Средство оптический связи

Преимущества волоконно-оптической линии передачи перед другими направляющими системами. Основное уравнение передачи и типы волн в световодах. Критические длины и частоты. Распространение сигналов по оптическому кабелю, методы их изготовления и прокладки.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курс лекций
Язык русский
Дата добавления 09.12.2014
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для оценки уширения импульса вводится понятия среднеквадратического отклонения, которое принимается на уровне 0,6 от максимальной мощности импульса гауссовой формы (рис3).

Тогда уширение импульса за счет волоконного световода определится:

.

Среднеквадратическое уширение импульса, обусловленное внутримодовой дисперсией рассчитывается по формуле:

где - километрическое среднеквадратическое

отклонение длины волны основной моды;

М - коэффициент удельной материальной дисперсии;

N2- групповой показатель преломления в материале

оболочки;

V - нормированная частота;

- нормированное время пробега.

Первый член приведенного выражения определяется дисперсией материала, второй - волноводной дисперсией.

Для определения материальной дисперсии воспользуемся трехчленной дисперсионной формулой Селмейера, которая характеризует спектральную зависимость показателя преломления стекол в диапазоне 0,6 - 2 мкм

,

где коэффициенты Аi и li (i=1,2,3) определяются экспериментально.

Возьмем производную от приведенного выражения по .

Производная от первого слагаемого

Аналогично для i-го члена

Тогда производная определится

Возьмем вторую производную по .

Производная от первого слагаемого

Аналогично для i-го члена

Тогда коэффициент удельной материальной дисперсии определится

Таким образом, материальная дисперсия представляет собой расширение импульса при прохождении электромагнитной волны в большом объеме стекла. Определяется зависимостью показателя преломления от длины волны и это означает, что различные длины волн распространяются с различной скоростью.

Волноводная дисперсия представляет собой расширение импульса, которое происходит вследствие того, что электромагнитная волна, заключенная в некоторую среду, зависит от ее волноводной структуры. Действительно, с увеличением длины волны возрастает диаметр поля моды, а так как в одномодовых световодах волна распространяется не только в сердечнике, но и частично в оболочке, все большая часть мощности импульса сосредотачивается в оболочке, показатель преломления которой относительно мал. Скорость распространения такой волны меняется, что и приводит к расширению импульса.

Рассмотрим действие материальной и волноводной дисперсий в одномодовой волоконном световоде ( рис. 4).

С увеличением длины волны удельная материальная дисперсия уменьшается и на длине волны 1,3 мкм принимает отрицательные значения. Длина волны, при которой дисперсия равна нулю, называется длиной волны нулевой дисперсии ().

Волноводная дисперсия несмещенных волокон представляет собой относительно небольшую величину и находится в области положительных чисел. Создавая стекловолокна со смещенной дисперсией, основу которой составляет ее возросшая волноводная компонента, появляется возможность скомпенсировать материальную дисперсию и сдвинуть нулевую дисперсию в длинноволновую область, т.е. к третьему окну прозрачности (=1,55 мкм). Данный сдвиг осуществляется уменьшением диаметра сердечника, увеличением и использованием треугольной формы профиля показателя преломления сердечника.

Лекция 6

1. Распространение сигналов по оптическому кабелю

Передача сигналов по оптическому кабелю имеет свои особенности, которые связаны со способом передачи оптических сигналов, а также с тем, что распространение излучения по световоду является многомодовым (многолучевым).

Предварительно рассмотрим, что представляет собой оптический сигнал, распространяющийся по кабелю. Если электрический сигнал u(t) модулирует излучатель, например, изменяет ток накачки полупроводникового лазера в соответствии с изменением u(t) изменяется мощность излучения лазера. Следовательно, по кабелю распространяется сигнал:

p(t)=ku(t),

где p(t) - мощность оптического сигнала;

k - коэффициент пропорциональности.

При этом полагаем, что излучатель не вносит никаких искажений. Если бы оптический кабель и фотоприемник не вносили никаких искажений, то на его выходе (после фотоприемника) возникал бы сигнал той же формы, что и на входе u(t).

Так, если входной сигнал представляет собой синусоидальное напряжение где - частота, модулирующая излучатель, то при указанных выше допущениях на выходе кабеля также присутствовал бы синусоидальный электрический сигнал (фазовый сдвиг не принимаем во внимание). В действительности возникают неизбежные искажения.

При передаче синусоидального сигнала мощность излучения будет меняться по закону

, (1)

где Р0 - мощность излучения при отсутствии модуляции;

М - глубина модуляции.

Здесь мощность оптического излучения определена как эффективное значение мощности за период оптической частоты и пропорциональна квадрату напряженности (Н-магнитного или Е - электрического поля). Если перенос излучения осуществляется только одной модой, получим выражение, описывающее изменение во времени поля излучения (например, электрического) в таком виде:

, (2)

где - оптическая частота;

Еm - амплитуда напряженности поля Е.

Таким образом, при принятом способе передачи оптических сигналов, т.е. модуляции мощности оптического излучения, сигнал, распространяющийся по кабелю, содержит не одну частоту модуляции, а спектр частот.

Если бы по закону модулирующего сигнала изменялась не огибающая мощность излучения, а электрическое поле, в рассматриваемом случае это изменение описывалось бы известным выражением

. (3)

Спектр этого сигнала, как известно, содержит только три составляющие на частотах . Спектр же, определяемый выражением (2), содержит бесконечное число частот хотя и быстро убывающих амплитуд. Отсюда следует, что при модуляции оптической мощности спектр передаваемого сигнала обогащается, что дает свой вклад в искажение сигнала. Следует отметить, что при М=1 спектр содержит только две составляющие на частотах . Так как в реальных световодах существует большое число мод, то спектральный состав распространяющегося по оптическому кабелю сигнала оказывается более сложным, чем излучаемого.

Так как обычно оперируют с выражением для огибающих (1), а частоты модуляции , то указанное обобщение спектра незначительно сказывается на условии распространения сигналов, однако учитывать это обстоятельство необходимо, особенно при измерениях характеристик передачи оптического кабеля.

Другой особенностью передачи сигналов по ОК является многомодовое распространение. Независимо от закона, описывающего профиль показателя преломления сердечника световода, можно в самом общем случае указать те факторы, которые определяют распространение и искажение оптических сигналов:

- различие коэффициентов распространения на данной частоте для разных мод;

- нелинейная зависимость от частоты коэффициента распространения для данной моды;

- дисперсия в материале, т.е. зависимость показателя преломления от частоты.

