Методы анализа и синтеза многослойных неоднородных RC-элементов с распределенными параметрами и устройств на их основе

Методы создания нового класса аналоговых функциональных элементов на основе многослойных неоднородных резистивно-емкостных структур с распределенными параметрами. Разработка и апробация устройств обработки информации, идентификации и управления.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид автореферат
Язык русский
Дата добавления 14.02.2018
Размер файла 474,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Автореферат

диссертации на соискание ученой степени доктора технических наук

Специальность: 05.13.05 - Элементы и устройства вычислительной техники и систем управления

Методы анализа и синтеза многослойных неоднородных RC-элементов с распределенными параметрами и устройств на их основе

Ушаков Петр Архипович

Ижевск 2008

Работа выполнена на кафедре «Конструирование радиоэлектронной аппаратуры» Государственного образовательного учреждения высшего профессионального образования «Ижевский государственный технический университет».

Научный консультант: доктор технических наук, профессор А.Х. Гильмутдинов

Официальные оппоненты:

- член-кор. РАН, доктор физико-математических наук, профессор С.А. Никитов

- доктор технических наук, профессор С.Л. Моругин

- доктор технических наук, профессор С.Ф. Чермошенцев

Ведущая организация: ФГУП «ФНПЦ «Радиоэлектроника» им. В.И. Шимко (г. Казань)

Ученый секретарь диссертационного совета, к.т.н., профессор В.Р. Линдваль

1. Общая характеристика работы

аналоговый многослойный функциональный элемент

Актуальность исследования. Резистивно-емкостные элементы с распределенными параметрами (в дальнейшем, RC-ЭРП) представляют собой системы чередующихся слоев (полосок) материалов, в которых проводящие и/или резистивные слои разделены диэлектрическими слоями (или двойными заряженными слоями с электронной или ионной проводимостью).

Такое чередование слоев проводящих, резистивных и диэлектрических материалов характерно практически для всех конструкций современных интегральных микросхем. Это р-п-переходы, МОП-структуры, многослойные системы проводящих дорожек и т.п., которые по сути представляют собой системы с распределенными параметрами. Многие физические системы (многослойные покрытия, контакты разнородных материалов и др.), биологические системы (например, многослойные структуры биологических тканей, разделенных жидкими средами), электрохимические системы и устройства (аккумуляторы, электролитические конденсаторы и др.) также фактически представляют собой системы с распределенными, преимущественно резистивными и емкостными, параметрами.

RC-ЭРП изготавливают и в виде пленочных конструкций, которые выполняют функции многополюсных элементов схем. Использование их вместо многозвенных RC-цепей c сосредоточенными параметрами активных RC-фильтров и генераторов гармонических и импульсных колебаний, фазовращателей, амплитудных и фазовых корректоров, позволяет уменьшить общее количество элементов, габариты устройств и улучшить их электрические и эксплуатационные характеристики.

Анализ научных публикаций последнего десятилетия по вопросам проектирования СБИС, аналогового моделирования фрактальных процессов и объектов, создания фрактальных функциональных устройств и др. показывает, что потенциальные возможности RC-ЭРП как элементной базы, математические модели неоднородных RC-сред с распределенными параметрами для описания поведения реальных объектов и процессов востребованы совершенно недостаточно.

В то же время на основе RC-ЭРП можно создавать функциональные устройства обработки электрических сигналов в пространстве дробной меры, формировать фрактальные сигналы для повышения разрешающей способности современных систем обнаружения и распознавания объектов фрактальной природы. Математические модели RC-ЭРП позволяют более точно имитировать процессы распространения электрических сигналов в областях субмикронных активных и пассивных элементов современных интегральных микросхем. На основе RC-ЭРП можно создавать электрические модели для более точной идентификации параметров физических, биологических, электрохимических объектов и процессов распределенной и, как правило, фрактальной структуры.

Актуальность реализации этих возможностей RC-ЭРП подтверждается и задачами, сформулированными в Федеральной целевой программе «Развитие электронной компонентной базы и радиоэлектроники» на 2008-2015 годы, утвержденной постановлением Правительства Российской Федерации от 26 ноября 2007 г. № 809, в число которых входят повышение функциональности элементной базы, создание новых функциональных устройств обработки сигналов для повышения конкурентоспособности отечественных изделий радиоэлектроники. Кроме того в научном направлении исследований ИРЭ РАН, отражающем современные тенденции развития радиоэлектроники, "Фрактальная радиофизика и фрактальная радиоэлектроника: Проектирование фрактальных радиосистем", основанном на пионерских работах Гуляева Ю.В., Никитова С.А. и Потапова А.А., большое место отводится поискам способов физической реализации фрактальных импедансов, которые, в частности, присущи двухполюсникам на основе RC-ЭРП.

Исследования в области теории и практики RC-ЭРП началась в 60-е годы прошлого столетия и продолжается до настоящего времени. Заметный вклад в разработку методов анализа и синтеза RC-ЭРП и устройств на их основе внесли отечественные ученые, среди которых можно отметить Агаханяна Т.М., Колесова Л.Н., Рожанковского Р.В., Афанасьева К.Л., Васильева А.С., Галицкого В.В., Попова В.П. Клюкина В.И. и др., а также ученых Казанского авиационного института (КАИ, ныне - КГТУ им. А.Н. Туполева). Здесь основы теории преобразователей информации на распределенных RC-структурах заложены работами Нигматуллина Р.Ш. и его учеников Белавина В.А., Вяселева М.Р., Насырова И.К., Евдокимова Ю.К., Карамова Ф.А., а вопросы анализа и синтеза трехслойных RC-ЭРП и устройств на их основе - работами Гильмутдинова А.Х. Вопросы конструктивно-технологической реализации и практического применения тонкопленочных RC-ЭРП разработаны сотрудниками «Проблемной лаборатории микроэлектроники (ПЛМ)» КАИ (Дмитриев В.Д., Меркулов А.И., Ушаков П.А., Кутлин Н.Х., Гильмутдинов А.Х., Камалетдинов А.Г.). Применение генетических алгоритмов для синтеза технических систем с распределенными параметрами развиты в работах Чермошенцева С.Ф. и его учеников. Численные методы решения дифференциальных уравнений в частных производных при анализе пленочных и полупроводниковых элементов микросхем рассмотрены в работах Моругина С.Л.

Большой вклад в разработку теории RC-ЭРП и математических моделей, учитывающих конструктивно-технологические ограничения и свойства реальных материалов слоев пленочных и полупроводниковых RC-ЭРП, внесли и зарубежные ученые Happ W., Castro P., Fuller W., Kaufmann W., Garrett S., Heizer K., Hellstrom M., Kelly J., Ghausi, M.; Herskowitz, G., Youla D., Su K., Gough K., Gould R., Giguere J.S., Bianco В., Ridella S., Protonotarios E., Wing O, Pal K., Ahmed S., Kumar S., Jonson S., Huelsman А., Kerwin W.J., Walsh J., Swamy M., Bedrosian S., Burrow N., Troster G., Analouei A., Teichmann J., Walton A., Moran P., Novak М. и др.

