Повышение помехоустойчивости трассовой обзорной радиолокационной станции "Скала-М"
Особенности функциональных узлов радиолокационной станции "Скала-М". Методы защиты приемного тракта РЛС от помех. Защита приемников от перегрузок. Расчет активной помехи и параметров средств помехозащиты. Средства подавления статической электризации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 26.05.2018 |
Размер файла | 2,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство высшего и среднего специального образования Республики Узбекистан
Ташкентский государственный технический университет имени А.Р. Беруни
Авиационный факультет
Кафедра: «Эксплуатация Радиоэлектрооборудования летательных аппаратов и аэропортов»
Выпускная квалификационная работа
На тему: «Повышение помехоустойчивости трассовой обзорной радиолокационной станции «Скала-М»»
Выполнил: ст-т. гр. 146-09 Я.Абдуолимов
Руководитель: доц. Д.Эшмурадов
Рецензент: доц. О. Зарипов
Зав.кафедрой: к.ф.-м.н., доц. И.М.Сайдумаров
Ташкент, 2013
Annotatsiya
Bitiruv malakaviy ishida radiolokatsion stantsiyalarning umumiy xarakteristikasi, shovqinlardan himoya qilish usullari keltirilgan, shuningdek, «Скала-М» radiolokatsion stantsiyaning xalaqitlarga chidamliligi parametrlari hisoblangan.
Аннотация
В выпускной квалификационной работе приведены общие характеристики радиолокационных станций, методы защиты от помехи, а также проведен расчет параметров помехоустойчивости радиолокационной станции «Скала-М».
Summary
In the final qualifying work provides General characteristics of the radar stations, methods of protection from interference, as well as calculation of the parameters of immunity of the radar station «Скала-М».
- Содержание
- Annotatsiya
- Аннотация
- Summary
- Введение
- Глава 1. Общая характеристика РЛС УВД
- 1.1 Задачи и основные параметры РЛС
- 1.2 Трассовая обзорная РЛС «Скала-М»
- 1.3 Особенности функциональных узлов РЛС «Скала-М»
- 1.4 Обзорная РЛС с вращающейся антенной
- Глава 2. Методы защиты приемного тракта РЛС от помех
- 2.1 Селекция сигналов
- 2.2 Защита приемников от перегрузок
- 2.3 Помеха в полосе основной частотной селекции
- Глава 3. Расчет параметров помехоустойчивости
- 3.1 Расчет активной помехи
- 3.2 Расчет зон прикрытия помехами
- 3.3 Расчет параметров средств помехозащиты
- 3.4 Расчет экономической эффективности
- 4. Охрана труда
- 4.1 Меры и средства подавления статической электризации
- 4.2 Обеспечение электромагнитной безопасности
- Заключение
- Список использованной литературы
Введение
Радиолокационные станции системы управления воздушным движением (УВД) являются основным средством сбора информации о воздушной обстановке для диспетчерского состава службы движения и средством контроля за ходом выполнения плана полетов, а также служат для выдачи дополнительной информации по наблюдаемым воздушным судам и обстановке на взлетно-посадочной полосе и рулежных дорожках. В отдельную группу могут быть выделены метеорологические радиолокационные станции, предназначенные для оперативного снабжения командного, летного и диспетчерского состава данными о метеорологической обстановке.
В нормах и рекомендациях ИКАО, Постоянной комиссии по радиотехнической и электронной промышленности СЭВ предусмотрено разделение радиолокационных средств на первичные и вторичные. Часто первичные радиолокационные станции (ПРЛС) и ВРЛС объединяют по принципу функционального использования и определяют как радиолокационный комплекс (РЛК). Однако характер получаемой информации, особенно построения аппаратуры, позволяет рассматривать данные станции отдельно.
Исходя из сказанного РЛС целесообразно объединить в следующие трастовые обзорные радиолокаторы ОРЛ-Т с максимальной дальностью действия около 400 км;
трассовые и аэроузловые радиолокаторы ОРЛ-ТА с максимальной дальностью действия порядка 250 км;
аэродромные обзорные радиолокаторы ОРЛ-А (варианты В1, В2, ВЗ) с максимальной дальностью действия 150, 80 и 46 км соответственно;
посадочные радиолокаторы (ПРЛ);
вторичные радиолокаторы (ВРЛ);
комбинированные обзорно-посадочные радиолокаторы (ОПРЛ);
радиолокаторы обзора летного поля (ОЛП);
метеорологические радиолокаторы (МРЛ).