Все эти факторы приводят к различиям скоростей распространения модовых составляющих сигналов в зависимости от i- того порядка моды и частоты . Совокупное действие этих фактором определяет характеристики передачи оптического кабеля (частотные, временные), а также интегральные и частные параметры искажений дисперсия импульсов, среднеквадратические и линейные значения ширины полосы частот и т.д.).

Частотные и временные характеристики

Применительно к оптическим кабелям необходимо уточнить понятие частотных характеристик. Такие определения, как зависимость от частоты отношения амплитуд гармонического сигнала на выходе волокна к амплитуде на его входе (для амплитудно-частотной характеристики) и зависимость сдвига фазы выходного гармонического сигнала от частоты относительно входного (для фазовой характеристики) являются неправомочными. Так как приходится оперировать с огибающей мощности сигнала при модуляции оптической несущей, в отличие от указанного обычного определения, относящегося к амплитудно-частотной характеристике, вводится понятие модуляционно-частотные характеристики (МЧХ). Напомним, что амлитудно-частотная и фазо-частотная характеристики объединяются в общую характеристику, называемую комплексным коэффициентом передачи:

.

При модуляции излучателя соответствует изменению коэффициента модуляции на выходе кабеля в зависимости от , т.е. .

Отсюда следуют такие определения: модуляционная амплитудно-частотная характеристика, модуляционная частотно-фазовая характеристика.

Модуляционная амплитудно-частотная характеристика представляет собой зависимость модуля комплексного коэффициента передачи огибающей мощности оптического излучения, модулированного гармоническим сигналом, от частоты модуляции.

Частотно-фазовая характеристика - это зависимость фазы комплексного коэффициента передачи огибающей мощности оптического излучения, модулированного гармоническим сигналом, от частоты модуляции. Модуляционно-частотные характеристики полностью определяют особенности оптического волокна как направляющей системы и искажение сигналов.

Можно также пользоваться характеристиками, относящихся не к частотной, а к временной области, а именно: переходные и импульсные характеристики.

Переходная характеристика - это огибающая мощностьоптического сигналана выходе кабеля, если на его входе огибающая оптической мощности является единичным сигналом. Единичный сигнал, обозначаемы 1(t), - это сигнал, возникающий скачком от нуля до единицы в момент t=0 и существующий после своего возникновения бесконечно долго.

Импульсная характеристика - это огибающая мощности оптического сигнала на выходе кабеля, если на его входе огибающая мощности огибающая оптической мощности является единичным импульсом. Единичный импульс, обозначаемый (или дельта-импульс), является производной от единичного сигнала. Если выбрать некоторый момент времени , то равна нулю при всех значениях t<, а при t= совершает скачок в бесконечность и затем уменьшается до нуля при всех t>, при этом площадь этого импульса равна единице. Переходная h(t;) и импульсная g(t; ) характеристики полностью определяют распространение сигналов по оптическому кабелю. Пользуясь данными характеристиками, можно найти форму выходного сигнала ОК при известной форме входного. Кроме того, по этим характеристикам можно найти модуляционно-частотные характеристики (фазовую и амплитудную). Переходную характеристику можно определить экспериментально, а импульсную, как правило,- аналитически.

Собственные и частные характеристики оптического кабеля

В отличие от традиционных четырехполюсников, когда нормируется только форма входного испытательного сигнала, например, в виде единичного сигнала или в виде гармонического сигнала, для оптического кабеля должны оговариваться особенности источника излучения, а именно:

- распределение интенсивности по излучающей поверхности;

- распределение мощности излучения по модам (или по углу) диаграммы излучения;

- спектр излучения (по оптическим частотам).

Как показывает теория и подтверждают экспериментальные данные характеристики передачи, ОК оказываются различными при разных показателях, относящихся к перечисленным особенностям. Действительно, искажение сигналов зависит, в частности, от распределения мощности излучения между модами, введенными в кабель и распространяющимися в нем. В свою очередь это распределение зависит от первых двух факторов. Кроме того, в зависимости от состава оптического спектра излучения степень материальной дисперсии будет различной. Поэтому при измерениях кабелей, возбуждаемых источником излучения с различными характеристиками и при идентичных условиях ввода излучения в кабель, характеристики передачи могут быть разными. Таким образом, характеристики передачи ОК не могут рассматриваться в отрыве от излучателя.

В связи с изложенным необходимо различать два вида характеристик передачи: собственные характеристики и частные характеристики.

Собственная характеристика - это характеристика, которая свойственна данному оптическому кабелю при условии, что он возбуждается строго одной оптической несущей, причем мощность всех мод, введенных в кабель, одинакова. В идеальном случае это возможно при возбуждении кабеля точным монохроматическим источником, расположенным на оси световода.

Частные характеристики соответствуют конкретным условиям возбуждения световода от определенного источника с известными характеристиками излучения. Эти характеристики не являются универсальными и не могут быть непосредственно использованы тогда, когда применяются источники излучения, отличные от тех, для которых эти характеристики были определены.

Необходимо заметить, что на расстоянии длины нормализации для узкой спектральной полосы излучения частные характеристики приближаются к собственным.

Частотные и переходные характеристики относятся к вторичным оптическим параметрам световодов, тогда как первичными параметрами являются геометрические размеры световодов (сердечника и оболочки), профиль показателя преломления и коэффициент затухания.

Диаграмма излучения и поглощения энергии в световоде

Рассмотрим случай многомодового световода со ступенчатым профилем показателя преломления.

Пусть угловая диаграмма излучателя описывается некоторой зависимостью . Энергия излучения, введенная в световод, распространяется под различными углами u1 в пределах апертурного угла. При n0=n1, u1=. Если световод прмолинейный и не имеет никаких неоднородностей, то каждый луч, введенный в световод, будет распространяться в нем под тем же углом, под которым он был введен в световод. Потери мощности, распространяющейся в элементарном пучке в направлении данного луча под углом u1, зависят от коэффициента затухания в материале сердечника, длины пути, проходимого пучком в процессе многократных отражений, коэффициента отражения на границе сердечник-оболочка и от числа отражений на всем пути распространения.

Длина пути луча, распространяющегося под углом u1, составляет:

,

где - длина световода.

Число отражений на той же длине

.

Коэффициент отражения , определяемый формулой Френеля, зависит от потерь в оптической оболочке, отражающей лучи и от угла u1, и уменьшается с его увеличением. Такая зависимость (u1) приводит к тому, что мощность пучков излучения, соответствующая лучам, распространяющимся под большими углами, испытывает большие потери на отражение, чем мощность пучков излучения, соответствующая лучам, распространяющимися под меньшими углами (так как меньше коэффициент отражения, тем больше потери). При многократных отражениях их общий эффект определяется произведением отдельных коэффициентов отражения, а так как <1, то потери будут возрастать с увеличением числа отражений, т.е. даже при (u), близких к единице, полные потери при многократных отражениях оказываются достаточно ощутимыми.

