Основы инженерно-технической защиты информации

Понятие о конфиденциальной информации, основные свойства. Демаскирующие признаки объектов защиты. Классификация источников и носителей информации. Источники функциональных сигналов, побочные электромагнитные излучения. Виды угроз безопасности информации.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид книга
Язык русский
Дата добавления 08.03.2013
Размер файла 538,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4.4 Радиоэлектронные каналы утечки информации

В радиоэлектронном канале передача носителем информации является электрический ток и электромагнитное поле с частотами колебаний от звукового диапазона до десятков ГГц.

Радиоэлектронный канал относится к наиболее информативным каналам утечки в силу следующих его особенностей:

- независимость функционирования канала от времени суток и года, существенно меньшая зависимость его параметров по сравнению с другими каналами от метеоусловий;

- высокая достоверность добываемой информации, особенно при перехвате ее в функциональных каналах связи (за исключением случаев дезинформации);

- большой объем добываемой информации;

- оперативность получения информации вплоть до реального масштаба времени; - скрытность перехвата сигналов и радиотеплового наблюдения.

В радиоэлектронном канале производится перехват радио и электрических сигналов, радиолокационное и радиотепловое наблюдение. Следовательно, в рамках этого канала утечки добывается семантическая информация, видовые и сигнальные демаскирующие признаки. Радиоэлектронные каналы утечки информации используют радио, радиотехническая, радиолокационная и радиотепловая разведка.

Структура радиоэлектронного канала утечки информации в общем случае включает (см. рис. 4.4) источник сигнала или передатчик, среду распространения электрического тока или электромагнитной волны и приемник сигнала.

Рис. 4.4 Структура радиоэлектронного канала утечки информации

В радиоэлектронных каналах утечки информации источники сигналов могут быть четырех видов:

- передатчики функциональных каналов связи;

- источники опасных сигналов;

- объекты, отражающие электромагнитные волны в радиодиапазоне;

- объекты, излучающие собственные (тепловые) радиоволны.

Средой распространения радиоэлектронного канала утечки информации являются атмосфера, безвоздушное пространство и направляющие - электрические провода различных типов и волноводы. Носитель в виде электрического тока распространяется по проводам, а электромагнитное поле - в атмосфере, в безвоздушном пространстве или по направляющим - волноводам. В приемнике производится выделение (селекция) носителя с интересующей получателя информацией по частоте, усиление выделенного слабого сигнала и съем с него информации - демодуляция.

При перехвате сигналов функциональных каналов связи передатчики этих каналов являются одновременно источниками радиоэлектронных каналов утечки информации. В общем случае направления распространения электромагнитной волны от передатчика к санкционированному получателю и злоумышленнику отличаются. В функциональных каналах связи максимум излучения энергии электромагнитной волны ориентируют в направлении расположения приемника санкционированного получателя. Поэтому мощность источника сигналов радиоэлектронного канала утечки информации, как правило, существенно меньше мощности излучения в функциональном канале связи.

В зависимости от способа перехвата информации различают два вида радиоэлектронного канала утечки информации.

В канале утечки 1_го вида производится перехват информации, передаваемой по функциональному каналу связи. С этой целью приемник сигнала канала утечки информации настраивается на параметры сигнала функционального радиоканала или подключается (контактно или дистанционно) к проводам соответствующего функционального канала. Такой канал утечки информации имеет общий с функциональным каналом источник сигналов - передатчик. Так как места расположения приемников функционального канала и канала утечки информации в общем случае не совпадают, то среды распространения сигналов в них от общего передатчика различные или совпадают, например, до места подключения приемника злоумышленника к проводам телефонной сети.

Радиоэлектронный канал утечки 2_го вида имеет собственный набор элементов: передатчик сигналов, среду распространения и приемник сигналов. Передатчик этого канала утечки информации образуется случайно (без участия источника или получателя информации) или специально устанавливается в помещении злоумышленником. В качестве такого передатчика применяются источники опасных сигналов и закладные устройства. Опасные сигналы, как отмечалось ранее, возникают на базе акустоэлектрических преобразователей, побочных низкочастотных и высокочастотных полей, паразитных связей и наводок в проводах и элементах радиосредств. Опасные сигналы создаются в результате конструктивных недоработок при разработке радиоэлектронного средства, объективных физических процессов в их элементах, изменениях параметров в них из-за старения или нарушений правил эксплуатации, не учете полей вокруг средств или токонесущих проводов при их прокладке в здании и т. д.

Вариантов условий для возникновения опасных сигналов очень много. Например, в усилительных каскадах любого радиоэлектронного средства (радиоприемника, телевизора, радиотелефона и др.) могут возникнуть условия для генерации сигналов на частотах вне звукового диапазона, которые модулируются электрическими сигналами акустоэлектрических преобразователей. Функции акустоэлектрических преобразователей могут выполнять элементы (катушки индуктивности, конденсаторы) генераторов, являющихся функциональными устройствами.

Особенностью передатчиков этого канала является малые амплитуда электрических сигналов - единицы и доли мВ, и мощность радиосигналов, не превышающая десятки мВт (для радиозакладок). В результате этого протяженность таких каналов невелика и составляет десятки и сотни метров. Поэтому для добывания информации с использованием такого канала утечки информации приемник необходимо приблизить к источнику на величину длины канала утечки или установить ретранслятор. Среда распространения и приемники этого вида каналов не отличаются от среды и приемников каналов 1_го вида.

Электрические сигналы как носители информации могут быть аналоговыми или дискретными, их спектр может содержать частоты от десятков до миллиардов Гц.

Наиболее широко применяются сигналы, ширина спектра которых соответствует ширине спектра стандартного телефонного канала. Такие сигналы передают речевую информацию с помощью телефонных аппаратов и распространяются по направляющим линиям связи, связывающих абонентов как внутри предприятия (организации), так внутри населенного пункта, города, страны, земного шара в целом.

В общем случае направляющие линии связи создаются для передачи сигналов в заданном направлении с должным качеством и надежностью. Способы и средства передачи электрических сигналов по проводам рассматриваются прикладной области радиотехники, называемой проводной связью.

Различают воздушные и кабельные проводные линии связи. Воздушные линии связи относятся к симметричным цепям, отличительной особенностью которых является наличие двух проводников с одинаковыми электрическими свойствами.

В зависимости от типа несущих конструкций они делятся на столбовые и стоечные. Столбовыми называются линии, несущими конструкциями являются деревянные или железобетонные опоры. Опорами столбовых линий служат металлические стойки, установленные, например, на крышах зданий. Для изоляции проводов воздушных линий друг от друга и относительно земли их укрепляют на фарфоровых изоляторах.