Можно отметить следующие основные результаты, являющиеся итогом этого периода исследований и разработок RC-ЭРП и устройств на их основе: разработаны методы анализа и синтеза одномерных RC-ЭРП с неоднородностью погонных параметров, задаваемой изменением ширины RC-ЭРП; разработаны методы анализа и синтеза двумерных однородных RC-ЭРП со структурой слоев вида R-C-0 (где аббревиатура в обозначении структуры слоев указывает на чередование резистивного, диэлектрического и идеально проводящего слоев); разработаны критерии синтеза и рассмотрены вопросы проектирования ряда функциональных устройств на основе RC-ЭРП (активные RC-фильтры, RC-генераторы, фазовращатели); решены некоторые вопросы практической реализации RC-ЭРП и устройств на их основе со стабильными и воспроизводимыми характеристиками; разработано специализированное программное обеспечение для анализа и синтеза отмеченных вариантов RC-ЭРП и устройств на их основе.

Однако достигнутый уровень развития теории RC-ЭРП, методы и средства анализа и синтеза RC-ЭРП не позволяют в полной мере использовать богатые возможности, заложенные в объектах и процессах распределенной и фрактальной природы.

В частности, методы анализа и синтеза разработаны лишь для RC-ЭРП со структурой слоев вида R-C-0 (в дальнейшем, R-C-0 ЭРП), в то время как существует большое число конструкций элементов, объектов идентификации распределенной и фрактальной природы, количество слоев в которых и характер проводимости слоев не укладываются в эти рамки. Реализованные уровни постоянства фазы входного импеданса R-C-0 ЭРП лежат в пределах 4510 в диапазоне рабочих частот одна-две декады, в то время как на практике требуются элементы с постоянной фазой от 0 до 90 в пределах трех-четырех декад.

Неоднородности резистивно-емкостной среды, которые задаются в процессе синтеза конструкций R-C-0 ЭРП и определяют достижимые характеристики и параметры RC-ЭРП и устройств на их основе, являются статическими и проявляются лишь в изменении геометрии слоев. Очевидно, что увеличение количества слоев в сочетании с неоднородностями удельных параметров слоев RC-ЭРП, использование различных схем включения многополюсного RC-ЭРП позволят расширить диапазон требований к электрическим и эксплуатационным характеристикам, которые могут быть реализованы с помощью RC-ЭРП и устройств на их основе.

Структурный синтез R-C-0 ЭРП реализует простой генетический алгоритм Холланда и не оптимизирован ни по скорости сходимости, ни по вероятности получения положительных результатов синтеза при решении задач оптимизации со сложной поверхностью отклика.

Поэтому расширение классов используемых RC-ЭРП, разработка и совершенствование методов анализа и синтеза нового класса RC-ЭРП с целью создания новых и повышения конкурентоспособности известных аналоговых устройств обработки информации, управления и моделирования фрактальных объектов и процессов представляется своевременной и актуальной задачей.

Цель диссертационной работы создание нового класса аналоговых функциональных элементов на основе многослойных неоднородных резистивно-емкостных структур с распределенными параметрами, позволяющих существенно повысить количественные и качественные показатели известных и вновь создаваемых на их основе устройств обработки информации, идентификации и управления.

Научная проблема, решаемая в диссертационной работе: разработка и развитие методов анализа и автоматизированного синтеза конструкций многослойных резистивно-емкостных элементов с распределенными параметрами, характеризующихся неоднородностью геометрических параметров и электрофизических характеристик материалов слоев, позволяющих в полной мере использовать возможности, заложенные в объектах и процессах распределенной и фрактальной природы.

Направления исследований:

Системный анализ существующих конструкций RC-ЭРП, а также объектов и процессов распределенной и фрактальной природы для определения базовой структуры слоев нового класса RC-ЭРП (обобщенного RCG-ЭРП), который обеспечит повышение количественных и качественных показателей известных и вновь создаваемых на их основе функциональных устройств обработки информации, идентификации и управления.

Разработка метода анализа RC-ЭРП с использованием обобщенных RCG-ЭРП, позволяющих получать решение системы дифференциальных уравнений в частных производных, описывающих процессы в многослойной неоднородной резистивно-емкостной среде.

Разработка математического, алгоритмического и программного обеспечения для анализа характеристик конструкций RC-ЭРП, реализуемых на основе обобщенных RCG-ЭРП, и исследование границ физической реализуемости параметров их частотных характеристик.

Разработка методов синтеза конструкций функциональных RC-ЭРП по заданным характеристикам на основе генетических алгоритмов поисковой оптимизации в пространстве параметров, определяющих геометрию, вид структуры и электрофизические характеристики материалов слоев обобщенного RCG-ЭРП.

Разработка способов оптимизации параметров генетических алгоритмов, обеспечивающих увеличение скорости и повышение вероятности синтеза физически реализуемых и технологичных конструкций функциональных RC-ЭРП.

Разработка критериев синтеза, методов и инструментальных средств исследования и проектирования устройств обработки сигналов и устройств управления на основе нового класса функциональных RC-ЭРП.

Объект (область) исследования: функциональный элемент микроэлектроники на основе многослойной неоднородной резистивно-емкостной структуры с распределенными параметрами с чередованием слоев вида R1-G1-C1-R-C2-G2-R2 (обобщенный RCG-ЭРП) и устройства на их основе.

Предметы исследования: методы анализа и синтеза обобщенных RCG-ЭРП, критерии синтеза и методики проектирования функциональных устройств обработки сигналов и систем управления дробного порядка на основе обобщенных RCG-ЭРП.

Методы исследования. При разработке теоретических положений и создании математических моделей, методов и алгоритмов автоматизированного анализа и синтеза обобщенных RC-ЭРП и устройств на их основе были использованы теория электрических цепей, теория функций комплексных переменных, элементы и методы линейной алгебры, теория численных методов решения дифференциальных уравнений в частных производных, теория вероятностей и математической статистики, теория множеств, численные методы оптимизации и математического моделирования, планирование эксперимента.

Достоверность и обоснованность полученных в работе результатов и выводов: обеспечены строгими математическими доказательствами, схемотехническим моделированием, используя стандартные программы, или экспериментальной проверкой; подтверждены сопоставлением результатов теоретических исследований с экспериментальными данными, полученными путем моделирования или натурных испытаний. Достигнутые результаты согласуются с современными научными представлениями и данными отечественных и зарубежных информационных источников, а также подтверждаются их представительным обсуждением в научных изданиях и выступлениях на научных конференциях международного и российского уровней. Основные технические решения используются в практической деятельности предприятий отрасли.

На защиту выносятся следующие основные научные положения и результаты, полученные автором:

Новый класс RC-ЭРП со структурой слоев вида R1-G1-C1-R-C2-G2-R2 (обобщенный RCG-ЭРП), как результат системного анализа известных конструктивных вариантов RC-ЭРП и областей их применения.