Если мощность излучения в элементарном пучке, распространяющемся в световоде под углом u1, в его начале равна , то учитывая потери на отражение, а также на поглощение на пути , можно определить мощность пучка на расстоянии :

.

Здесь принято, т.е. некоторому среднему значению. Тогда получим отношение мощностей:

.

Для получения соответствующего отношения всей мощности на расстоянии к полной мощности P0, введенной в начале световода необходимо произвести суммирование мощности пучков на расстоянии , распространяющихся под всеми углами в пределах апертурного угла . При этом следует учитывать значения мощностей каждого из пучков, введенных в световод под соответствующим углом. Такая операция дает весьма сложное выражение, в котором учитывается угловая диаграмма излучения мощности, введенной в световод, в свою очередь определяемая угловой диаграммой излучателя. Из приведенного соотношения следует, что отношение l должно сложным образом зависеть от длины световода и апертурного угла . Соответствующими преобразованиями можно представить связь в виде

,

причем зависимость затухания от длины в свою очередь связана также с видом диаграммы излучения, введенного в начале световода. Таким образом, - затухание на длине световода .Вследствие сложной зависимости этой функции от не правомочно обычное соотношение для показателя затухания .

По мере распространения энергии вдоль пути характер диаграммы излучения изменяется, так как лучи, распространяющиеся под различными углами, испытывают различное затухание с ростом u1. Таким образом, происходит деформация диаграммы излучения в световоде (рис 1).

Значение затухания зависит от формы этой диаграммы, следовательно, на различных по угловым положением лучей, но равных отрезках пути затухание не может быть пропорциональным этим отрезкам, так как в начале каждого отрезка диаграммы излучения отличаются друг от друга. Следовательно, в этих условиях . По мере распространения по световоду энергии диаграмма излучения становится более вытянутой, основная часть энергии сосредотачивается в области меньших углов, причем в этой области мощности пучков мало различаются. По мере увеличения степень деформации диаграммы уменьшается и форма ее стремится к некоторому устойчивому виду. Чем больше исходная диаграмма излучения приближается к диаграмме точеченого излучателя (т.е. к окружности), тем больше она деформируется в процессе распространения по световоду.

По мере приближения формы диаграммы к стабильной стремится к постоянному значению , т.е. к обычному коэффициенту затухания, не зависящему от длины. Это практически имеет место уже при , где N - длина нормализации, т.е. длина, на которой форма диаграммы излучения является практически установившейся.

При >N диаграмма излучения, распространяющегося по световоду, практически не зависит от угловой диаграммы излучения источника и определяется только параметрами световода. Из этого следует, что расчет затухания ОК по постоянному значению коэффициента ослабления, т.е. по формуле

,

можно проводить лишь для длин >N.

Все вышеизложенное относилось к прямолинейному световоду без неоднородностей. В действительности, в реальном ОК заложены световоды, обладающие различными видами неоднородностей (геометрическими и физическими), кроме того, имеют место нарушения прямолинейности (повивы кабеля, криволинейная трасса, микроизгибы и т.д.). Влияние этих неоднородностей выражается в увеличении потери на рассеяние и нарушении постоянства углов распространения различных лучей. В результате этого более интенсивно ослабляются лучи, распространяющиеся под большими углами, а часть энергии, переносимая пучками, соответствующими этим лучам, переходит в пучки, распространяющиеся под меньшими углами.

Все это приводит к тому, что диаграмма излучения, распространяющегося по световоду, нормализуется на длине N меньшей, чем длина нормализации при отсутствии неоднородностей. Сама диаграмма становится более сжатой, и распределение мощностей по углам оказывается более равномерным. Деформацию диаграммы излучения можно получить, воспользовавшись и модовым описанием.

Действительно, совокупность мод, образующих электромагнитное поле в многомодовых световодах, при распространения излучения по световоду меняет свою структуру, так как моды более высоких порядков испытывают большее затухание. Этим модам и соответствуют лучи, распространяющиеся под большими углами. Согласно теории при наличии неоднородностей последние создают связи между отдельными модами, приводящими к частичному переходу энергии между от одних мод к другим, а также появлению мод, которые не могут распространяться в данном световоде и поэтому излучаются во внешнее пространство, что создает дополнительные потери энергии на рассеяние.

В то же время часть энергии высших мод переходит в энергию низших, увеличивает их мощность. В результате такого преобразования мод, т.е. частичного перехода энергии из одних мод в другие, диаграмма излучения нормализуется.

Искажения сигналов

В оптических кабелях, состоящих из многомодовых световодов, основной причной искажения сигналов является различное времы запаздывания и затухания лучей, распространяющихся под различными углами.

В результате этого, например, фронт прямоугольного сигнала на месте приема будет растянут. Любая другая форма сигнала, поданного на вход кабеля, также будет искажена.

Характер и степень искажения зависят от формы входного сигнала, угловой характеристики излучения источника, параметров световода, длины кабеля, вида и степени его неоднородностей. Запаздывание различных лучей, как уже известно, следует из неравенства путей их распространения. Можно также рассматривать механизм искажения оптических сигналов как результат различий скоростей распространения мод разных порядков и в зависимости их затухания от порядка мод.

Каждая мода представляет собой плоскую волну, имеющую свой коэффициент распространения, определяющий фазу и затухание, зависящее от номера моды. Если пренебречь ослаблением, то коэффициент распространения моды i-го порядка определится:

,

где N - общее число мод;

g - показатель степени в выражении профиля

показателя преломления сердечника световода;

Таким образом, данная формула пригодна как для ступенчатого, так и для градиентного световодов. С коэффициентом связана групповая скорость моды на данной частоте (). При постоянном значении частоты с увеличением порядка моды коэффициент фазы уменьшается и групповая скорость падает. Для различных мод с увеличением частоты коэффициент распространения и групповая скорость возрастают в разной степени. На рис 2. приведен характер зависимости от частоты и порядка мод.

В результате время запаздывания моды на длине будет больше для мод более высокого порядка и бля более высоких частот. Если при этом учесть распределение мощностей между модами, то можно на заданной длине кабеля определить запаздывание, а следовательно форму сигнала. Таким образом, с увеличением числовой апертуры количество мод, распространяющихся по световоду, растет и степень искажения увеличивается. В градиентных световодах различие в меньше, чем в световодах со ступенчатым профилем, поэтому искажения могут быть существенно меньше, однако для полной реализации такого положения необходимо выбирать параметр g строго в зависимости от длины волны излучения и оптических свойств материала световода, а также следует обеспечить с высокой степенью точности (до 3-4%) постоянство принятого профиля коэффициента вдоль всего световода.