Более широко применяются кабельные линии связи. Кабельные линии связи получили доминирующее развитие при организации объектовой, городской и междугородной телефонной связи. Они составляют 65% телефонных линий России. Кабели бывают симметричными и коаксиальными.

Если обе жилы цепи, образованного кабелем, выполнены из проволоки одинакового диаметра, имеют изоляцию одинаковой конструкции и расположены так, что между ними можно провести плоскость симметрии, то кабель называется симметричным. Если же оба проводника цепи выполнены в форме соосных цилиндров, в поперечном сечении имеют форму концентрических окружностей, то такой кабель - коаксиальный.

Симметричные кабели представляют собой проводники (жилы) с нанесенными на них одним или несколькими слоями изолятора из диэлектрических материалов. Несколько жил, объединенных единым изолятором в виде ленты, образуют ленточные кабели или полосковые линии. Известные конструкции симметричных кабелей содержат от 1х2 до 2400х2 жил под общей защитной оболочкой.

В коаксиальном кабеле один проводник концентрически расположен внутри другого проводника, имеющего форму полого цилиндра. Внутренний проводник изолируется от внешнего с помощью различных изоляционных материалов и конструкций. Для изоляции коаксиальных пар кабеля применяется сплошной и пористый полиэтилен, изоляция в виде шайб, в последовательно соединенных баллончиков, напоминающий разрез бамбука и др. Для обеспечения гибкости кабеля внешний проводник выполняется из медной или железной сетки, а для защиты от внешних воздействий он покрывается слоем изолятора (полихлорвинила).

Основными параметрами проводных линий связи являются ширина пропускаемого ими спектра частот и собственное затухания

Zc = 10 lgPвх / Pвых

где Pвх и Pвых - мощность сигнала на входе и выходе цепи соответственно.

Если сопротивление проводников на низких частотах (в диапазоне 0-100 кГц) определяется удельным сопротивлением материала и площадью поперечного сечения проводника, то на более высоких частотах начинается сказываться влияние поверхностного эффекта. Сущность его заключается в том, что переменное магнитное поле, возникающее при протекании по проводнику тока, создает внутри проводника вихревые токи, В результате этого плотность основного тока перераспределяется по сечению проводника (жилы): уменьшается в центре и возрастает на периферии. Глубина проникновения (в мм) тока в медную жилу, где f-частота колебаний в Гц. На частоте f=60 кГц глубина проникновения составляет приблизительно 0.3 мм, а на частоте 250 кГц - на порядок ниже, всего около 0.03 мм. Следовательно, ток с этой частотой распространяется по гипотетической тонкой медной трубке с существенно меньшей площадью сечения и, соответственно, большим сопротивлением.

На величину затухания линии влияют также электрические характеристики диэлектрика, наносимого на металлические провода. За счет их удается расширить полосу пропускания линии. При передаче по воздушным линиям со стальными проводами ширина пропускания составляет около 25 кГц, с медными проводами - до 150 кГц, по симметричным кабелям - до 600 кГц, Расширению спектра частот, передаваемых по симметричным цепям, препятствуют возрастающие наводки. Например, удовлетворительным для телефонных линий считается значение переходного затухание порядка 60-70 дБ.

В коаксиальном кабеле электрическое поле замыкается между внутренним и внешним проводниками, поэтому внешнее электрическое поле отсутствует. Кабель не имеет также внешнего магнитного и электромагнитного полей, что и обусловливает его основные преимущества перед симметричными. Вследствие поверхностного эффекта ток при повышении частоты оттесняется во внутреннем проводнике к его наружной поверхности, а во внешнем, наоборот, к внутренней. Стандартная коаксиальная пара 1.2/4.4 (с диаметрами внутреннего и внешнего проводников - 1.2 и 4.4. мм соответственно) обеспечивают передачу 900-960 телефонных каналов на расстояние до 9 км или 3600 каналов на расстояние 1.5км. При увеличении диаметров проводников до 2.6/9/5 число телефонных каналов для длины участка 1.5 км возрастает до 10800.Ширина частотного диапазона такого кабеля достигает 60 МГц. Повышение частотного диапазона потребует дальнейшего увеличения диаметров проводников коаксиального кабеля.

Электромагнитная волна представляет форму существования электромагнитного поля в виде изменяющихся во времени по синусоидальному закону значений напряженности электрического и магнитного полей.

Электромагнитная волна как носитель информации в радиоэлектронном канале утечки возникает при протекании по проводам электрического тока переменной частоты и распространяются от источника ненаправленного излучения радиально во все стороны с конечной скоростью, в атмосфере несколько меньшей скорости света. Векторы напряженности электрического и магнитного полей взаимноперпендикулярны и перпендикулярны направлению распространения электромагнитной волны. Электромагнитная волна характеризуется частотой колебания, мощностью и поляризацией. По частоте электромагнитные волны классифицируются в соответствии с Регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл. 4.3).

Таблица 4.3

Диапазон длин волн

Наименование волн

Обозначение и наименование частот

Диапазон частот

> 100 км

-

ELF-чрезвычайно низкие

Доли Гц-3 кГц

10-100 км

Мириаметровые

VLF(ОНЧ)-очень низкие

3-30 кГц

1-10 км

Километровые (длинные)

LF(НЧ)-низкие

30-300 кГц

100-1000 м

Гектаметровые (средние)

MF(СЧ)-средние

300-3000 кГц

10-100 м

Декаметровые (короткие)

HF(ВЧ)-высокие

3-30 МГц

1-10 м

Метровые

(ОВЧ)-очень высокие

30-300 МГц

10-100 см

Дециметровые

UHF(УВЧ)-ультравысокие

300-3000 МГц

1-10 см

Сантиметровые

SHF(СВЧ)-сверхвысокие

3-30 ГГц

1-10 мм

Миллиметровые

EHF(КВЧ)-крайне высокие

30-300 ГГц

0.1-1 мм

Децимиллиметровые

ГВЧ-гипервысокие

300-3000 ГГц

Поляризация определяет направление вектора напряженности электрического поля. Если вектор электрического поля лежит в вертикальной плоскости, то поляризация вертикальная, когда он находится в горизонтальной плоскости, то - горизонтальная. Промежуточное положение характеризуется углом поляризации между плоскостями поляризации и распространения. Плоскостью поляризации называется плоскость, в которой находятся вектора электрического поля и вектор распространения электромагнитной волны. Плоскость распространения имеет вертикальное расположение и проходит через вектор распространения электромагнитной волны.

Мощность излучения электромагнитного поля тем выше, чем ближе частота колебаний в распределенном контуре, образованного индуктивностью проводников и распределенной емкостью между ними и землей, к частоте сигнала. Устройства, в которых обеспечивается эффективное преобразование энергии электрических сигналов в электромагнитную волну, называются антеннами.