Метод обобщенных конечных распределенных элементов, являющийся теоретической основой анализа и синтеза многослойных неоднородных RC-ЭРП с различной структурой и параметрами слоев, полученных на основе предложенного обобщенного RCG-ЭРП; классификация обобщенных конечных распределенных элементов (ОКРЭ) и математические модели однородных и неоднородных КРЭ, получаемых из ОКРЭ.

Теоретические положения синтеза RC-ЭРП, включающие: способы кодирования информации о структурных и схемотехнических параметрах RC-ЭРП и электрофизических параметрах материалов его слоев; обоснование и математическое описание генетических операторов RC-ЭРП с заданными конструктивными параметрами; обоснование и разработку генетических алгоритмов для различных типов RC-ЭРП; исследование алгоритмов и оптимизацию их параметров; способы декодирования результатов предложенных алгоритмов; способ корректировки полученных конструктивных решений, обеспечивающий повышение технологичности конструкций RC-ЭРП при заданной точности оборудования.

Обобщенный критерий синтеза устройств интегрирования и дифференцирования как вещественного, так и комплексного дробного порядка, сводящий задачу синтеза этих устройств соответственно к задаче синтеза двухполюсников с постоянной или линейной ФЧХ входного импеданса.

Результаты исследования возможностей применения параметрических RC-ЭРП для расширения диапазона независимой перестройки частоты и добротности активного RC-фильтра.

Алгоритмы и прикладное программное обеспечение для анализа предложенного класса функциональных RC-ЭРП, а также методики синтеза устройств на его основе: активных RC-фильтров, ПИД-регуляторов с динамическими звеньями дробного порядка.

Научная новизна результатов диссертационной работы заключается в следующем:

Предложен новый класс функциональных RC-ЭРП со структурой слоев вида R1-G1-C1-R-C2-G2-R2 (обобщенный RCG-ЭРП), применение которых позволяет существенно улучшить количественные и качественные характеристики известных и вновь создаваемых функциональных устройств систем обработки информации, идентификации и управления.

Предложен и разработан метод обобщенных конечных распределенных элементов (МОКРЭ), основанный на моделировании конечных элементов, как однородными, так и неоднородными обобщенными RCG-ЭРП (ОКРЭ), имеющими точное аналитическое решение.

Предложена математическая модель многополюсного ОКРЭ в виде аналитических выражений его у-параметров и способ преобразования модели ОКРЭ в модели всех вариантов КРЭ, которые можно образовать из ОКРЭ.

Предложены и реализованы алгоритмы и программы анализа многослойных неоднородных RC-ЭРП на основе предложенного метода обобщенных конечных распределенных элементов, которые позволили провести исследование реализационных возможностей различных конструктивных вариантов RC-ЭРП, полученных на базе предложенного обобщенного RCG-ЭРП.

Предложены и реализованы генетические алгоритмы, применяемые при синтезе RC-ЭРП, основные генетические операторы в которых производят преобразования параметров множества ОКРЭ, определяющих конструкцию синтезируемого RC-ЭРП. Предложены и исследованы способы повышения скорости сходимости генетических алгоритмов на основе учета конструктивных особенностей и физических закономерностей распределения потенциалов в резистивных слоях синтезируемых RC-ЭРП.

Предложена методика синтеза активных RC-фильтров на основе двумерных неоднородных RC-ЭРП, основанная на обеспечении заданных требований к характеристике затухания фильтра, позволяющая повысить порядок отдельного звена RC-фильтра в 2-3 раза по сравнению со схемами звеньев на RC-ЭСП.

Найдены аналитические зависимости между частотой и добротностью доминирующего полюса передаточной характеристики активного RC-фильтра и параметрами закона изменения погонной емкости RC-ЭРП, позволяющие существенно расширить диапазон независимой перестройки частоты и добротности полюса путем формирования закона управляющего поля.

Предложены критерии синтеза устройств интегрирования и дифференцирования дробного комплексного порядка. По данным критериям синтезированы конструкции двухполюсников на основе обобщенного RCG-ЭРП, имеющие существенный выигрыш по габаритным размерам по сравнению с аналогичными двухполюсниками на RC-ЭСП.

Получены зависимости точности выполнения операторов дробного интегрирования и дифференцирования (ДИД) от величины неравномерности ФЧХ ЭПФ и от ширины рабочего диапазона частот, которые позволяют задавать требования к параметрам ФЧХ синтезируемых двухполюсников в соответствии с требуемой точностью выполнения операций ДИД.

Синтезирован ПИД-регулятор дробного порядка с динамическими звеньями на основе обобщенных RCG-ЭРП, у которого число элементов и занимаемая им площадь почти на порядок меньше по сравнению с аналогичными устройствами на основе RC-ЭСП при более высокой надежности.

Практическая значимость результатов диссертационной работы:

Теоретические исследования и научные результаты работы доведены до инженерных методик, рекомендаций, алгоритмов и прикладных программно-методических комплексов анализа и синтеза RC-ЭРП и устройств на их основе, пригодных для разработки радиоэлектронной аппаратуры, использующей принципы обработки сигналов в пространстве дробной меры, для создания структурных моделей при исследовании и идентификации параметров объектов распределенной и фрактальной природы.

Предложенные автором способы преобразования обобщенного RCG-ЭРП значительно расширяют класс конструктивных вариантов RC-ЭРП, которые можно использовать для улучшения электрических и эксплуатационных показателей разрабатываемых устройств, создавать новые устройства для более эффективного решения задач обработки информации.

Предложенные критерии синтеза активных RC-фильтров на основе двумерных RC-ЭРП позволяют уменьшить количество необходимых звеньев, уменьшить энергопотребление и размеры фильтров, обеспечить упрощение настройки, улучшить стабильность характеристик и параметров фильтров.

Применение в ПИД-регуляторах динамических звеньев на основе обобщенных RCG-ЭРП, обладающих дробностепенной зависимостью входного импеданса от частоты, позволяет создавать системы управления объектами, описываемыми дифференциальными уравнениями дробного порядка, обладающими меньшими временем установления, величиной перерегулирования и статической ошибкой по сравнению с системами управления на ПИД-регуляторах целого порядка.

Отдельные теоретические результаты, в частности, метод обобщенных конечных распределенных элементов, метод определения коэффициентов аппроксимирующего полинома трансцендентной передаточной характеристики системы с обратной связью, критерий синтеза динамических звеньев комплексного дробного порядка вносят вклад в теорию численного решения систем уравнений в частных производных, анализа и синтеза систем автоматического управления, анализа и синтеза электрических RC-цепей с распределенными параметрами.

Реализация и внедрение работы.