Теория и практика показывают, что при наличии рассеянных неоднородностей искажения оптических сигналов, распространяющихся по ОК, несколько уменьшаются. Это связано с уже известными нам процессами выравнивания диаграммы излучения или (в модовом толковании) с обменом энергии между модами. Таким образом, наличие неоднородностей выравнивает скорости различных мод на пути распространения по кабелю излучения, т.е. относительное запаздывание становится меньше и искажения сигналов несколько уменьшаются.

Выше указывалось, что форма выходного сигнала зависит, в частности, от формы входного. Поэтому принято оперировать некоторыми нормированными формами сигналов. Приведем некоторые теоретически выведенные выражения, описывающие импульсную характеристику. При этом угловая характеристика излучения может быть представлена в виде:

,

где m - целое число

- угол относительно оптической оси.

Такое описание широко принято для источников излучения, исполбзуемых в оптической связи. В частности, при m=1 имеем так называемую ламбертову поверхность излучения. При m=2-3 имеем характеристики полупроводникового лазера. Тогда импульсная характеристика будет описываться следующим выражением:

где - длина световода.

Данное выражение является универсальным в том смысле, что оно дает возможность определить форму сигнала на выходе ОК по любой заданной форме сигнала на его входе. Использование приведенной формулы дает полное описание формы выходного импульса и является характеристикой передачи оптического кабеля.

В отдельных случаях бывает достаточно найти лишь некоторые параметры, определяющие искажения сигналов; в этом случае пользуются частными оценками искажений. Эти оценки в основном относятся к уширению выходного импульса или к определению ширины его переднего фронта. Очевидно, что такие оценки должны быть привязаны к определенной форме входного импульса, так как уширение, связывающего ширину выходного импульса с шириной входного, зависит от формы последнего. В качестве нормированной формы входного импульса выбирается единичный или ступенчатый импульс 1(t). Тогда для световода со ступенчатым профилем коэффициента преломления время нарастания сигнала находится по вышеприведенной формуле ( см. дисперсию):

.

Для реальных градиентных световодов, учитывая недостаточно точное поддержание постоянства профиля показателя преломления

.

По существу, приведенные выражения определяют приближенное значение переднего фронта переходной характеристики h(t). Если на входе кабеля сигнал отличается от прямоугольного, но продолжительность его , причем передний фронт равен , то время нарастания этого сигнала на выходе кабеля может быть приближенно оценено по формуле

,

где соответствует случаю, когда на входе присутствует сигнал 1(t).

Особо учитывается влияние материальной дисперсии, которая, напомним, определяется зависимостью скорости распространения излучения в материале волокна от оптической частоты. Так как скорость раcпространения оптической волны , а показатель преломления зависит от частоты, возникает относительная задержка между частотами при распространении сигналов, содержащих несколько частот. С материальной дисперсией приходится считаться в связи с тем, что существующие источники оптического излучения излучают не одну частоту, а спектр оптических частот, который значительно шире спектра модулирующих. В первом приближении учет материальной дисперсии можно сделать путем добавления к фронту переходной функции h(t) величины

,

где - ширина спектра излучателя;

- его центральная частота.

Модуляционно-частотные характеристики и полоса пропускания волоконных световодов

Искажения оптических сигналов, распространяющихся по световодам, свидетельствуют о том, что модуляционно-частотные характеристики последних должны быть нелинейными, спадающими. При этом вследствие искажения и ограничения спектров сигналов, введенных в световод, возникают искажения этих сигналов. Рассмотрим более подробно тот факт, что модуляционно-частотные характеристики (МЧХ) световодов являются нелинейными и ограниченными. Предварительно необходимо отметить, что спектральная характеристика световода (т.е. зависимость его затухания от оптической частоты) в области, намного превосходящей диапазон модулирующих частот , не имеет спадающего характера, т.е. практически неограниченна, а небольшие отклонения на таком участке спектральной характеристики от линейности несущественны и связаны с особенностями поглощения излучения в материале световода. Таким образом, спектральная характеристика практически не вносит искажений в сигнал. Иначе обстоит дело с частотными характеристиками.

Воспользуемся модовым представлением оптических сигналов. Допустим, для простоты рассуждений, что все моды имеют одинаковые мощности и мощность каждой моды изменяется по синусоидальному закону в соответствии с частотой модуляции . В начале световода фазы всех огибающих составляющих мощностей, переносимых модами были одинаковы. По мере распространения мод по световоду вследствие различия в коэффициентах распространения фазы расходятся и равнодействующие всех составляющих (суммарный вектор) уменьшаются, а рвнодействующая фаза (суммарного вектора) изменяется. Такое расхождение фаз, а следовательно, изменение значения суммарного вектора и его фазы будут иметь место и при изменении модулирующей частоты. С увеличением которой также увеличивается расхождение фаз. В результате такого процесса по мере увеличения и длины световода модулированная мощность излучения уменьшается. Вследствие сложной зависимости фазы каждой мод от частоты и длины световода сложение составляющих векторов, т.е. интерференция огибающих мощностей, также происходит по сложному закону и дает периодические нулевые значения суммарного вектора, т.е. затухающую осцилляцию.

Качественно зависимость k() может быть объяснена на основе следующего физического рассмотрения.

Каждой моде соответствует некоторый вектор А, значение которого на расстоянии от начала световода равно:

,

где А0 -вектор в начале световода;

- коэффициент фазы;

- коэффициент затухания.

Зависимость определим исходя из того, что при небольшом ее изменении, т.е. , где - частота оптического излучения (оптическая несущая), можно принять линейную зависимость (см. рис. 2), т.е. , где k- тангенс угла наклона отрезков в области . Но величина соответствует частоте модуляции , так как именно с этой частотой модулируется каждая мода. Обозначив для краткости , получим для моды порядка i

.

Таким образом, при некотором фиксированном значении с ростом увеличивается сдвиг фаз различных мод относительно друг друга, т.е. векторы постепенно расходятся, причем расхождение между двумя различными модами i-го и j-го порядков рассчитываются по формуле , т.е. пропорционально частоте модуляции и длине световода (без учета начального расхождения: ).

Необходимо также учитывать, что с увеличением длины световода и порядк моды ее затухание увеличивается. Отсюда следует, что по мере увеличения и вследствие возрастающего рсхождения фаз между векторами модуль равнодействующего вектора, определяющего значение частотной характеристики, будет уменьшаться, что соответствует спаду частотной характеристики (рис. 3).

