, влияющие на требуемый уровень защиты информации. Методы и средства обеспечения безопасности в каналах телефонной связи. Рекомендации по увеличению уровня защищенности.
курсовая работа [1,2 M], добавлен 08.08.2014