Теоретические и прикладные результаты диссертационной работы использованы:

в виде методик, программ и результатов анализа RC-ЭРП в рамках работ проблемной лаборатории микроэлектроники КГТУ (КАИ) в соответствии координационным планом АН СССР по проблеме №16 «Исследования физических принципов создания новых функциональных устройств ионики» секции физических и физико-химических основ микроэлектроники Научного Совета по физике и химии полупроводников АН СССР и отражены в соответствующих отчетах проблемной лаборатории в период 1985-1990 гг.;

в виде методик проектирования активных RC-фильтров на основе RC-ЭРП, действующих макетов и результатов исследования влияния конструктивно-технологических факторов RC-ЭРП на электрические и эксплуатационные характеристики фильтров в КБ радиозавода им. С. Орджоникидзе, г. Сарапул.

в виде отчетов по госбюджетной НИР "Исследование и разработка функциональных устройств микроэлектроники на основе резистивно-емкостных структур с распределенными параметрами" (гос. рег. № 01910046805), выполняемой в ИжГТУ (ИМИ);

в виде прикладных программно-методических комплексов синтеза обобщенных RC-ЭРП, активных RC-фильтров на их основе, рекомендаций и эскизных проектов систем управления на основе ПИД-регуляторов дробного порядка в ОАО "ЭРКОН", г. Н. Новгород, ОАО "Ижевский радиозавод", ФГУП "ФНПЦ "Радиоэлектроника" им. В.И. Шимко, ФГУП «Казанский НИИВС», г. Казань, ОАО ФПГ "Уральские заводы", ОАО "Ижевский мотозавод "Аксион-холдинг", г. Ижевск при разработке изделий электронной техники.

Теоретические положения, модели и методы анализа и синтеза RC-ЭРП и устройств на их основе используются в учебно-научной деятельности ГОУ ВПО "Казанский государственный технический университет им. А.Н. Туполева", ГОУ ВПО "Ижевский государственный технический университет" при чтении лекций, проведении практических и лабораторных занятий по дисциплинам учебного плана направлений 551100 и специальности 654300 Проектирование и технология электронных средств, при выполнении курсовых и дипломных проектов, подготовке аспирантов и магистрантов.

Апробация результатов работы.

Основные положения и результаты диссертационной работы докладывались и обсуждались на следующих научно-технических семинарах и конференциях:

Итоговых научно-технических конференциях ИжГТУ (ИМИ) и КГТУ (КАИ) им. А.Н. Туполева (1972 - 2000 г.г.), конференции НТО РЭС им А.С. Попова, г. Казань (1975); 4-й школе-семинаре «Активные избирательные системы», г. Таганрог (1981); Республиканском научн.-техн. семинаре «Опыт совершенствования радиоэлектронной аппаратуры на интегральных схемах и элементах микроэлектроники», г. Казань, (1981); Республиканской научн.-техн. конференции «Комплексная микроминиатюризация аппаратуры», г. Казань (1984); Респ. научн. техн. конф. "Новые конструкторские и технологические решения при комплексной микроминиатюризации РЭА и их использование в производстве", Казань, 1985; Респ. науч.-техн. конференции "Конструкторские решения при комплексной микроминиатюризации РЭА", г.Казань, (1987); Юбилейной научной и научно-методической конференции «Актуальные проблемы научных исследований и высшего профессионального образования», г. Казань, (1997); Научн.-техн. конференциях "Приборостроение в ХХI веке. Интеграция науки, образования и производства", г. Ижевск, 2001, 2005, 2004, 2006; 1-й региональной научной конференции "Современные проблемы радиоэлектроники", г. Ростов н/Д, 2006; 4-ой научн.-техн. конференции с международным участием "Приборостроение в ХХI веке. Интеграция науки, образования и производства", г. Ижевск, 2007; Юбилейной Республиканской научн.-техн. конференции "Нигматуллинские чтения", г. Казань, 2008; на всесоюзных научно-технических конференциях и семинарах: по микроэлектронике, г. Казань 1980, «Проблемы теории чувствительности электронных и электромеханических систем», г. Москва (1985), «Интегральные избирательные устройства», г.Москва, (1988); «Интегральная схемотехника и избирательные устройства», г.Москва, (1989); на всероссийских научно-технических конференциях: "Актуальные проблемы твердотельной электроники и микроэлектроники", Таганрог, 1995, "Электроника и информатика-2005", г. Москва, 2005; "Информационные технологии в науке, образовании и производстве", г. Казань, 2007; на международных научно-технических конференциях: "Методы и средства оценки и повышения надежности приборов, устройств и систем", г. Пенза, 1995; "Надежность и качество `99", г. Пенза, 1999; "Информационные технологии в инновационных проектах", г. Ижевск, 2001; "Континуальные алгебраические логики,, исчисления и нейроинформатика в науке и технике", г. Ульяновск, 2004; «Telecommunication and Signal Processing' 2005, Брно, Чехия, 2005; "Конференция по логике, информатике, науковедению, КЛИН-2007", г. Ульяновск, 2007; "Информационные системы и технологии. ИСТ-2007", г. Н. Новгород, 2007; "Физика и технические приложения волновых процессов", г. Казань, 2007; "Информационные системы и технологии. ИСТ-2008", г. Н. Новгород, 2008; "Радиолокация, Навигация, Связь", г. Воронеж, 2008; "Пассивные электронные компоненты - 2008. ПЭК-2008", г. Н. Новгород, 2008; 31th International Conference on Telecommunications and Signal Processing, 3-4 September, Parбdfьrdх, Hungary, 2008; “Технические и программные средства систем управления, контроля и измерения (УКИ'08)”, 1012 ноября, г. Москва, 2008; «Прикладная синергетика в нанотехнологиях (ФИПС-08)», 1720 ноября, г. Москва, 2008; «Проблемы техники и технологии телекоммуникаций (ПТиТТ-2008)», 25-27 ноября, г. Казань, 2008.

Публикации. Основное содержание диссертационной работы полностью отражено в 69 научных и научно-технической работах автора: в 20 статьях в научных изданиях, рекомендуемых ВАК Министерства образования и науки РФ, в 5 авторских свидетельствах, в 11 статьях в межвузовских и ведомственных тематических сборниках, в 20 работах в сборниках трудов международных, в 11 работах в трудах всероссийских и региональных научно-технических конференций, в двух учебных пособиях. В целом по теме диссертации опубликованы 101 научная работа, включая зарегистрированные отчеты по НИР, депонированные статьи и тезисы докладов на научно-технических конференциях.

Структура и объем работы. Диссертационная работа состоит из введения, 7 глав, заключения, списка использованной литературы. Работа содержит 191 рисунок, 41 таблицу. Список использованной литературы включает 341 наименованиe. Объем работы составляет 379 страниц.

2. Содержание работы

Введение содержит обоснование актуальности проблемы, описываются объект и предметы исследования, формулируются цель и задачи диссертационной работы, определены методы исследования, дается краткое содержание диссертации по главам, приведены основные положения диссертационной работы, выносимые на защиту.