Антенные устройства являются неотъемлемой частью передающих и приемных радиоэлектронных средств. Причем их конструкция остается неизменными в режимах передачи и приема, за исключением тех случаях, когда излучается большая мощность. В этом случае приходится принимать дополнительные меры по предотвращению электрического пробоя в высоковольтных цепях передающей антенны, необходимость в которых отсутствует для приемной. В общем случае принцип обратимости позволяет передающую антенну использовать в качестве приемной и наоборот.

Характер поляризации электромагнитной волны зависит от конструкции и расположения излучающих элементов антенны. Несоответствие поляризации электромагнитной волны пространственной ориентации элементов приемной антенны, в которых наводятся электрические заряды, приводит к уменьшению величины этих эарядов. Радиоволны в зависимости от условий распространения делятся на земные (поверхностные), прямые, тропосферные и ионосферные (пространственные).

Земными называются радиоволны, которые распространяются в непосредственной близости от поверхности Земли и частично огибают ее поверхность благодаря явлению дифракции. Прямыми названы радиоволны, распространяющиеся прямолинейно в атмосфере и космосе.

Радиоволны, которые распространяются в тропосфере - приземной неоднородной области атмосферы не выше 10-12 км от поверхности Земли, называются тропосферными. В тропосфере происходит рассеивание, а также частичное искривление траектории и отражение радиоволн от неоднородностей тропосферы. Ионосферными называют радиоволны, распространяющиеся в результате последовательного отражения от ионосферы и земной поверхности. Ионосферу образуют ионизированные под действием ультрафиолетового излучения Солнца верхние слои атмосферы. Концентрация свободных электронов в ионосфере меняется по высоте. В зависимости от концентрации свободных электронов и соответственно положительно заряженных ионов ионосферу условно делят на слои - D, E, F1 и F2. Наименьшая концентрация имеет место в слое D, наибольшая - в слое F2. Состояние ионосферы непрырывно меняется, оно зависит от времени суток, времени года и солнечной активности, которая имеет 11_летний цикл изменения.

Слой D располагается до высоты примерно 60 км. В ночные часы слой D преобладает рекомбинация электронов и ионизация уменьшается или исчезает.

Слой Е расположен на высоте 100-120 км и менее зависит от времени суток.

Слои F1 и F2 занимают области на высоте примерно 160-400 км, причем ночью слой F1 исчезает.

В ионосфере происходит преломление, отражение и поглощение радиоволн. Преломление радиоволн обусловлено изменениями диэлектрической проницаемости, а, следовательно, показателя преломления по высоте слоев. По мере распространения радиоволн от наземного источника через более высоко расположенные слои показатель преломления уменьшается, траектория электромагнитной волны искривляется и при определенных условиях волна возвращается на Землю.

Отражение радиоволн на той или иной высоте ионосферы зависит от частоты радиоволн и угла их падения на слой. При прочих равных условиях чем больше угол падения волны, отсчитываемый от вертикальной линии в точке падения, тем более полога траектория луча в ионосфере и тем меньшая электронная концентрация потребуется для возвращения луча на Землю. Минимальное значение угла падения, при котором еще возможно отражение радиоволн от ионосферы называется критическим. При угле падения, меньшем критического, радиоволны проходят через ионосферу не отразившись.

Так как коэффициент преломления уменьшается с увеличением частоты, то длинные волны преломляются сильнее, чем короткие, а для УКВ преломление недостаточно для возвращения волн на Землю и они уходят в космическое пространство. Наивысшая частота, при которой электромагнитная волна еще может возвратиться на Землю, называется максимально применимой частотой. Но значение этой частоты неоднозначно вследствие зависимости ее от угла падения. Поэтому вводят понятие критической частоты, которая является максимально применимой частотой при угле падения 90 градусов. Из определения следует, что эта частота представляет собой низшую из всех максимально применимых частот.

За счет многократного переотражения радиоволн от слоев ионосферы и земной поверхности электромагнитная волна может распространяться на большие расстояния вплоть до огибания Земли. Но при переотражениях возникают зоны молчания, куда не попадают отраженные от ионосферы электромагнитные лучи. В зонах приема происходит интерференция волн, прошедших разный путь от излучателя и имеющих, следовательно, различные фазы. Случайный характер изменения фаз приводит к случайному изменению амплитуды результирующей волны, которое называется замиранием или федингом.

Степень поглощения радиоволн в атмосфере увеличивается при повышении плотности ионизации, частоты колебания и пути, проходимой радиоволной в ионосфере. Зимой, когда концентрация электронов в связи с понижением солнечной радиации уменьшается, поглощение радиоволн снижается и дальность распространения увеличивается. В зависимости от частоты колебания радиоволн характеристики среды распространения имеют следующие особенности.

1. Километровые (длинные) волны обладают хорошей дифракцией, сравнительно слабо поглощаются земной поверхностью и могут распространяться поверхностным лучом на расстояние до 3000 км. В ионосфере они затухают сильнее, но могут отражаться от слоя Е и распространяться пространственным лучом на большее расстояние. К преимуществам электромагнитной волны в этом диапазоне как носителя информации относится, кроме большой дальности распространения, сравнительное постоянство напряженности поля в пункте приема в течение суток и года, что обеспечивает устойчивость связи. Эти волны применяются также для связи под водой, где плохо распространяются волны более высоких частот.

Недостатком длинноволновой радиолинии является плохая излучательная способность антенн, их большие размеры, достигающие несколько сотен метров, высокий уровень атмосферных и промышленных помех и малая пропускная способность.

2. Гектометровые (средние) волны могут распространяться поверхностным и пространственным лучами. Энергия средних волн поглощаются земной поверхностью сильнее, чем энергия длинноволновых, поэтому дальность связи поверхностным лучем составляет примерно 500 - 1500 км. Однако для средних волн создаются более благоприятные условия распространения пространственным лучом и прием сигналов возможен до 4000 км.

Условия распространения средних волн существенно изменяются в зависимости от времени суток. В ночные часы за счет отражения от ионосферы дальность распространения выше, чем в дневные, когда преобладают поверхностные волны. В этом диапазоне наблюдаются замирания в результате интерференции земных и поверхностных волн или пространственных волн с различными путями распространения, высокий уровень атмосферных и промышленных помех. Антенны в среднем диапазоне по устройству в основном такие же, как и антенны в длинноволновом, но в силу большей близости их геометрических размеров к длинам волн имеют больший коэффициент усиления. Радиоволны в этом диапазоне используются для радиовещания и связи, на флоте и в авиации.