В нижней части рис. 3 приведены результирующие векторы. В верхней части показана амплитудно-частотная характеристика, отдельные значения которой соответствуют абсолютным значениям результирующих векторов, начало которых находятся в точках, соответствующих значениям на шкале частот.

Характер частотных характеристик усложняется в зависимости от вида распределения мощностей между модами. Приведем выражения, описывающие частотные характеристики многомодовых световодов для равенства мощностей мод.

Для амплитудно-частотной характеристики

При длине световода =1 км граница =100 соответствует частоте Мгц, т.е. при >1 км F<3 Мгц.

Для фазо-частотной характеристики

.

где А, В, С и m - соответствующие выражения, зависящие от параметров световода.

Для ступенчатого профиля

Для градиентного профиля (g=2)

Приведенные выражения не учитывают неоднородностей в реальных световодах, а также случай неравенства мощностей мод.

Ширина полосы пропускания находится на уровне 0,5 от максимального значения амплитудно-частотной характеристики. Экспериментальные значения ширины полосы для волокон со ступенчатым профилем показателя преломления в зависимости от числовой апертуры лежат в пределах 15-25 МГц.

Рассчитанная по приведенным формулам ширина полосы градиентного волокна составляет около 10 Ггц (g=2, ). Однако это значение больше тех, которые соответствуют реальным световодам. Это объясняется тем, что ширина полосы существенно зависит от степени постоянства распределения коэффициента преломления по световоду. Так, отклонение величины g от оптимального значения на 0,05 приводит к уменьшению ширины полосы частот более, чем на порядок.

С увеличением всякого рода неоднородностей ширина полосы несколько увеличивается, так как скорости распространения мод выравниваются. Такое выравнивание будет тем больше, чем длинее путь распространения сигнала. В связи с этим существенной является связь между шириной полосы оптического кабеля и его длиной. Строгое рассмотрение этого вопроса затруднено чрезвычайной сложностью количественной оценки неоднородностей. Однако опыт показывает, что на расстояниях , ширина полосы кабеля обратно пропорциональна его длине, т.е. если - ширина полосы кабеля длиной 1 км, то кабель длиной будет иметь полосу частот

.

Однако на заметном интервале длин, несколько больших или меньших , в зависимости от длины кабеля изменяется по некоторому закону:

Такое положение объясняется тем, что не имеет резко выраженного значения. Чем больше неоднородностей в световоде, тем меньше . Значение изменяется для разных оптических кабелей от нескольких сот метров до 2 км.

В некотором приближении амплитудно-частотная характеристика кабеля может быть описана следующим выражением:

тогда

Величина является частной оценкой частотных характеристик и не дает полного представления об искажениях сигнала. Однако оценка по является широко принятой и достаточно существенной. В частности, зная значения ширины полосы входного и выходного импульсов 1 и 2, можно определить уширение выходного импульса:

,

где - коэффициент, зависящий от формы импульса.

Для импульса гауссовой формы =0,22; для прямоугольного импульса =0,73. Ширина полосы определяется при этом как интервал частот, в котором сосредоточено 0,9 всей энергии импульса. В ряде случаев используется понятие среднеквадратической ширины импульса и среднеквадратической ширины полосы частот: и . В этиъ случаях, например, уширение импульса

однако применение этих параметров не всегда оправдано.

Если линия составлена из N отдельных оптических кабелей с разными , гдк к - порядковый номер отдельного кабеля, то общая полоса частот может быть получена из следующей формулы

где х=0,6...0,7 - коэффициент, зависящий от преобразования мод.

С шириной пропускания передаваемых частот, как известно связана пропускная способность оптического кабеля. Исходя из особенностей оптических систем связи, в них в основном принято временное разделение каналов с импульсно-кодовой модуляцией. При этом мгновенному значению уровня модулирующего сигнала передаваемой информации соответствует некоторая кодовая комбинация (группа) одинаковых импульсов (в пределах установленного числа разрядов кодовой группы).

Если число передаваемых телефонных каналов N, число разрядов кодовой группы m, то полоса частот, которую необходимо передать, составляет:

.

При этом m принимается равным 7...8. Тогда при m=7 минимальная ширина полосы частот составит .

Лекция 7

1. Конструкция и материал оптических волокон

Оптические волокна можно разделить на следующие типы: кварцевые, кварц-полимерные и полимерные.

Кварцевые оптические волокна изготавливаются из высокочистого кварцевого стекла (сердечник и светоотражающая оболочка) и применяются для систем дальней, внутри- и межобъектовой связи.

Кварц-полимерные оптические волокна изготавливаются с кварцевым сердечником и полимерной светоотражающей оболочкой и предназначены для систем внутри- и межобъектовой связи.

Полимерные оптические волокна изготавливаются из полимерных материалов, имеющих высокие оптические свойства, и используются для некоторых систем внутриобъектовой связи, подсветки, декоративного оформления и в медицине.

Для изготовления оптических волокон, которые используются для передачи сигналов в основном на большие расстояния, применяются материалы, обладающие минимальными потерями и высокой прозрачностью. Материал сердечника должен иметь очень маленькие потери на поглощение и рассеивание. Этому требованию удовлетворяют гомогенные (отсутствие каких-либо следов фазового разделения) стекла высокой чистоты и качества.

Стекло - это аморфное твердое тело, состоящее из элементов или химических соединений, которые встречаются и в кристаллическом состоянии. В кристалле эти компоненты образуют регулярную решетку (например, плавленный кварц состоит из SiO4- тетраэдов), в стекле они составляют нерегулярный каркас.

Самым низким поглощением в видимой области и ближней инфракрасной областях длин волн среди большинства стекол обладает плавленный кварц при условии высокой степени очистки и гомогенности. Кварц имеет значительные преимущества перед остальными видами стекол из-за малых внутренних потерь на рассеивание. Высокая точка плавления кварца требует специальной технологии для изготовления оптического волокна и позволяет избавиться от различных примесей, которые испаряются при меньших температурах.

Небольшой показатель преломления плавленного кварца n=1,4585 заставляет легировать кварцевое стекло при изготовлении сердечника и светоотражающей оболочки. Добавки увеличивают или уменьшают значение показателя преломления до необходимых значений при сохранении прочих характеристик на уровне характеристик чистого кварца. Для уменьшения показателя преломления плавленного кварцевого стекла могут применяться добавки окиси бора, фтора, а для увеличения - окиси германия, фосфора, титана, алюминия.