В первой главе дается краткая характеристика объекта исследования и его основных параметров и особенностей, проводится системный анализ существующих конструктивных вариантов RC-ЭРП и устройств на их основе, а также объектов и процессов распределенной и фрактальной природы и определяется необходимость разработки нового класса RC-ЭРП, который обеспечит повышение эффективности функционирования устройств обработки информации, точности моделирования объектов и процессов распределенной и фрактальной природы.

RC-ЭРП представляет собой конструктивно законченный элемент (подобно элементам с сосредоточенными параметрами), но характеризующийся не номиналом, а функциями электрической цепи (подобно RC-цепям на элементах с сосредоточенными параметрами), обеспечивая при меньших габаритах лучшие частотно избирательные свойства и наличие участка постоянства фазы (90 < с < 0) ФЧХ входного импеданса, отражающего наличие у него дробностепенной зависимости частоты.

Предложены принципы и разработана классификации RC-ЭРП. В качестве классификационных предложены признаки, характерные для обычных элементов цепей (количество внешних выводов, зависимость характеристик и параметров от токов и напряжений), и признаки, характеризующие RC-ЭРП с конструктивно-технологической точки зрения (количество слоев материалов, характер неоднородности среды, возможность и способ изменения характеристик и параметров элемента).

Проведен анализ возможностей применения RC-ЭРП в устройствах обработки сигналов (в том числе фрактальных устройствах), в качестве моделей элементов интегральных микросхем, процессов и объектов распределенной и фрактальной природы, в устройствах управления динамическими системами дробного порядка.

Анализ показал, что использование RC-ЭРП в устройствах и электрических моделях позволяет: улучшить качественные и количественные характеристики существующих устройств генерирования и обработки сигналов, создавать устройства обработки сигналов в пространстве дробной меры, повысить точность моделирования процессов распространения сигналов в межсоединениях СБИС и точность оценки параметров биполярных и МОП-структур нанометровых размеров, создавать модели электронных компонентов, сложных физико-химических и биологических объектов для идентификации их структуры, параметров, и прогнозирования надежности, повысить точность и быстродействие систем автоматического управления процессами и объектами, которые характеризуются динамикой дробного порядка, уменьшить стоимость систем.

На основе проведенного анализа предложена классификация областей применения RC-ЭРП и их математических моделей в науке и технике.

Однако существующие в настоящее время конструкции RC-ЭРП и их математические модели не позволяют реализовать те потенциальные возможности, которые предоставляются резистивно-емкостными структурами с распределенными параметрами для улучшения показателей систем обработки информации, идентификации параметров и управления процессами и объектами фрактальной и распределенной природы.

Поэтому предложена новая универсальная конструктивная основа для реализации RC-ЭРП и их моделей в виде двумерного n-слойного RLCG-ЭРП с распределенными L-, R-, C- и G-параметрами, которая позволит существенно расширить количество конструктивных вариантов RC-ЭРП и их математических моделей для решения отмеченных выше задач.

Для практической реализации предложенного подхода, учитывая технологические возможности изготовления многослойных RLCG-ЭРП, выявленные структуры объектов моделирования и диапазон рабочих частот, решено ограничиться конструктивной основой в виде RC-ЭРП со структурой слоев R1-G1-C1-R-C2-G2-R2 (обобщенный RCG-ЭРП), вид которой изображен на рис. 1.

Обоснован выбор технологических вариантов реализации RC-ЭРП на основе обобщенного RCG-ЭРП, в виде многослойных толсто- и тонкопленочных структур, который при существующих материалах и технологиях изготовления позволяет создавать RC-ЭРП с удельными постоянными времени от 2·1011 сек/мм (для планарных RC-ЭРП) до 1 сек/см2, способных работать в диапазоне частот от долей герц до единиц гигагерц.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Показана возможность создания параметрических RC-ЭРП за счет использования материалов, электрофизические свойства которых зависят от величин воздействующих на них полей различной природы. Приведена классификация физических эффектов в материалах слоев, которые можно использовать для расширения функциональных возможностей RC-ЭРП.

Проведена оценка состояния вопросов анализа и синтеза RC-ЭРП, которая показывает, что разработанные к настоящему времени методы и программное обеспечение позволяют выполнять анализ одномерных однородных и неоднородных по ширине RC-ЭРП со структурами слоев вида R-C-0, R-C-NR, C-R-NC, R-C-G-0, синтез неоднородных по ширине RC-ЭРП со структурой слоев вида R-C-0, а также анализ и синтез двумерных однородных RC-ЭРП со структурой слоев вида R-C-0.

Получена математическая модель обобщенного RCG-ЭРП в виде системы трех дифференциальных уравнений в частных производных, описывающих распределение потенциалов в резистивных слоях R1, R, R2 (см. рис. 1) и отражающая многообразие конструктивно-технологических вариантов RC-ЭРП, которые можно формировать на основе модели обобщенного RCG -ЭРП.

Проведенный анализ состояния проблемы показывает, что в силу отмеченных ранее причин лишь небольшое число из громадного многообразия конструктивно-технологических вариантов RC-ЭРП нашло применение для улучшения электрических и эксплуатационных характеристик функциональных устройств. Из этого вытекают цели и задачи настоящей работы.

Вторая глава посвящена разработке метода анализа RC-ЭРП с использованием обобщенных RCG-ЭРП, позволяющего получать решение системы дифференциальных уравнений в частных производных, описывающих процессы в многослойной неоднородной резистивно-емкостной среде.

С этой целью предложен метод, являющийся дальнейшим теоретическим развитием методов конечных элементов (МКЭ) и конечных распределенных элементов (МКРЭ), который сочетает в себе разбиение области определения потенциалов в резистивных слоях обобщенного RCG-ЭРП на конечные элементы (КЭ) с аналоговым моделированием распределения потенциалов в выделенных областях и в пределах всего анализируемого RC-ЭРП. Схематичное изображение алгоритма метода показано на рис. 2.

Обобщенный RCG-ЭРП как и в МКЭ, разбивается на множество КЭ (рис. 2, а), в данном случае, объемных с одинаковой формой сечения (треугольной, прямоугольной, трапециевидной и т.п.) (рис. 2, б). Но, в отличие от МКЭ, в котором распределение потенциалов в резистивных слоях в пределах каждого КЭ аппроксимируют полиномиальной финитной функцией, в предлагаемом методе распределение потенциалов задается электрической моделью распределенной физической структуры, выделяемой в процессе разбиения RC-ЭРП (подобно тому, как это делается в МКРЭ) (рис. 2, в). Основным условием, которому должна удовлетворять модель, является наличие аналитического решения для потенциалов в пределах каждого КЭ.

Рис. 2. Иллюстрация алгоритма предлагаемого метода анализа: а - разбиение обобщенного RCG-ЭРП на КЭ; б - отдельный КЭ, в - схема замещения КЭ; г - упрощенное изображение модели КЭ

В отличие от принятой классификации КЭ, модель, изображенная на рис. 2, б, была названа обобщенным конечным распределенным элементом (ОКРЭ). Поэтому предлагаемый метод решения определен как метод обобщенных конечных распределенных элементов (МОКРЭ).