3. При распространении коротких волн дальность поверхностного луча невелика из-за резкого возрастания поглощения энергии в Земле. Поле в точке приема создается в основном за счет отражения от различных слоев ионосферы. В результате флюктуации плотности и высоты слоев и взаимодействия лучей на коротких волнах, как правило, наблюдаются глубокие замирания и даже полное пропадание связи в течение нескольких десятков секунд.

Для обеспечения круглосуточной связи в условиях суточного изменения ионосферы необходимо производить периодическую смену частот. Определение оптимальных частот производится специальными службами наблюдения за ионосферой по результатам вертикального и вертикально-наклонного зондирования ее радиоимпульсами. Наиболее благоприятные условия прохождения волн днем чаще складываются на волнах в интервале 10-25 м, а ночью - 35-70 м.

В диапазоне коротких волн на напряженность поля и характер ее изменения в точке приема влияют другие явления, такие как «вспышки» на Солнце, рассеяние волн на мелких неоднородностях ионосферы, повороте плоскости поляризации.

Достоинством коротких волн является возможность обеспечения связи на очень большие расстояния при сравнительно малых мощности передатчика и габаритах антенны, а также малое влияние атмосферных и промышленных помех. Они применяются для связи, радионавигации, радиовещании и радиолюбителями.

4. В диапазоне ультракоротких (метровых) и более коротких волн практически отсутствует дифракция. Поэтому они распространяются в пределах прямой видимости, в том числе отражаясь от земли и тропосферы с потерей части энергии на поглощение. Радиоволны в этих диапазонах являются основными носителями информации в сетях телекоммуникаций человечества в силу следующих особенностей:

- имеют огромный частотный диапазон (см. табл. 4.3), обеспечивающий возможность передачи огромного объема информации, в том числе путем использования широкополосных каналов;

- низкий уровень атмосферных и промышленных помех, позволяющих использовать приемные устройства с высокой чувствительностью, что повышает дальность приема;

- слабое влияние станционных помех на работу других радиосистем вследствие ограниченности их радиуса видимости;

- возможность создания небольших антенн с узкой диаграммой направленности, позволяющих осуществлять радиосвязь при относительно малой мощности передающих устройств. Основным недостатком радиоволн рассматриваемого диапазона - малая дальность распространения и существенно большее поглощение их природными осадками (дождем, туманом, снегом, градом), особенно в миллиметровом и более коротких диапазонах.

Результаты сравнительного анализа характеристик радиоволн различных диапазонов приведены в табл. 4.4.

Таблица 4.4

Для повышения дальности связи применяют следующие методы:

- подъем передающей или приемной антенн с помощью инженерных конструкций (матч, башен) и летно-подъемных аппаратов (аэростатов);

- ретрансляция радиосигналов с помощью наземных и космических ретрансляторов;

- использование тропосферных волн в УКВ диапазоне.

Передающие антенны на башнях устанавливаются для постоянного обеспечения связи, радио и телевизионного вещания в городах, районах и областях. Для периодического и эпизодического приема сигналов от отдаленных источников в качестве носителей приемников сигналов используют привязные аэростаты. Информация с них на землю передается по кабелю или радиоканалу.

Для передачи информации в УКВ и СВЧ диапазонах частот на большие расстояния широко применяются ретрансляторы. С помощью наземных ретрансляторов создаются радиорелейные линии (РРЛ), представляющие собой цепочку приемопередающих станций, каждая из которых устанавливается в пределах прямой видимости соседних. Все станции РРЛ разделяются на оконечные, промежуточные и узловые. Оконечные радиорелейные станции располагаются в начале и конце линии. На этих станциях вводится и выделяется информация, обеспечивается распределение информации между потребителями. Промежуточные станции предназначены для ретрансляции сигналов. Узловые радиорелейные станции - это промежуточные станции, на которых происходит разветвление принимаемых сигналов по различным направлениям, выделение части принимаемых передаваемой информации (например, программы телевидения) и введение новой информации.

Диапазон частот, предназначенных для передачи информации одного вида, объединяются в радиочастотный ствол: телевизионный, телефонный и т. д. Существующие отечественные РРЛ могут содержать до 8 стволов, а ствол, например, телефонный - до 1920 телефонных каналов. Для каждого ствола с целью исключения взаимного влияния выделяются две рабочие частоты - для передачи и приема. Принятые каждой станцией сигналы на частоте приема усиливаются и преобразуются на частоте передачи и излучаются в направлении следующей станции. Около 30% телефонных каналов РФ обеспечивает радиорелейная связь.

Разновидностью радиорелейных линий связи являются тропосферные линии связи, использующие явление рассеяние ультракоротких радиоволн в неоднородностях тропосферы. К таким неоднородностям относятся области тропосферы с резко изменившимися значениями диэлектрической проницаемости. Неоднородности вызываются неравномерностью состояний различных точек тропосферы, непрерывным перемешиванием и смещением воздушных масс в результате неравномерного разогрева Солнцем различных участков поверхности Земли и слоев тропосферы. Для устойчивой тропосферной радиосвязи применяют антенны с высоким коэффициентом усиления (40-50 дБ), мощные передатчики (1-10 кВт) и высокочувствительные приемники. Тропосферные линий связи чаще всего имеют протяженность 140-500 км.

Ретрансляторы, устанавливаемые на искусственных спутниках Земли (ИСЗ), наиболее широко используются для обмена информацией между абонентами, удаленных друг от друга на тысячи километров. Они является элементами (звеньями) спутниковых линий связи, которые содержат также оконечные наземные передающие и приемные станции. Естественно, что связь возможно лишь в том случае, если спутники находятся в зоне видимости обеих земных станций.

Для ретрансляции применяются в основном ИСЗ на геостационарной (стационарной) и эллиптической орбитах, а также менее дорогие низкоорбитальные КА.

При распространении радиоволн в городе характер их распространения существенно искажается по сравнению с распространением на открытых пространствах за счет многочисленных переотражений от стен зданий и помещений и затухания в их них. Эти обстоятельства необходимо учитывать при оценке пространственной ориентации и возможностей каналов утечки информации. Экранирующие свойства некоторых элементов здания приведены в табл. 4.5. [12].

Таблица 4.5

Тип здания

Ослабление, дБ на частоте

100 МГц

500 МГц

1 ГГц

Деревянное здание с толщиной стен 20 см

5-7

7-9

9-11

Кирпичное здание с толщиной стен 1.5 кирпича

13-15

5-17

16-19

Железобетонное здание с ячейкой арматуры 15х15 см и толщиной 160 мм

20-25

18-19

15-17

Указанные в таблице данные получены для стен, 30 процентов площади которых занимают оконные проемы с обычным стеклом. Если оконные проемы закрыты металлической решеткой с ячейкой 5 см, то экранирование увеличивается на 30-40 %.