Кроме неорганических материалов для изготовления оптических волокон используют стеклообразные органические высокомолекулярные полимерные материалы с продольной ориентацией молекул, которая придает пластичность волокну. К этим материалам можно отнести полиметилметакрилат, полистирол, фторополимер и др.

Для светоотражающих оболочек оптических волокон кварц-полимер могут использоваться полимерные материалы, показатель преломления которых ниже показателя преломления плавленного кварца. Эти материалы характеризуются малым поглощением в видимой и инфракрасной областях спектра. К ним относятся некоторые силиконовые полимеры и тефлон.

Для защиты оптического волокна от физических и химических воздействий внешней среды применяются защитные покрытия из полимерных материалов.

Основные требования, предъявляемые к полимерному покрытию, заключаются в следующем:

- материал покрытия должен быть достаточно жестким для того, чтобы предохранять волокно от механических повреждений;

- покрытие должно быть толстым, эластичным и однородным по всей длине волокна с тем, чтобы, являясь буфером, предохранять волокно от микродеформаций;

- материал, используемый для изготовления покрытия должен задерживать распространение механических колебаний в оболочке оптического волокна;

- покрытие должно быстро отверждаться, прежде чем волокно достигнет тяговой шайбы.

Подобрать полимерный материал, отвечающий всем требованиям, практически не представляется возможным. Поэтому защитное покрытие выполняется многослойным.

Первый слой выполняется на основе эпоксидных лаков, тефлона или расплава полимера.

Вторая, или основная, оболочка выполняется из фторопласта, полипропилена, нейлона, капрона, полиэтилена высокого и низкого давлений. Наиболее часто используется нейлон-12, поскольку он практически не вызывает микроизгибов оптического волокна.

Между первичным и основным слоями в последнее время стали наносить демпфирующий слой из мягкого полимерного материала, например полиуретана. Демпфирующий слой сводит до минимума влияние температурны, внешнего давления, приводящих к возникновению микроизгибов, так как оптическое волокно может перемещаться внутри демпфирующего слоя.

Рассмотрим типовые размеры и некоторые характеристики наиболее распространенных многомодовых и одномодовых кварцевых волокон.

Многомодовые волокна классифицируются по размеру диаметров сердечника и оболочки, которые разделяет дробная черта /. Например, волокно 50/125 имеет диаметр сердечника 50 мкм и диаметра оболочки 125 мкм. Иногда информации только о размерах недостаточно, чтобы однозначно определить волокно, так как один и тот же размер может иметь различные и числовую апертуру.

В табл. 1. приведены характеристики наиболее распространенных многомодовых стекловолокон.

Волокно 50/125. Это волокно (с обеими апертурами) было первым основным телекоммуникационным волокном, которое использовалось совместно с лазерными излучателями для организации связи на значительные расстояния. В настоящее время оно используется для расширения ранее созданных многомодовых магистральных систем и локальных вычислительных сетей учреждений. Из-за широкого применения 50/125 волокна оно стало своеобразным стандартом, с которым сравнивают другие многомодовые волокна.

Таблица 1

Диаметры сердечника/оболочки (мкм)

(%)

Числовая апертура

50/125

1,0

1,3

0,20

0,23

62,5/125

1,9

0,275

85/125

1,7

0,26

100/140

2,1

0,29

Волокно 62,5/125. С уменьшением стоимости изготовления оптических волокон данный размер получает все большее распространение при использовании их в отдельных сегментах телекоммуникационных сетей, в частности в качестве фидеров абонентского контура. Несколько больший размер диаметра сердечника позволяет использовать в качестве источников излучения светодиоды. Данное волокно наименее чувствительно к оптическим потерям вследствие микроизгибов.

Волокно 85/125. Они разработаны специально для локальных вычислительных сетей и работают от светодиодных источников. Недостатком стекловолокна является наибольшая чувствительность к оптическим потерям вследствие изгибов. Именно по этой причине данные стекловолокна получили наименьшее применение.

Волокна 100/140. Разработаны для низкоскоростной передачи передачи информации на незначительные расстояния в сетях с большим числом ответвлений. Большой диаметр сердечника обеспечивает максимальную эффективность при вводе излучения в стекловолокно, что прдъявляет наименьшую требовательность к оконечной заделки волокон. Однако нестандартный размер оболочки создает необходимость использования нестандартных коннекторов, которые несколько дороже аналогичных устройств для размера оболочки волокна125 мкм .

Одномодовые волокна. Часто упускают из виду, что эксперименты с одномодовыми волокнами предшествовали экспериментам с многомодовыми волокнами с градиентным профилем показателя преломления. Исследования, выполненные в 70-х годах привели к заключению, что одномодовые волокна из-за жестких требованиям при вводе излучения не имеют практической ценности, что предопределило бурное развитие многомодовых волокон. Однако, исследования по разработке одномодовых технологий продолжались и в 1984 г. они были внедрены с большим коммерческим успехом. В настоящее время одномодовые волокна фактически заменили многомодовые во многих волоконно-оптических приложениях. Пока еще одномодовые волокна не используются в частных и локальных вычислительных сетях. Однако и здесь активно изучается возможность их применения. Основные данные одномодовых стекловолокон приведены в табл. 2.

Таблица 2

Тип оболочки

Волокна с несмещенной дисперсией

(=1,31 мкм)

Со смещенной

(=1,55 мкм)

Диаметр поля моды (мкм)

Диаметр

сердечника (мкм)

(%)

Диаметр поля моды (мкм)

Выровненная

оболочка

10,0

9,5

9,0

8,3

0,28

0,36

-

8,1

Вдавленная

оболочка

8,8

8,3

0,30(0,37)

7,0

Рассмотрим процесс создания оптических волокон.

Для получения оптических волокон с малыми потерями и затуханием необходимо избавиться от примесей и получить химически чистое стекло. В настоящее время наибольшее применение получили два метода создания оптических волокон с малыми потерями: путем химического осаждения из газовой фазы и двойного тигля.

Получение волокон путей химического осаждения из газовой фазы выполняется в два этапа: изготавливается двухслойная кварцевая заготовка, а затем из нее вытягивается волокно. Заготовка выполняется следующим образом (рис. 1).

Во внутрь полой трубки из кварца с показателем преломления n2 длиной 0,5...2 м и диаметром 16...18 мм подается струя хлорированного кварца (SiCl4) и кислорода (О2). В результате химической реакции при высокой температуре (1500...17000С) на внутренней поверхности трубки слоями осаждается чистый кварц (SiO2). Таким образом, заполняется вся внутренняя полость трубки, кроме самого центра. Чтобы ликвидировать этот воздушный канал, подается еще более высокая температура (19000С), за счет которой происходит схлопывание, и трубчатая заготовка превращается в сплошную цилиндрическую заготовку. Чистый осажденный кварц затем становится сердечником оптического волокна с показателем преломления n1, а сама трубка выполняет роль оболочки с показателем преломления n2.