Разработан алгоритм МОКРЭ, в котором матрицы формы имеют смысл матриц проводимости ОКРЭ, а глобальная матрица формируется как матрица проводимости некоторой цепи по заданной структуре цепи и известным матрицам проводимостей отдельных элементов этой цепи (в данном случае, ОКРЭ). Очевидно, что для анализа характеристик RC-ЭРП, формируемого на основе обобщенного RCG-ЭРП, нет необходимости находить узловые потенциалы во всей области их определения. Достаточно получить решение относительно внешних узлов, связанных с выводами RC-ЭРП, т.е. получить матрицу проводимости RC-ЭРП как многополюсного элемента.

Учитывая, что для большинства RC-ЭРП, полученных на основе обобщенного RCG-ЭРП, нет аналитических решений, необходимое количество КЭ, обеспечивающих заданную точность решения, целесообразно определять путем оценки скорости сходимости решения при увеличении количества КЭ.

Для уменьшения погрешностей, возникающих за счет граничных КЭ, на которых задаются граничные условия первого рода, вводится приграничная область с комбинированием КЭ прямоугольной и треугольной форм уменьшенных размеров, а также используются модели граничных ОКРЭ, учитывающие иную структуру их слоев по сравнению со структурой слоев остальных ОКРЭ.

Для получения аналитических выражений у-параметров ОКРЭ сделан переход от электродинамической модели системы с распределенными параметрами к равноценной ей модели в виде бесконечнозвенной лестничной цепи, переменными состояния в которой являются токи и напряжения. Достоинством такого подхода является то, что эквивалентная схема может содержать как линейные, так и нелинейные R-, L- и C-компоненты, источники токов и напряжений. Поэтому рассмотренный подход можно распространить на случаи параметрических и нелинейных ОКРЭ.

На основании полученного в работе общего решения системы дифференциальных уравнений, описывающих состояние эквивалентной электрической цепи, найдены аналитические выражения у-параметров ОКРЭ.

Для проверки корректности полученных аналитических выражений использовано сравнение частотных характеристик у-параметров ОКРЭ и его электрического эквивалента, созданного в программе схемотехнического моделирования на RC-ЭСП (Spice-модель).

Предварительно была проведена оценка необходимого количества звеньев Spice-модели, которое обеспечивает требуемую точность моделирования элемента с распределенными параметрами его схемой замещения на RC-ЭСП (на примерах RC-ЭРП со структурами слоев вида R-C-0 и R-C-NR). Получено выражение, связывающее количество звеньев, необходимых для обеспечения погрешности у-параметров модели не более 1%, и максимальную нормированную частоту рабочего диапазона.

Проведенные оценки показали, что для достоверной оценки корректности параметров модели ОКРЭ необходимо использовать Spice-модель с числом звеньев от 256 до 512 при допустимой погрешности моделирования RC-ЭРП не более 1% вплоть до нормированной частоты RC = 500.

Сходимость частотных характеристик у-параметров разработанной Spice-модели к частотным характеристикам у-параметров, вычисленным на основе аналитических выражений для ОКРЭ с ростом числа звеньев Spice-модели, доказывает, что полученные аналитические выражения точно описывают поведение идеализированного ОКРЭ.

Одним из принципиальных положений МОКРЭ является возможность на основе ОКРЭ формировать конечные распределенные элементы (КРЭ), совокупность которых вместе с граничными условиями определяет характеристики анализируемого RC-ЭРП. Разработанная классификация КРЭ, которые можно сформировать на основе ОКРЭ, включает 18 не повторяющихся вариантов структур слоев.

Большинство из этих КРЭ рассматриваются впервые, и для них в доступной литературе нет соответствующих математических моделей. Поэтому в работе предложен способ преобразования математической модели ОКРЭ в математические модели любого из указанных КРЭ. Было замечено, что структура слоев может быть задана присвоением удельным поперечным проводимостям материалов слоев G1, G2, и удельным сопротивлениям материалов слоев R1, R2, входящим в выражения у-параметров ОКРЭ, значений 0, или определенных значений, не равных нулю или бесконечности. Тогда любому КРЭ можно сопоставить четырехпозиционный троичный код х1х2х3х4, где xi = {0, 1, +}. Здесь цифра 0 соответствует нулевому значению параметра, 1 - бесконечно большому значению, а знак "+" - значению, отличному от 0 и 1. В этом случае конструкцию RC-ЭРП, которая формируется из обобщенного RCG-ЭРП путем модификации его ОКРЭ, можно представить в виде множества кодовых комбинаций, отражающих структуру каждого КРЭ, моделирующего один из конечных элементов. При сборке глобальной матрицы проводимости RC-ЭРП модель ОКРЭ модифицируется в соответствии с кодовой комбинацией, присвоенной данному КЭ. Иллюстрация способа приведена на рис. 3.

Рис. 3. Иллюстрация метода преобразования ОКРЭ в варианты КРЭ

Справедливость такого подхода доказана сравнением частотных характеристик известных RC-ЭРП, полученных расчетами с использованием преобразованной модели ОКРЭ и с использованием аналитических выражений у-параметров для этих RC-ЭРП, найденных другими авторами.

Получены аналитические выражения у-параметров для одномерных неоднородных ОКРЭ при условии, что r(x)c1(x) = const, для ограниченного числа законов изменения ширины. Такие ОКРЭ можно использовать для уменьшения числа КЭ при сложной геометрии RC-ЭРП. Проведена проверка справедливости полученных выражений для экспоненциального и гиперболического законов изменения ширины с помощью схемотехнического моделирования, используя Spice-модели.

Третья глава посвящена разработке математического, алгоритмического и программного обеспечения для анализа и исследования реализационных возможностей различных конструкций RC-ЭРП, получаемых на основе обобщенных RCG-ЭРП.

На основе обобщенного RCG-ЭРП предложен новый класс одномерных неоднородных RC-ЭРП, который представляет собой единую конструкцию, на отдельных участках которой структуры слоев могут быть неодинаковыми (одномерный структурно-неоднородный (ОСН) RC-ЭРП).

Для исследования возможностей нового класса RC-ЭРП исходная среда моделирования, имеющая структуру слоев вида NR-C-R-MC-KR, где коэффициенты N, M, и K - множители, задающие удельные параметры слоев по отношению к удельным параметрам слоев R и С, была условно разбита на четыре КЭ, как показано на рис. 4, а. Каждый из КЭ замещается одномерным однородным (ОО) ОКРЭ (рис. 4, б). На этой основе можно провести анализ характеристик как известных конструкции ОСН RC-ЭРП, так и новых, которые будут сформированы с целью исследования реализационных возможностей нового класса RC-ЭРП.