Дальность распространения электромагнитной волны из здания с толстой кирпичной или железобетонной стенами уменьшается по отношению к зкранированию стен деревянного здания в 2-3 раза в зависимости от частотного диапазона.

Многообразие природных и искусственных источников излучений в радиодиапазоне порождает проблему электромагнитной совместимости носителя информации с другими излучениями-носителями иной информации, которые представляют собой помехи по отношению к рассматриваемому радиосигналу. Классификация помех представлена на рис. 4.5.

Рис. 4.5 Классификация помех в каналах утечки

Природные или естественные помехи вызываются следующими природными явлениями:

- электрическими грозовыми разрядами, как правило, на частотах менее 30 Мгц;

- перемещением электрически заряженных частиц облаков, дождя, снега и др.,

- возникновением резонансных электрических колебаний между землей и ионосферой;

- тепловым излучением Земли и зданий в диапазоне более 30-40 МГц;

- солнечной активностью в основном на частотах более 20 МГц;

- электромагнитными излучениями неба, Луны, других планет (на частотах более 1 МГц);

- тепловыми шумами в элементах радиоприемниках.

В городах к естественным помехам добавляются промышленные помехи, которые по характеру спектра излучений делятся на флюктуационные, гармонические и импульсные.

Флюктуационные помехи имеют распределенный по частоте спектр и создаются коронами высоковольтных электропередач, лампами дневного света, неоновой рекламой, электросваркой и другими электрическими процессами. Спектр промышленных гармонических помех локализован на частотах излучений, возникающих при нелинейных преобразованиях в промышленных установках. Импульсные помехи, возникающие, прежде всего, при замыкании и размыкании электрических контактов выключателей, характеризуются сосредоточением энергии электромагнитных излучений в короткий промежуток времени.

Так как электромагнитные волны в радиодиапазоне являются основными носителями информации, то с целью нарушения управления и связи в ходе радиоэлектронной борьбы созданы разнообразные средства генерирования помех.

По эффекту воздействия радиоэлектронные помехи делятся на маскирующие и имитирующие. Маскирующие помехи создают помеховый фон, на котором затрудняется или исключается обнаружение и распознавание полезных сигналов. Имитирующие помехи по структуре близки к полезным сигналам и при приеме могут ввести в заблуждение получателя.

По соотношению спектра помех и полезных сигналов помехи подразделяются на заградительные и прицельные. Заградительные помехи имеют ширину спектра частот, значительно превышающую ширину спектра полезного сигнала, что позволяет подавлять сигнал без точной настройки на его частоту. Прицельная помеха имеет ширину спектра, соизмеримую (равную или превышающую в 1.5-2 раза) с шириной спектра сигнала, и создает высокий уровень спектральной плотности мощности в полосе частот сигнала при невысокой средней мощности передатчика помех.

По временной структуре излучения помехи бывают непрерывные и импульсные (в виде немодулированных или модулированных радиоимпульсов).

4.5 Акустические каналы утечки информации

В акустическом канале утечки носителем информации от источника к несанкционированному получателю является акустическая волна в атмосфере, воде и твердой среде. Источниками ее могут быть:

- говорящий человек, речь которого подслушивается в реальном масштабе времени или озвучивается звуковоспроизводящим устройством;

- механические узлы механизмов и машин, которые при работе издают акустические волны.

Структура этого канала утечки информации принципиально не отличается от структуры рассмотренных каналов утечки информации и приведена на рис 4.6.

Рис. 4.6 Структура акустического канала утечки информации

Источниками акустического сигнала могут быть люди, звучащие механические, электрические или электронные устройства, приборы и средства, воспроизводящие ранее записанные звуки. Источники сигналов характеризуются диапазоном частот, мощностью излучения в Вт, интенсивностью излучения в Вт/м2 - мощностью акустической волны, прошедшей через перпендикулярную поверхность площадью 1 м2 , громкостью звука в дБ, измеряемой как десятичный логарифм отношения интенсивности звука к интенсивности звука порога слышимости. Порог слышимости соответствует мощности звука 10-12 Вт или звуковому давлению на барабанную перепонку уха человека 2.10 - 5 Па. Уровни громкости различных звуков иллюстрируются данными табл. 4.6.

Таблица 4.6

Оценка громкости звука на слух

Уровень звука, дБ

Источник звука

Очень тихий

0

10

Усредненный порог чувствительности уха Тихий шепот (1.5 м)

Тихий

20

30

40

Тиканье настенных механических часов Шаги по мягкому ковру (3-4 м) Тихий разговор, шум в читальном зале

Умеренный

50

60

Шум в жилом помещении, легковой автомобиль (10-15 м) Улица средней шумности

Громкий

70

80

Спокойный разговор (1 м), зал большого магазина Радиоприемник громко (2 м), крик

Очень громкий

90

100

Шумная улица, гудок автомобиля

Симфонический оркестр, автомобильная сирена

Оглушительный

110

120

130

Пневномолот, очень шумный цех

Гром над головой

Звук воспринимается как боль

Среда распространения носителя информации от источника к приемнику может быть однородной (воздух, вода) и неоднородной, образованной последовательными участками различных физических сред: воздуха, древесины дверей, стекол окон, бетона или кирпича стен, различными породами земной поверхности и т. д. Но и в однородной среде ее параметры не постоянные, а могут существенно отличаться в разных точках пространства.

Акустические волны как носители информации характеризуются следующими показателями и свойствами:

- скоростью распространения носителя;

- величиной (коэффициентом) затухания или поглощения;

- условиями распространения акустической волны (коэффициентом отражения от границ различных сред, дифракцией).

Теоретически скорость звука определяется формулой Лапласа:

где К_модуль всесторонней упругости (когда сжатие производится без притока и отдачи тепла) вещества среды распространения;

_плотность вещества среды распространения.

Для газов модуль всесторонней упругости равен их давлению. При сжатии газа увеличение давления сопровождается пропорциональным увеличением его плотности. Поэтому скорость звука в газе не зависит от его плотности, а пропорциональна корню квадратному из температуры газа, значению универсальной газовой постоянной, отношению величин теплоемкостей газа при постоянном объеме и давлении.

Скорость звука в морской воде зависит от трех основных параметров: температуры t, солености s и давления, которое определяется глубиной h. Для определения скорости звука в морской воде используется формула Лероя, которая имеет вид:

v =1492.2+3(t _10)- 6х10-3(t _10)2 - 4 х10-2 (t _18)2+1.2(s _35) - 102 (t _18)(s _35)+h/61,

где v выражено в м/c, t _ в градусах Цельсия, s _ в промилях, h _ в метрах.