В современных авторизированных системах (АС) управления воздушного движения (УВД) применяются РЛС третьего поколения. Переоснащение предприятий гражданской авиации занимает обычно длительный период, поэтому в настоящее время наряду с современными РЛС применяются РЛС второго и даже первого поколений. РЛС различных поколений отличаются, прежде всего, элементной базой, способами обработки радиолокационных сигналов и защиты РЛС от помех.
РЛС первого поколения начали широко применятся с середины 60-х годов. К ним относятся трассовые РЛС типа П-35 и аэродромные РЛС типа “Экран”. Эти радиолокаторы построены на электровакуумных приборах с применением навесных элементов и объемного монтажа.
РЛС второго поколения начали применяться в конце 60-х - начале 70-х годов. Повышение требований к источникам радиолокационной информации системы УВД привело к тому, что радиолокаторы этого поколения превратились в сложные многорежимные и многоканальные радиолокационные комплексы (РЛК). Радиолокационный комплекс второго поколения состоит из РЛС со встроенным радиолокационным каналом и аппаратуры первичной обработки информации (АПОИ). Ко второму поколению относятся трастовые РЛК «Скала» и аэродромные РЛК «Иртыш». В этих комплексах наряду с электровакуумными приборами начали широко применяться твердотельные элементы, модули и микромодули в сочетании с монтажом на основе печатных плит. Основной схемой построения первичного канала РЛК стала двухканальная схема с разносом частот, которая позволила повысить показатели надежности и улучшить характеристики обнаружения по сравнению с РЛС первого поколения. В РЛС второго поколения начали применяться более совершенные средства защиты от помех.
Опыт эксплуатации РЛС и РЛК второго поколения показал, что в целом они недостаточно полно удовлетворяют требованиям АС УВД. В частности, к их существенным недостаткам относятся ограниченное применение в аппаратуре современных средств цифровое обработки сигналов, малый динамический диапазон приемного тракта и др. Данные РЛС и РЛК используются в настоящее время в неавтоматизированных и автоматизированных системах УВД.
Первичные РЛС и РЛК третьего поколения начали использоваться в гражданской авиации нашей страны как основные источники радиолокационной информации АС УВД с 1979 г. Главное требование, которое определяет особенности РЛС и РЛК третьего поколения, - обеспечение стабильного уровня ложных тревог на выходе РЛС. Это требование выполняется благодаря адаптивным свойствам первичных РЛС третьего поколения. В адаптивных РЛС осуществляются анализ в реальном масштабе времени помеховой обстановки и автоматическое управление режимом работы РЛС. С этой целью вся зона обзора РЛС разбивается на ячейки, для каждой из которых в результате анализа за один или несколько периодов обзора принимается отдельное решение о текущем уровне помех. Адаптация РЛС к изменениям помеховой обстановки обеспечивает стабилизацию уровня ложных тревог и уменьшает опасность перегрузки АПОИ и аппаратуры передачи данных в центр УВД.
Элементной базой РЛС и РЛК третьего поколения являются интегральные микросхемы. В современных РЛС начинают широко применятся элементы вычислительной техники и, в частности, микропроцессоры, которые служат основой технической реализации адаптивных систем обработки радиолокационных сигналов.
Одним из важных параметров РЛС является помехоустойчивость. Поэтому в составе РЛС функционируют устройства защиты от пассивных и активных помех, которые включаются оператором РЛС. На экране индикатора появляется информация о воздушном пространстве, задача оператора стоит в безошибочном определении вида помехи. После того как оператор принял решение, например, об отсутствии помеховой обстановки, то устройство активных помех (квадратурный компенсатор) отключается ключами 1 и 2 или устройство пассивных помех (режекторный фильтр) отключается ключами 3 и4.
Работа такой структурной схемы осуществляется в устройстве выбора типа помехи. После происходит измерение требуемых параметров подавляемой РЛС. Затем полученная информация о параметрах РЛС передается на устройство активных помех (генератор на ЛОВ), либо на устройство пассивных помех (отражатели).