Разработана программа анализа, в которой описание конструктивных, структурных и параметрических неоднородностей задается двумя векторами: вектором электрофизических параметров слоев и вектором конструктивных и структурных параметров RC-ЭРП D. Вектор в данном случае определяется как = {Суд1, , N, M, K}, где N = {Ni}, M = {Mi}и K = {Ki}, . Вектор D определим как D = {L, S}, где L = {Li}, вектор длин КЭ, S = {Sij}, , вектор, определяющий все физически реализуемые сочетания вариантов структур в ОСН RC-ЭРП, которые можно сформировать на основе обобщенного RCG-ЭРП, m - число вариантов.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Кроме отмеченных параметров существует еще один путь изменения характеристик ОСН RC-ЭРП - изменение схемы включения отдельных КРЭ между собой, соблюдая при этом условия физической реализуемости вариантов соединения.

Как следует из рис. 4, б, каждый ОКРЭ представляет собой многополюсник, аналитические выражения у-параметров которого найдены в гл. 2. Алгоритм сборки глобальной матрицы основан на методе многополюсных подсхем, а исключение внутренних узлов схемы осуществляется методом блочных матриц. Изменение структуры ОКРЭ в соответствии с имеющейся конструкцией или в соответствии с заданием осуществляется с помощью коэффициентов Ni и Ki, которые определяют номиналы сопротивлений слоев соответственно R1 и R2 (для простоты параметрам G1 и G2 присвоены значения «1»).

Корректность работы программы подтверждена совпадением передаточных характеристик известных RC-ЭРП со структурами слоев R-C-NR и 0-C-R-NC-0, вычисленных по точным аналитическим выражениям, и передаточных характеристик ОСН RC-ЭРП, вычисленных в разработанной программе при соответствующем выборе составляющих векторов , и D и S. Достоверность результатов анализа, полученных с помощью программы для тех вариантов ОСН RC-ЭРП, для которых нет аналитических выражений, проверена с помощью Spice-моделей в программе схемотехнического моделирования.

С помощью разработанной программы анализа ОСН RC-ЭРП найдены новые конструкции RC-ЭРП и варианты схем их включения, позволяющие при меньшей занимаемой площади получать такие АЧХ коэффициента передачи (в частности, с двумя частотами режекции, с затуханием за полосой пропускания 88,5 дБ при расстройке на две декады), которые при реализации их с помощью RC-ЭСП потребуют на порядок большего количества элементов. Это подтверждает перспективность применения конструктивной основы в виде обобщенного RCG-ЭРП для создания новых функциональных элементов с улучшенными характеристиками.

Разработана математическая основа, алгоритмы и программы для анализа нового класса одномерных неоднородных RC-ЭРП, в котором одновременно сочетается структура слоев вида R-C-G-0 с неоднородностью по ширине и с неоднородностью погонных параметров слоев. В известной нам литературе такое сочетание неоднородностей в RC-ЭРП не рассматривалось ни с одной из структур слоев.

Разработан алгоритм вычисления у-параметров ОО КРЭ, алгоритм сборки и вычисления частотных характеристик ОН R-C-G-0 ЭРП при различных схемах включения. В программе предусмотрен анализ и одномерных комплементарных R-C-G-0 ЭРП, которые состоят из двух ОН RC-ЭРП, законы изменения ширины которых связаны соотношением b0 = b1(x) + b2(x). Здесь b0 постоянная величина, обычно соответствующая ширине исходного ОО RC-ЭРП, b1(x) и b2(x) законы изменения ширины двух частей, составляющих ОК RC-ЭРП, х - координата по длине RC-ЭРП.

Разработан интерфейс программы, позволяющий задавать законы неоднородностей, параметры RC-ЭРП, выбирать схему его включения, вид анализируемой частотной характеристики, диапазон рабочих частот, количество отсчетов в этом диапазоне и количество ОО КРЭ, на которые разбивается RC-ЭРП.

Проведена оценка погрешности вычисления частотных характеристик ОН R-C-G-0 ЭРП в зависимости от числа КРЭ для экспоненциального закона изменения ширины RC-ЭРП. В качестве сравнения использовалась АЧХ, вычисленная по известному аналитическому выражению коэффициента передачи экспоненциальной RC-линии. Сравнение характеристик показало, что при числе конечных элементов равном 50 максимальная погрешность на частоте RC = 100 не превышает 0,04%, а на RC = 500 не превышает 0,1%. Поэтому увеличение числа конечных элементов целесообразно лишь с увеличением максимальной частоты для обеспечения необходимой точности вычислений.

Если в качестве метода анализа ОН RC-ЭРП взять МКЭ или соответствующий ему по сути метод схем замещения многозвенными цепями на RC-ЭСП, то количество элементов, необходимое для получения той же точности будет на порядок больше.

В развитие концепции обобщенного RCG-ЭРП и МОКРЭ впервые разработаны математическая основа, алгоритм и программы анализа двумерных однородных и неоднородных RC-ЭРП, со структурами слоев вида R-C-G-0 и R-C-NR.

Интерфейс программы анализа двумерных R-C-NR ЭРП позволяет в удобной графической форме задавать пять типов двумерных КРЭ, которые могут составлять конструкцию двумерного RC-ЭРП, топологию контактных площадок, выбирать схему включения, визуализировать результаты расчетов.

Исследована зависимость точности анализа с помощью МОКРЭ от числа конечных распределенных элементов путем сравнения частоты режекции АЧХ коэффициента передачи однородного двумерного R-C-NR ЭРП с известной частотой режекции одномерного однородного R-C-NR ЭРП. Показано, что при сетке КРЭ 612 погрешность вычисления частоты режекции составляет не более 1 %. Также показано, что применение МОКРЭ уменьшает необходимое количество конечных элементов и сокращает время вычисления при одинаковой точности более чем на два порядка по сравнению с МКЭ.

Достоверность результатов анализа двумерного R-C-NR ЭРП со структурными неоднородностями подтверждена анализом с помощью Spice-модели в стандартных программах схемотехнического моделирования.

Получены зависимости частотных характеристик коэффициента передачи двумерного R-C-NR ЭРП от конструктивных параметров RC-ЭРП, которые, в частности, показывают возможность применения разработанной программы анализа для пополнения базы данных RC-ЭРП новыми базовыми конструкциями, определения стратегии подгонки характеристик RC-ЭРП после изготовления.

Для подтверждения адекватности математических моделей и корректности работы программ анализа были изготовлены экспериментальные образцы толстопленочные RC-ЭРП (фотография тестовой подложки с RC-ЭРП изображена на рис. 5). Сравнение частотных характеристик изготовленных образцов R-C-NR ЭРП с расчетными говорит об адекватности используемых моделей RC-ЭРП и результатов анализа с помощью метода обобщенных конечных распределенных элементов. Однако на отдельных участках частотного диапазона наблюдаемые отклонения характеристик на 10% 20% превышают погрешности измерений. Это связано с тем, что разработанные математические модели RC-ЭРП учитывают далеко не все возможные неидеальности проводящих, диэлектрических и резистивных материалов, а также краевые эффекты, локальные неоднородности геометрии и свойств материалов слоев.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

В четвертой главе предложена общая концепция синтеза, дана постановка задачи синтеза RC-ЭРП, разработаны теоретические положения, алгоритмы и программы синтеза одномерных неоднородных RC-ЭРП с использованием генетических алгоритмов.