Скорость распространения звука в твердых телах определяется в основном их плотностью и упругостью.

Значение скорости распространения звука в некоторых типичных средах приведены в табл. 4.7.

Таблица 4.7

Среда распространения

Скорость, м/с

Воздух при температуре:

0о С

332

+20о С

344

Вода морская

1440-1540

Железо

5170

Стекло

3500-5300

Дерево

4000-5000

Горные породы

5000-8000

При распространении звуковых колебаний движение частиц среды вызывает давление во фронте волны. Фронтом звуковой волны называется поверхность, соединяющей точки поля с одинаковой фазой колебания. По мере распространения в любой среде звуковые волны затухают. Затухание звуковых волн в морской воде больше, чем в дистиллированной и меньше (почти в 1000 раз), чем в воздухе. При этом величина затухания зависит от длины акустической волны. С увеличением частоты величина затухания быстро возрастает, поэтому при постоянной мощности излучения дальность распространения с ростом частоты падает.

При распространении акустической волны в среде ее траектория изменяется в результате отражений и дифракции. На границе сред с разной плотностью акустическая волна частично переходит из одной среды в другую, частично отражается от границы между двумя средами. Доля проникшего или отраженного звука зависит от соотношения значений акустических сопротивлений сред, равных произведению удельной плотности вещества на скорость звука в нем v. Коэффициент проникновения звука (в иную среду при существенном различии акустических сопротивлений сред оценивается по приближенной формуле Рэлея: 4сv11/ v22. В соответствии с ней при нормальном падении звука из воздуха на воду, бетон, дерево в эти среды проникает не более тысячной доли интенсивности звука. Отражение звука может происходить от поверхности раздела слоев воздуха и воды с разными значениями акустического сопротивления вследствие неодинаковой температуры и плотности. Этим объясняется значительные колебания (в 10 и более раз) дальности распространения звука в атмосфере. Заметное влияние на характер распространения акустической волны в атмосфере может оказать ветер. При определенных условиях неоднородности создают условия для образования акустических (звуковых) каналов, по которым акустическая волна может распространяться на значительно большие расстояния, как свет по оптическим светопроводам. Акустические каналы чаще всего образуются в воде морей и океанов на определенной глубине, на которой в результате влияния двух противоположных природных факторов (плотности воды и ее температуры) минимизируется скорость распространения акустической волны.

Скорость распространения акустической волны в воде, с одной стороны, увеличивается с глубиной из-за повышения плотности воды, но, с другой стороны, уменьшается при понижении ее температуры в более глубоких слоях, особенно в летнее время. В результате этих двух противоположных факторов влияния на определенной глубине, зависящей от температуры над поверхностью воды и ее солености, образуются области с минимумом скорости распространения акустической волны. Акустическая волна, попадающая в эту область, распространяется внутри ее с соответствующим для параметров воды затуханием. При отклонении траектории распространения волна, преломляясь в неоднородностях области, возвращается в канал.

В акустическом канале звуковая волна от подводных взрывов может распространяться на расстояние в сотни и тысячи км.

При каждом отражении часть энергии звука теряется вследствие поглощения. Отношение поглощенной энергии звука к падающей называется коэффициентом поглощения. Коэффициенты поглощения звука некоторых материалов приведены в табл. 4.8.

Таблица 4.8

Материалы

Материалы

Оштукатуренная кирпичная стена

0.025

Линолеум

0.12

Бетонная стена

0.015

Ковер

0.20

Стекло

0.027

Паркет

0.06

За счет многократных переотражений акустической волны в замкнутой среде распространения возникает явление послезвучания - реверберация. Величина реверберации оценивается временем Tр после выключения источника звука, в течение которого энергия звука уменьшается на 60 дБ. Вследствие многократных переотражений на мембрану микрофона в помещении оказывают давление акустические волны, распространяющиеся разными путями от источника звука. Интерференция волн с разными фазами могут при достаточно большом времени реверберации приводить к ухудшению соотношения сигнал/помеха в точке приема и уменьшению разборчивости речи. Чем больше размеры помещения и меньше коэффициент поглощения ограждающих поверхностей, тем больше время реверберации. При большом времени реверберации помещение кажется гулким. Однако при очень малом Тр на микрофон воздействует, в основном, быстрозатухающая прямая волна, слышимость речи при удалении от источника резко уменьшается, тембр звуков речи за счет большего затухания в среде распространения высоких частот обедняется. Время реверберации менее 0.85 с незаметно для слуха. Для большинства помещений организаций их объемы и акустическая отделка время реверберации мало (0.2-0.6) с и его можно не учитывать при оценке разборчивости.

Для концертных залов, имеющих существенно большие размеры, время реверберации определяет их акустику. Установлено, что в малых помещениях объемом V до 350 м2 оптимальной является реверберация со временем до 1.06 сек. При увеличении объема помещения время реверберации пропорционально повышается и принимает для V=27000 м3 значение около 2 сек.

Время реверберации в помещении объемом V вычисляется по формуле Эйринга [76]:

Тр= - 0.07V/Slg(1-ch),

где S - суммарная площадь всех поверхностей помещения;

ср = - средний коэффициент звукопоглощения в помещении;

Sк и к - площади и коэффициенты поглощения ограждающих поверхностей соответственно.

При распространении структурного звука в конструкциях зданий, особенно, в трубопроводах возникают реверберационные искажения, снижающие разборчивость речи на 15-20%.

Акустическая волна в отличие от электромагнитной в значительно большей степени поглощается и в среде распространения. Поэтому дальность акустического канала утечки информации, в особенности от такого маломощного источника как человек, мала и, как правило, не обеспечивает возможность ее съема за пределами территории предприятия. Речь человека при обычной громкости может быть непосредственно подслушана злоумышленником на удалении единиц и в редких случаях - десятков метров, что, естественно, крайне мало.

Ухудщение разборчивости речи при прохождении звука через различнык строительные конструкции люстрируются данными в табл. 4.9 [13].

Таблица 4.9

Тип конструкции

Ожидаемая разборчивость слогов, %

Кирпичная стена (1 кирпич)

25/0

Гипсолитовая стена

90/0

Деревянная стена

99/63

Пластиковая стена

99/55

Дверь обычная филенчатая

100/73

Дверь двойная

95/36

Окно с одним стеклом 3 мм

90/33

Окно с одним стеклом 6 мм

87/15

Оконный блок 2х3 мм

82/0

Вентиляционный канал 20 м

90/2

Оконный кондиционер

95/63

Бетонная стена

88/0

Перегородка внутренняя

96/80

Трубопровод (в соседнем помещении)

95/55

Трубопровод (через этаж)

87/36

Примечание: в числителе указаны значения разборчивости речи при малом уровне акустических шумов, в знаменателе - при сильном.