После этого при температуре размягчения стекла (1800...22000С) производится вытяжка волокна из заготовки, наложения первичного покрытия и намотка волокна на приемный барабан (рис. 2). Из заготовки длиной 1 м получается свыше 1 км оптического волокна.

Достоинством данного метода является не только получение оптического волокна с сердечником из химически чистого кварца, но и возможность создания градиентных волокон с заданным профилем показателя преломления.

Это осуществляется за счет применения легированного кварца с присадкой титана, германия, бора, фосфора или других реагентов. В зависимости от применяемой присадки может изменяться показатель преломления (германий увеличивает, а бор уменьшает показатель преломления). Подбирая рецептуру легированного кварца и соблюдая объем присадки в осаждаемых на внутренней поверхности трубки слоях, можно обеспечить требуемый характер изменения по сечения сердечника волокна.

При производстве оптического волокна по методу двойного тигля исключается предварительный этап изготовления заготовки и оптическое волокно получается путем непрерывного вытягивания из расплава, содержащегося в платиновом сосуде, через филтр в дне сосуда. Для получения двухслойного волокна используются два плавильных тигля, размещенных один в другом (рис. 3).

Во внутреннем тигле 1 помещается расплавленное кварцевое стекло 3 с показателем преломления n1, из которого изготавливается сердцевина волокна. Во внешнем тигле 2 расплавленное стекло 4 с показателем преломления n2 используется для оболочки волокна. Стекло оболочки, вытекающее из фильтра внешнего тигеля, тянется вместе со стеклом сердечника, вытекающим из фильтра внутреннего тигеля, образуя таким образом двухслойное волокно 5, которое наматывается на приемный барабан.

Сравнивая приведенные способы получения оптического волокна, можно отметить, что первый (из газовой фазы) обеспечивает лучшее качество сердечника и позволяет получить градиентное волокно. Достоинствами второго способа (двойной тигль) является простота технологии и непрерывность процесса изготовления волокна.

Лекция 8

1. Оптические кабели

Оптическим кабелем называется кабельное изделие, содержащее ряд оптических волокон, заключенных в общую оболочку, поверх которой в зависимости от условий эксплуатации может быть наложен защитный покров.

Оптические кабели по своему назначению могут быть разделены на четыре группы:

- междугородные;

- городские;

- объектовые;

-подводные.

В отдельную группу выделяют монтажные оптические кабели.

Междугородные кабели предназначаются для передачи больших потоков информации на значительные расстояния. Они должны обладать малым затуханием и дисперсией, большой информационно-пропускной способностью. Междугородные кабели, в свою очередь подразделяются на магистральные, обеспечивающие связь между региональными центрами страны и зоновые, связывающие региональные центры с районами.

Кабели городской связи применяются в качестве соединительных линий между городскими АТС и узлами связи. Они рассчитаны на короткие расстояния (5...10км) и большое число каналов.

Объектовые кабели служат для организации связи внутри объекта. К ним относятся учрежденческая связь, локальные вычислительные сети, внутренняя сеть кабельного телевидения, а также бортовые информационные системы подвижных объектов.

Подводные кабели предназначаются для организации связи через большие водные преграды. Они должны обладать высокой механической прочностью и иметь надежные влагостойкие покрытия. Для подводной связи важно иметь малое затухание и соответственно большие длины регерационных участков.

Монтажные оптические кабели предназначены для внутри и межблочного монтажа аппаратуры.

Общими основными требованиями, предъявляемыми к физико-механическим характеристикам оптического кабеля являются:

- высокая прочность на разрыв;

- влагонепроницаемость;

- достаточная буферная защита для уменьшения потерь, вызываемых механическими напряжениями;

- термостойкость в рабочем диапазоне температур (-40...+500С);

- гибкость и возможность прокладки по реальным трассам;

- радиационная стойкость;

- химическая и ударная стойкость;

- простота монтажа и прокладки;

- надежность работы в течении 20 лет.

Для удовлетворения вышеизложенных требований оптические кабели кроме волокон содержат:

- силовые (упрочняющие) элементы, воспринимающие на себя продольную нагрузку на разрыв;

- заполнители в виде сплошных пластмассовых стержней;

- армирующие элементы, повышающие стойкость кабеля при внешних механических воздействиях;

- наружные демпфирующие и защитные оболочки, предохраняющие от проникновения влаги, паров вредных веществ и внешних механических воздействий.

В настоящее время в различных странах разработано и изготавливается большое количество конструкций оптических кабелей. Наибольшее распространение получили четыре группы конструкций:

- кабели со свободной трубкой;

- кабели со свободным пучком волокон;

- кабели с профилированным сердечником;

- кабели ленточного типа.

Рассмотрим на конкретных примерах основные конструкции оптических кабелей.

Пример кабеля со свободной трубкой корпорации Siecor приведен на рис. 1.

Внутри буферной трубки, игтотавливаемой из нейлона свободно располагаются 12 оптических волокон, которые перемещаются в ней по мере растягивания кабеля при его прокладке. Для идентификации трубки имеют различную окраску. Для предотвращения попадания влаги трубки заполняют гелеобразным составом.

Центральным силовым элементом является стальная проволока или стеклопруток в полиэтиленой или полиуретановой оболочке. В дополнение к центральному силовому элементу для увеличения механической прочности во вторичное защитное покрытие включают арамидные нити. Внутреннее пространство кабеля заполняют гелевым составом. Общее число волокон - 144.

Пример кабеля со свободным пучком волокон компании AT&T приведен на рис. 2.

В кабеле располагаются от 3 до 8 групп по 6...12 одномодовых стекловолокон в каждой (диаметр сердечника - 8,3 мкм, оболочки - 125 мкм), которые обеспечивают величину затухания на длине волны =1,31 мкм - 0,35 дБ/км, а на длине волны =1,55 мкм - 0,23 дБ/км. Каждая группа обмотана маркированной нитью соответствующего цвета. Трубка сердечника изготавливается из полимера, который заполняется гелеобразным составом. Длина оптических волокон больше длины кабеля и поэтому они свободно перемещаются пр натяжении кабеля. Силовые элементы расположены во вторичном защитном покрытии и представляют собой металлические стальные ленты толщиной 0,15 мм. Вторичным покрытием кабеля является специальное световодное покрытие компании AT&T, которое состоит из гидрофобной влагонепрницаемой ленты и ранее упоминавшейся стальной гофрированной ленты покрытой клейким веществом. Клейкое покрытие предохраняет металлические конструкции кабеля от коррозии и надежно прикрепляет сталь к наружной полиэтиленовой оболочке. Вытяжные тросы необходимы для удаления защитного покрытия. Существует также и диэлектрический вариант, в котором отсутствуют стальные ленты. Наружный диаметр 96-волоконного кабеля составляет 15 мм, масса 1 км кабеля - 223 кГ.