В данной выпускной квалификационной работе рассматривается принцип построения РЛС управления воздушным движением и вопросы повышения помехоустойчивости трассового обзорного РЛС «Скала - М».
Глава 1. Общая характеристика РЛС УВД
1.1 Задачи и основные параметры РЛС
Система управления воздушным движением /УВД/ содержит РЛС обнаружения, радиомаяк и общий цифровой кодер для сопровождения самолетов и устранения возможности столкновений. В процессе передачи данных на систему УВД производится сбор данных, поступающих с общего цифрового кодера, при этом для всех сопровождаемых самолетов собираются данные о дальности и азимуте. Из общего массива данных отфильтровываются данные, не относящиеся к местонахождению сопровождаемых самолетов. В результате формируется сообщение о траектории с полярными координатами. Полярные координаты преобразуются в прямоугольные, после чего формируется и кодируется блок данных, несущий информацию о всех самолетах, сопровождаемых системой УВД. Блок данных формируется вспомогательным компьютером. Блок данных считывается во временное ЗУ и передается на приемную станцию. На приемной станции принятый блок данных декодируется и воспроизводится в виде, приемлемом для восприятия человеком.
Назначение РЛС - обнаружение и определение координат воздушных судов (ВС) в зоне ответственности радиолокатора. Первичные радиолокационные станции позволяют обнаружить и измерить наклонную дальность и азимут ВС методом активной радиолокации, используя отраженные от целей зондирующие сигналы радиолокатора. Они работают в импульсном режиме с высокой (100 ... 1000) скважностью. Круговой обзор контролируемого воздушного пространства осуществляется с помощью вращающейся антенны, обладающей остронаправленной ДНА в горизонтальной плоскости.
В табл. 1 приведены основные характеристики обзорных РЛС и их численные значения, регламентированные нормами СЭВ--ИКАО.
Рассматриваемые РЛС имеют значительное число общих черт и зачастую выполняют аналогичные операции. Им присуща идентичность структурных схем. Основные их отличия обусловлены различными особенностями функционального использования в иерархически сложной системе УВД.
Таблица 1. Основные характеристики РЛС
Параметр |
ПРЛС |
|||||
ОРЛ-Т |
ОРЛ-ТА |
ОРЛ-А |
||||
B1 |
B2 |
B3 |
||||
Максимальная дальность действия, км |
400 |
250 |
150 |
80 |
46 |
|
Минимальная дальность действия, км |
5 |
5 |
1,5 |
1,5 |
1,5 |
|
Максимальная высота обнаружения, км |
20 |
20 |
12 |
7 |
2,4 |
|
Максимальный угол места |
45 |
45 |
45 |
45 |
30 |
|
Вероятность ложных тревог |
10-4 |
10-4 |
10-4 |
10-8 |
10-8 |
|
Вероятность обнаружения |
0,9 |
0,9 |
0,9 |
0,9 |
0,9 |
|
Средняя квадратическая погрешность: По дальности, м По азимуту |
1000 1 |
1000 1 |
1000 1 |
1000 1 |
1000 2 |
|
Разрешающая способность: По дальности, м По азимуту |
1000 1,3 |
1000 1,5 |
1000 1,5 |
350 1,5 |
350 4 |
|
Тип обновления информации, с |
12 |
12 |
4 |
4 |
2 |
|
Коэффициент подпомеховой видимости, дБ |
35 |
35 |
30 |
30 |
30 |
|
Коэффициент подавления отражений от метеообразований, дБ |
23 |
23 |
23 |
18 |
18 |
|
Наработка на отказ, ч |
1000 |
1000 |
1000 |
1000 |
1000 |
|
Среднее время устранения неисправности, ч |
0,5 |
0,5 |
0,5 |
0,5 |
0,5 |
Типовая структурная схема первичной РЛС (рис. 1) состоит из следующих основных узлов: антенно-фидерной системы (АФС) с механизмом привода (МПА); датчика угловых положений (ДУА) и канала подавления боковых лепестков (КП); передатчика (Прд) с устройством автоматической подстройки частоты (АПЧ); приемника (Прм); аппаратуры выделения и обработки сигналов (АВОС) - в ряде современных и перспективных радиолокационных станций и комплексов, объединяемых с приемником в процессор обработки сигналов; синхронизирующего устройства (СУ), тракта трансляции сигналов к внешним устройствам обработки и отображения (ТС); контрольного индицирующего устройства (КМ), обычно работающего в режиме «Аналог» или «Синтетика»; системы встроенного контроля (ВСК).