Акустические шумы и помехи вызываются многочисленными источниками - автомобильным транспортом, ветром, техническими средствами в помещениях, разговорами в помещениях и т. п. Уровни шумов изменяются в течение суток, дней недели, зависят от погодных условий. Ночью и в выходные дни помехи меньше. Средние значения акустических шумов на улице составляют 60-75 дБ в зависимости от интенсивности движения автомашин в районе расположения здания. Уровень шумов в помещениях по существующим нормам не должен превышать 50 дБ. В трубопроводах отопления помехи изменяются от 10-15 дБ в отсутствие воды и 15-20 дБ при ее наличии.

При утечке акустической информации через вентиляционные воздухопроводы они ослабевают из-за изменения их сечения, поглощений в изгибах. Затухание в прямых металлических воздуховодах составляет 0.15 дБ/м, в неметаллических - 0.2-0.3 дБ/м. При изгибах затухание достигает 3-7 дБ (на один изгиб), при изменениях сечения - 1-3 дБ. Ослабление сигнала на выходе из воздуховода помещения составляет 10-16 дБ.

Поиски путей повышения дальности добывания речевой информации привели к появлению составных каналов утечки информации. Применяются два вида составного канала утечки информации: акусто-радиоэлектронной и акусто-оптический.

Акусто-радиоэлектронный канал утечки информации состоит из двух последовательно сопряженных каналов: акустического и радиоэлектронного каналов утечки информации. Приемником акустического канала является функциональный или случайно образованный акустоэлектрический преобразователь. Электрический сигнал с его выхода поступает на вход радиоэлектронного канала утечки информации - источника электрических или радиосигналов.

Структура акусто-радиоэлектронного канала утечки информации приведена на рис. 4.7.

Рис. 4.7 Структура акусто-радиоэлектронного канала утечки информации

Пара “акустоэлектрический преобразователь-источник сигнала” образуют источник опасных сигналов или реализуются в закладном устройстве, размещаемом злоумышленником в помещении с конфиденциальной информацией. Закладные устройства создаются специально для подслушивания речевой информации и обеспечивают повышения дальности составного акустического канала до единиц км и возможность съема информации злоумышленником за пределами контролируемой зоны.

Закладное устройство как ретранслятор является более надежным элементом канала утечки, чем источник опасного сигнала, так как процесс образования канала утечки информации на основе закладки управляем злоумышленником.

Другой способ повышения дальности акустического канала утечки информации реализуется путем создания составного акусто-оптического канала утечки информации. Схема его указана на рис. 4.8.

Рим. 4.8 Структурная схема акусто-оптического канала утечки информации

Составной акусто-оптический канал утечки информации образуется путем съема информации с плоской поверхности, колеблющейся под действием акустической волны с информацией, лазерным лучем в ИК-диапазоне. В качестве такой поверхности используется внешнее стекло закрытого окна в помещении, в которой циркулирует секретная (конфиденциальная) информация. Теоретически рассматривается возможность съема информации с внешней стороны стены помещения, но данных о реализации подобной идеи нет.

С целью образования оптического канала стекло облучается лазерным лучем с внешней стороны, например, из окна противоположного дома. Луч лазера в ИК-диапазоне для посторонних лиц и находящихся в помещении невидим. В месте соприкосновения лазерного луча со стеклом происходит акустооптическое преобразование, т. е. модуляция лазерного луча акустическими сигналами от разговаривающихся в помещении людей.

Модулированный лазерный луч принимается оптическим приемником аппаратуры лазерного подслушивания, преобразуется в электрический сигнал, усиливается, фильтруется, демодулируется и подается в головные телефоны для прослушивания оператором или в аудимагнитофон для консервации.

4.6 Материально-вещественные каналы утечки информации

Особенность этого канала вызвана спецификой источников и носителей информации cравнению с другими каналами. Источниками и носителями информации в нем являются субъекты (люди) и материальные объекты (макро и микрочастицы), которые имеют четкие пространственные границы локализации, за исключением (_излучений радиоактивных веществ. Утечка информации в этих каналах сопровождается физическим перемещением людей и материальных тел с информацией за пределами контролируемой зоны. Для более четкого описания рассматриваемого канала целесообразно уточнить состав источников и носителей информации.

Основными источниками материально-вещественного канала утечки информации являются следующие:

- черновики различных документов и макеты материалов, узлов, блоков, устройств, разрабатываемых в ходе научно-исследовательских и опытно-конструкторских работ, ведущихся на предприятии (организации);

- отходы делопроизводства и издательской деятельности на предприятии (организации), в том числе использованная копировальная бумага, забракованные листы при оформлении документов и их размножении;

- нечитаемые дискеты ПЭВМ из-за их физических дефектов и искажений загрузочных или других кодов;

- бракованная продукция и ее элементы;

- отходы производства в газообразном, жидком и твердом виде.

Перенос информации в этом канале за пределы контролируемой зоны возможен следующими субъектами и объектами:

- сотрудниками организации и предприятия;

- воздушными массами атмосферы;

- жидкой средой;

- излучениями радиоактивных веществ.

Эти носители могут переносить все виды информации: семантическую и признаковую, а также демаскирующие вещества.

Семантическая информация содержится в черновиках документов, схем, чертежей; информация о видовых и сигнальных демаскирующих признаках - в бракованных узлах и деталях, в характеристиках радиоактивных излучений и т. д.; демаскирующие - в газообразных, жидких и твердых отходах производства.

Структура материально-вещественного канала утечки информации приведена на рис. 4.9

Рис. 4.9 Структура материально-вещественного канала утечки информации

Приемники информации этого канала достаточно разнообразны. Это эксперты зарубежной разведки или конкурента, средства для физического и химического анализа, средства вычислительной техники, приемники радиоактивных излучений и др.

Потери носителей с ценной информацией возможны при отсутствии на предприятии четкой системы учета носителей с закрытой информацией. Например, испорченный машинисткой лист отчета может быть выброшен ею в корзину для бумаги, из которой он будет уборщицей перенесен в бак для мусора на территории предприятия, а далее при перегрузке бака или транспортировки мусора на свалку лист может быть унесен ветром и поднят прохожим. Конечно, вероятность обеспечения случайного контакта с этим листом злоумышленника невелика, но если последний активно занимается добыванием информации, то область пространства, в котором возможен контакт, значительно сужается и вероятность утечки повышается.