...

Подобные документы

  • Преимущества оптических систем передачи перед системами передачи, работающими по металлическому кабелю. Конструкция оптических кабелей связи. Технические характеристики ОКМС-А-6/2(2,0)Сп-12(2)/4(2). Строительство волоконно-оптической линии связи.

    курсовая работа [602,7 K], добавлен 21.10.2014

  • Определение числа каналов передачи. Характеристика трассы волоконно–оптической линии передачи. Расчет числовой апертуры, нормированной частоты и числа модулей, затухания оптического волокна, дисперсии широкополосности, длины регенирационного участка.

    курсовая работа [469,4 K], добавлен 02.03.2016

  • Выбор и обоснование трассы прокладки волоконно-оптической линии передачи (ВОЛП). Расчет необходимого числа каналов. Подбор типа и вычисление параметров оптического кабеля. Определение длины регенерационного участка. Смета на строительство и монтаж ВОЛП.

    курсовая работа [116,1 K], добавлен 15.11.2013

  • Особенности передачи сигналов по оптическому кабелю, распространение излучения по световоду. Частотные и временные, собственные и частные характеристики оптического кабеля. Диаграмма излучения и поглощения энергии в световоде. Искажения сигналов.

    реферат [113,8 K], добавлен 20.02.2011

  • Исследование бюджета мощности волоконно-оптической линии передачи, работающей по одномодовому ступенчатому оптическому волокну на одной оптической несущей, без чирпа, на регенерационном участке без линейных оптических усилителей и компенсаторов дисперсии.

    курсовая работа [654,7 K], добавлен 24.10.2012

  • Выбор трассы прокладки кабеля. Расчет эквивалентных ресурсов волоконно-оптической линии передачи. Топология транспортной сети. Виды, количество и конфигурация мультиплексоров. Подбор аппаратуры и кабельной продукции. Разработка схемы организации связи.

    курсовая работа [1,2 M], добавлен 17.08.2013

  • Расчет числа каналов на магистрали. Выбор системы передачи, оптического кабеля и оборудования SDH. Характеристика трассы, вычисление длины регенерационного участка. Составление сметы затрат. Определение надежности волоконно-оптической линии передачи.

    курсовая работа [877,2 K], добавлен 21.12.2013

  • Обоснование трассы волоконно-оптической линии передач. Расчет необходимого числа каналов, связывающих конечные пункты; параметров оптического кабеля (затухания, дисперсии), длины участка регенерации ВОЛП. Выбор системы передачи. Схема организации связи.

    курсовая работа [4,3 M], добавлен 15.11.2013

  • Измерительные приборы в волоконно-оптической линии связи, выбор оборудования для их монтажа. Схема организации связи и характеристика промежуточных и конечных пунктов, трасса кабельной линии передачи. Характеристика волоконно-оптической системы передачи.

    дипломная работа [6,6 M], добавлен 20.06.2016

  • Выбор трассы прокладки оптического кабеля. Расчет регенерационного участка и схемы организации связи. Разработка мероприятий по монтажно-строительным работам. Измерения, проводимые в процессе прокладки ОК. Выбор системы передачи для проектируемой ВОЛП.

    курсовая работа [4,3 M], добавлен 12.04.2015

  • Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.

    курсовая работа [1,2 M], добавлен 01.06.2014

  • Принцип построения волоконно-оптической линии. Оценка физических параметров, дисперсии и потерь в оптическом волокне. Выбор кабеля, системы передачи. Расчет длины участка регенерации, разработка схемы. Анализ помехозащищенности системы передачи.

    курсовая работа [503,0 K], добавлен 01.10.2012

  • Расчет числа каналов между городами, параметров оптического кабеля, длины участка регенерации. Выбор системы передачи и кабеля. Выбор и характеристика трассы волоконно-оптической линии передачи (ВОЛП). Смета проекта ВОЛП. Расчет надежности ВОЛП.

    курсовая работа [221,0 K], добавлен 19.05.2013

  • Волоконно-оптическая линия связи как вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, знакомство с особенностями проектирования. Анализ этапов расчета параметров кабеля и длины регенерационного участка.

    курсовая работа [1,6 M], добавлен 28.04.2015

  • Основные особенности трассы волоконно-оптических систем. Разработка аппаратуры синхронной цифровой иерархии. Расчёт необходимого числа каналов и выбор системы передачи. Выбор типа оптического кабеля и методы его прокладки. Надёжность линий связи.

    дипломная работа [1,2 M], добавлен 06.01.2015

  • Характеристика оконечных и промежуточных пунктов. Схема организации связи, трасса кабельной линии передачи. Размещение оборудования в телекоммуникационной стойке линейно-аппаратного цеха. Расчет параметров надежности волоконно-оптической линии передачи.

    курсовая работа [3,6 M], добавлен 03.12.2013

  • Характеристика основных элементов и типов конфигураций сети SDH. Разработка волоконно-оптической системы передачи на участке Коченево-Мамонтово: выбор типа оптического волокна, необходимого оборудования и его комплектации. Электрический расчет магистрали.

    дипломная работа [1,9 M], добавлен 08.10.2013

  • Анализ преимуществ волоконно-оптической линии связи над проложенным на данном участке медным кабелем. Направления и механизм модернизации существующей сети. Этапы разработки трассы и выбора метода прокладки. Схема организации связи и ее обоснование.

    дипломная работа [964,7 K], добавлен 20.06.2017

  • Выбор и обоснование трассы прокладки внутризоновой волоконной линии связи между пунктами Кемерово-Киселевск. Расчет числа каналов, числа оптических волокон, длины регенерационного участка. Выбор системы передачи. Смета на строительство и монтаж ВОЛС.

    курсовая работа [2,5 M], добавлен 28.02.2012

  • Характеристика действующей волоконно-оптической линии связи в Павлодарской области, распложенной вдоль реки Иртыш. Анализ отрасли телекоммуникации в Республике Казахстан. Организация защищенного транспортного кольца волоконно-оптической линии связи.

    отчет по практике [25,7 K], добавлен 15.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.