Рис.1. Состав оборудования радиолокационной позиции АС УВД: а- позиция трассовий АС УВД; б-позиция аэродромной АС УВД
Основная антенна, входящая в состав АФС, предназначена для формирования ДНА, имеющей в вертикальной плоскости ширину 30 ... 40є, а в горизонтальной плоскости ширину 1 ...2°. Малая ширина ДНА в горизонтальной плоскости обеспечивает необходимый уровень разрешающей способности по азимуту. Для уменьшения влияния дальности обнаружения ВС на уровень отражения от цели сигналов ДНА в вертикальной плоскости часто имеет форму, подчиняющуюся закону Cosec2 и, где и - угол места.
Канал подавления боковых лепестков ДН запросной антенны (при работе РЛС в активном режиме, т. е. при использовании встроенного или параллельно работающего ВРЛ) предназначен для уменьшений вероятностей ложных срабатываний самолетного ответчика. Конструктивно более проста система подавления боковых лепестков по ответу.
В большинстве РЛС в АФС используются два облучателя, один из которых обеспечивает обнаружение ВС на малых высотах, т. е. под малыми углами места. Особенностью ДН в вертикальной плоскости является градация ее конфигурации, особенно в нижней части, чем достигается уменьшение помех от местных предметов и подстилающей поверхности. С целью повышения гибкости юстирования РЛС предусмотрена возможность изменения максимума ДНА по углу 9 в пределах 0 ... 5є относительно горизонтальной плоскости. В состав АФС входят устройства, позволяющие изменять поляризационные характеристики излучаемых и принимаемых сигналов. Так, например, применение круговой поляризации позволяет ослабить на 15 ... 22 дБ сигналы, отраженные от метеообразований.
Отражатель антенны, выполненный из металлической сети, по форме близок к усеченному параболоиду вращения. В современных РЛС УВД используются также радиопрозрачные покрытия, защищающие АФС от осадков и ветровой нагрузки. На отражателе антенны монтируют антенны ВРЛ и антенну канала подавления.
Механизм привода антенны обеспечивает ее равномерное вращение. Частота вращения антенны определяется требованиями информационного обеспечения диспетчеров службы движения, ответственных за различные этапы полета. Как правило, предусмотрены варианты секторного и кругового обзора пространства.
Определение азимута ВС осуществляется с помощью считывания информации в системе координат, заданных для индицирующего устройства РЛС. Датчики угловых положений антенны предназначены для получения дискретных или аналоговых сигналов, являющихся базовыми для выбранной системы координат.
Передатчик предназначен для получения радиоимпульсов длительностью 1 ... 3 мкс. Частотный диапазон работы выбирается исходя из назначения РЛС. С целью снижения потерь, вызванных флуктуациями цели, увеличения числа импульсов, отраженных от цели за один обзор, а также с целью борьбы со слепыми скоростями применяют двухчастотное зондирование пространства. При этом рабочие частоты отличаются на 50...100 МГц.
Временные характеристики зондирующих импульсов зависят от функционального использования РЛС. В ОРЛ-Т используются зондирующие импульсы с длительностью порядка 3 икс, следующие с частотой повторений 300 ... 400 Гц, а ОРЛ-А имеют длительность импульса не более 1 мкс при частоте повторения 1 кГц. Мощность передатчика не превосходит 5МВт.
Для обеспечения заданной точности частоты генерируемых колебаний СВЧ, а также для нормальной работы схемы СДЦ используется устройство автоматической подстройки частоты (АПЧ). В качестве источника опорных колебаний в устройствах АПЧ используют стабильный местный гетеродин приемника. Скорость автоподстройки достигает единиц мегагерц на секунду, что позволяет снизить влияние АПЧ на эффективность работы системы СДЦ. Значение остаточной расстройки реальной величины частоты по отношению к номинальному значению не превосходит 0,1 ... 0,2 МГц.