Для предприятий химической, парфюмерной, фармацевтической и других сфер разработки и производства продукции, технологические процессы которых сопровождаются использованием или получением различных газообразных или жидких веществ (материалов), возможно образование каналов утечки информации через выбросы в атмосферу газообразных или слив в водоемы жидких демаскирующих веществ.

Подобные каналы образуются при появлении возможности добывания демаскирующих веществ в результате взятия злоумышленниками проб воздуха, воды, земли, снега, пыли на листьях кустарников и деревьев, на траве и цветах в окрестностях предприятия (организации).

В зависимости от розы (направлений) и скорости ветра демаскирующие вещества в газообразном виде или в виде взвешенных твердых частиц могут распространяться на расстояние в единицы и десятки км, достаточное для безопасного взятия проб злоумышленниками. Аналогичное положение наблюдается и для жидких отходов.

Конечно, концентрация демаскирующих веществ при удалении от источника убывает, но при утечке их в течение некоторого времени концентрация может превышать допустимые значения за счет накопления демаскирующих веществ в земле, растительности и подводной флоре и фауне.

...

Подобные документы

  • Графическая структура защищаемой информации. Пространственная модель контролируемых зон, моделирование угроз информации и возможных каналов утечки информации в кабинете. Моделирование мероприятий инженерно-технической защиты информации объекта защиты.

    курсовая работа [2,9 M], добавлен 19.06.2012

  • Выявление потенциальных угроз информационной безопасности в помещении для проведения переговоров и совещаний. Виды и источники информации в здании коллекторского агентства ООО "Должник"; разработка мер по совершенствованию инженерно-технической защиты.

    курсовая работа [1,5 M], добавлен 12.08.2012

  • Характеристика инженерно-технической защиты информации как одного из основных направлений информационной безопасности. Классификация демаскирующих признаков объектов защиты, способы их защиты и обнаружения. Сущность и средства процесса защиты объекта.

    реферат [37,0 K], добавлен 30.05.2012

  • Основные демаскирующие признаки и их классификация. Распространение и перехват сигнала. Основные классификационные признаки технических каналов утечки информации. Виды радиоэлектронных каналов утечки информации. Структуры каналов утечки информации.

    курсовая работа [666,9 K], добавлен 17.12.2013

  • Анализ вероятных способов и средств наблюдения, подслушивания информации. Моделирование каналов утечки сведений, ранжирование видов угроз в кабинете руководителя. Использование системы видеоконтроля и контрольно-пропускного пункта с целью защиты объектов.

    контрольная работа [1,9 M], добавлен 21.04.2011

  • Информация-это отражение разнообразия, присущего объектам и явлениям реального мира. Понятие информации. Свойства информации. Классификация информации. Формы представления информации. Информация-мера определенности в сообщении. Достоверность информации.

    контрольная работа [24,9 K], добавлен 24.09.2008

  • Задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации. Способы их воздействия на объекты защиты информации. Традиционные и нетрадиционные меры и методы защиты информации. Информационная безопасность предприятия.

    курсовая работа [347,8 K], добавлен 08.09.2008

  • Объекты защиты информации. Технические каналы утечки информации. Экранирование электромагнитных волн. Оптоволоконные кабельные системы. Особенности слаботочных линий и сетей как каналов утечки информации. Скрытие информации криптографическим методом.

    реферат [937,8 K], добавлен 10.05.2011

  • Актуальность защиты информации от утечек по электромагнитному каналу. Пассивные и активные способы защиты речевой информации в выделенных помещениях. Технология виброакустической маскировки. Проектирование системы защиты информации на предприятии.

    презентация [2,0 M], добавлен 17.05.2016

  • Угрозы функционирования беспроводных систем передачи информации с кодовым разделением. Исследование стохастического формирования сигналов и методов защиты информации от радиоэлектронных угроз. Недостатки ансамблей дискретных ортогональных сигналов.

    курсовая работа [207,6 K], добавлен 14.11.2014

  • Меры противодействия информационным угрозам. Акустические и виброакустические каналы утечки речевой информации. Разновидности радиолокационной разведки. Классификация методов и средств защиты информации от радиолакационных станций бокового обзора.

    презентация [88,0 K], добавлен 28.06.2017

  • Описание выявленных функциональных каналов утечки информации. Методологические подходы к оценке эффективности защиты речевой информации. Расчет возможности существования естественного акустического канала утечки информации по методу Н.Б. Покровского.

    курсовая работа [3,6 M], добавлен 06.08.2013

  • Основные задачи физических средств защиты информации, их классификация. Виды объектов охраны. Технические средства и системы охраны. Системы контроля и управления доступом. Методы биометрической идентификации. Радиолучевые и радиоволновые системы.

    презентация [1,9 M], добавлен 15.04.2014

  • Создание системы защиты речевой информации на объекте информатизации. Пути блокирования акустического, акусто-радиоэлектронного, акустооптического, радиоэлектронного каналов утечки данных. Технические средства защиты информации от подслушивания и записи.

    курсовая работа [2,3 M], добавлен 06.08.2013

  • Информация, подлежащая защите, определение источников информации. Рассмотрение нормативной базы в области построения комплексной системы защиты информации. Анализ информационных потоков и ресурсов. Анализ защищаемого помещения и каналов утечки.

    отчет по практике [410,6 K], добавлен 17.10.2013

  • Оценка безопасности информационных систем. Методы и средства построения систем информационной безопасности, их структура и основные элементы, принципы и значение. Криптографические методы защиты информации, виды и основные направления их обеспечения.

    курсовая работа [32,9 K], добавлен 12.03.2011

  • Радиоэлектронный канал. Структура радиоэлектронного канала утечки информации. Передатчики функциональных каналов связи. Виды утечки информации. Антенные устройства. Классификация помех. Экранирующие свойства некоторых элементов здания.

    доклад [41,7 K], добавлен 20.04.2007

  • Математическая основа построения систем защиты информации в телекоммуникационных системах. Особенности методов криптографии. Принципы, методы и средства реализации защиты данных. Основы ассиметричного и симметричного шифрования-дешифрования информации.

    курсовая работа [46,9 K], добавлен 13.12.2013

  • Проектирование помещения для хранения ценной информации. Возможные каналы утечки данных. Характеристики средств защиты информации. Съем информации за счет электромагнитных излучений проводных линий 220 B, выходящих за пределы контролируемой зоны.

    курсовая работа [2,9 M], добавлен 14.08.2015

  • Виды угроз в телефонных сетях. Потенциально возможные злоумышленные действия. Факторы, влияющие на требуемый уровень защиты информации. Методы и средства обеспечения безопасности в каналах телефонной связи. Рекомендации по увеличению уровня защищенности.

    курсовая работа [1,2 M], добавлен 08.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.