Классические методы синтеза входных и передаточных функций цепей, содержащих RC-ЭСП, используемые в теории цепей, не нашли применения для синтеза RC-ЭРП. Это связано в первую очередь с отсутствием завершенных исследований о потенциальных возможностях той или иной базовой конструкции RC-ЭРП, а также методов декомпозиции синтезируемой функции на такие, которые можно было бы реализовать с помощью этих базовых конструкций.

Поэтому предлагается концепция синтеза RC-ЭРП, которая предусматривает два последовательных этапа. Сначала производится поиск подходящей базовой конструкции, на основе которой можно реализовать заданные требования ТЗ. Сведения о базовых конструкциях и их реализационных возможностях аккумулируются в специализированной базе данных, в том числе с помощью разработанных программ анализа RC-ЭРП. Если необходимая конструкция в базе данных отсутствует, то реализуется второй этап - структурный синтез RC-ЭРП на основе обобщенного конструктивного базиса, которым, с определенными ограничениями, является обобщенный RCG-ЭРП.

...

Подобные документы

  • Функции источников питания электронных устройств. Основные параметры однофазных выпрямителей и сглаживающих фильтров. Расчет однофазных мостовых выпрямителей, работающих на емкостных и Г- образных фильтрах RC, расчет резистивно-емкостных фильтров.

    контрольная работа [1,6 M], добавлен 27.12.2010

  • Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.

    дипломная работа [6,3 M], добавлен 18.07.2014

  • Изучение различных типов устройств СВЧ, используемых в схемах распределительных трактов антенных решеток. Практические расчеты элементов автоматизированного проектирования устройств СВЧ на основе метода декомпозиции. Конструирование баз и устройств СВЧ.

    контрольная работа [120,9 K], добавлен 17.10.2011

  • Динамический режим работы усилителя. Расчет аналоговых электронных устройств. Импульсные и широкополосные усилители. Схемы на биполярных и полевых транзисторах. Правила построения моделей электронных схем. Настройка аналоговых радиотехнических устройств.

    презентация [1,6 M], добавлен 12.11.2014

  • Проектирование функциональных узлов, блоков и устройств вычислительной техники. Разработка устройств и систем. Частота смены элементов. Блок буферной памяти. Обеспечение работы устройства ввода визуальной информации. Последовательность сигналов частоты.

    курсовая работа [1,7 M], добавлен 31.01.2011

  • Типы устройств СВЧ в схемах распределительных трактов антенных решеток. Проектирование устройств СВЧ на основе метода декомпозиции. Работа с программой "Модель-С" для автоматизированного и параметрического видов синтеза многоэлементных устройств СВЧ.

    контрольная работа [337,5 K], добавлен 15.10.2011

  • Структура устройств обработки радиосигналов, внутренняя структура и принцип работы, алгоритмами обработки сигнала. Основание формирование сигнала на выходе линейного устройства. Модели линейных устройств. Расчет операторного коэффициента передачи цепи.

    реферат [98,4 K], добавлен 22.08.2015

  • Автоматизация конструирования. Разработка схем цифровых устройств на основе интегральных схем разной степени интеграции. Требования, методы и средства разработки печатных плат. Редактор АСП DipTrace. Требования нормативно-технической документации.

    отчет по практике [2,9 M], добавлен 25.05.2014

  • Постановка задачи расчета активных аналоговых фильтров на резистивно-емкостных радиоэлементах. Нормирование характеристик и электрических величин. Каскадная реализация фильтра по передаточной функции. Описание программы, реализующей методику расчета.

    курсовая работа [302,6 K], добавлен 28.10.2011

  • Обзор существующих методов передачи информации. Передача дискретных сообщений и виды манипуляции. Преобразование непрерывного сообщения в цифровую форму. Методы повышения помехоустойчивости систем передачи информации. Разработка схемных решений устройств.

    курсовая работа [1,8 M], добавлен 11.10.2013

  • Понятие и характеристика базовых аналоговых вычислительных устройств. Разработка в среде Multisim схемы сумматора, интегратора, дифференциатора, а также схемы для моделирования абсорбционных процессов в конденсаторах. Построение графиков их испытаний.

    реферат [178,7 K], добавлен 11.01.2012

  • Синхронный дискретный автомат Мура как прототип проектируемого электронного автомата с заданными входными сигналами и контролируемыми параметрами. Разработка схемы дискретного автомата. Выбор элементной базы. Разработка устройств сопряжения по входу.

    курсовая работа [958,4 K], добавлен 29.07.2009

  • Решение задачи синтеза корректирующего устройства при коррекции систем управления. Передаточная функция интегрирующей цепи. Методы синтеза последовательных корректирующих устройств и их классификация. Их логарифмические частотные характеристики.

    контрольная работа [66,9 K], добавлен 13.08.2009

  • Описание структуры и изучение устройства элементов аналоговых и IP-систем видеонаблюдения. Параметры камер видеонаблюдения и анализ форматов видеозаписи. Характеристика устройств обработки видеосигналов и обзор программного обеспечения видеонаблюдения.

    курсовая работа [1,2 M], добавлен 29.09.2013

  • Особенности использования методов анализа и синтеза основных узлов аналоговых электронных устройств, методов оптимизации схемотехнических решений. Расчет параметров синтезатора радиочастот. Определение зависимости тока фазового детектора от времени.

    лабораторная работа [311,0 K], добавлен 19.02.2022

  • Анализ структур, составов и требований к функциональным слоям микротвердооксидных топливных элементов. Требования, предъявляемые к анодным электродам. Методы формирования функциональных слоев микротвердооксидных топливных элементов. Патентный поиск.

    дипломная работа [2,1 M], добавлен 14.05.2014

  • Разработка структурной, принципиальной и интегральной микросхем аналогового устройства на основе биполярных и полевых транзисторов. Выбор типов и структур биполярных и полевых транзисторов, навесных элементов и расчёт конфигурации плёночных элементов.

    курсовая работа [241,0 K], добавлен 29.08.2014

  • Определение параметров и структуры управления двигателя постоянного тока. Разработка принципиальной электрической схемы и выбор её элементов. Разработка алгоритма управления и расчёт параметров устройств управления скорости с внутренним контуром потока.

    курсовая работа [8,5 M], добавлен 29.07.2009

  • Метод электромеханических аналогий: сведение анализа механических устройств к анализу эквивалентных электрических схем. Электромеханические преобразователи механической энергии в электрическую. Основные системы электромеханических преобразователей.

    реферат [63,0 K], добавлен 16.11.2010

  • Устройства обработки аналоговых сигналов: аналого-цифровые; буферы данных; постоянное и оперативное запоминающее устройство. Основные типы микропроцессорных устройств: секционные, однокристальные с фиксированной разрядностью, однокристальные микроЭВМ.

    контрольная работа [523,2 K], добавлен 23.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.