Обработка сигналов по заданному алгоритму осуществляется в приемно-анализирующем устройстве РЛС в случае, когда Прм и АВОС практически неразличимы.
В общем случае приемник выполняет функции выделения, усиления и преобразования принимаемых эхо-сигналов. Особенностью приемников РЛС является наличие малошумящего усилителя высокой частоты, позволяющего снизить коэффициент шума приемника и тем самым увеличить дальность обнаружения цели. Среднее значение коэффициента шума приемников лежит в пределах 2 ... 4 дБ, а чувствительность составляет 140 дБ/Вт. Промежуточная частота обычно равна 30 МГц, двойное преобразование частоты в РЛС УВД практически не используется, коэффициент усиления УПЧ около 20 ... 25 дБ. В некоторых РЛС с целью расширения динамического диапазона входных сигналов используют усилители с ЛАХ.
В свою очередь для сужения диапазона входных сигналов, поступающих на АПОИ, используют АРУ, а также ВАРУ, повышающую коэффициент усиления УПЧ при работе на предельных дальностях обнаружения.
С выхода УПЧ сигналы идут по каналам амплитудного и фазовогодетектирования.
Аппаратура временной обработки сигнала (АВОС) выполняет функцию фильтрации полезного сигнала на фоне помех. Наибольшей интенсивностью обладают непреднамеренные помехи от радиотехнических средств, расположенных в радиусе до 45 км от РЛС.
Аппаратурные средства борьбы с электромагнитными помехами включают специальные устройства коммутации и управления ДН, схемы ВАРУ, уменьшающие динамический диапазон входных сигналов от близкорасположенных целей, устройства бланкирования приемо-анализирующего тракта, фильтры синхронных и несинхронных помех и др.
Эффективным средством борьбы с помехами от неподвижных или слабо меняющих свое положение в пространстве и времени целей являются системы селекции движущихся целей (СДЦ), реализующие методы одно - или двукратной череспериодной компенсации. В ряде современных РЛС устройство селекции движущихся целей (СДЦ) реализует алгоритм цифровой обработки в квадратурных каналах, имея коэффициент подавления помех от неподвижных объектов 40 ... 43 дБ, а от метеопомех до 23 дБ.
Выходными устройствами АВОС являются параметрические и непараметрические обнаружители сигналов, позволяющие стабилизировать вероятность ложной тревоги на уровне 10-6.
При цифровой обработке сигналов АВОС представляет собой специализированный микропроцессор.
1.2 Трассовая обзорная РЛС «Скала-М»
Рассматриваемая РЛС представляет собой комплекс, в который входят ПРЛ и вторичный канал «Корень». РЛС предназначена для контроля и управления и может быть использована как в автоматизированных системах управления воздушным движением, так и в неавтоматизированных центрах УВД.
Основные параметры радиолокатора «Скала-М» приведены ниже.
Структурная схема РЛС «Скала-М» представлена на рис. 1.2. В ее состав входят первичный радиолокационный канал (ПРК), вторичный радиолокационный канал (ВРК), аппаратура первичной обработки информации (АПОИ) и коммутирующее устройство (КУ).
Рис.1.2.Структурная схема РЛС «Скала-М»
В ПРК входят: поляризационные устройства ПУ; вращающиеся переходы ВП, два блока сложения мощностей БСМ1 (2); антенные переключатели АП1 (2, 3); передатчики Прд (2, 3); блок разделения сигналов БРС; приемники Прм 1 (2, 3); система селекции движущихся целей СДЦ; устройство формирования зоны обнаружения ФЗО и контрольный индикатор КИ. Вторичный радиолокационный канал включает в себя: антенную систему ВРЛ АВРЛ; самолетный ответчик типа СОМ-64, используемый в качестве устройства, контролирующего работу ВРК-СО; фидерное устройство ФУ; приемопередающее устройство, используемое в режиме «RBS» ПП; устройство согласования СГ и приемное устройство, используемое в режиме УВД-ПРМ.
Съем и трансляция информации осуществляются с помощью широкополосной радиорелейной линии ШРЛ и узкополосной линии передачи УЛП.
Первичный канал РЛС представляет собой двухканальное устройство и работает на трех фиксированных частотах. Нижний луч ДНА формируется облучателем основного канала, а верхний - облучателем канала индикации высоколетящих целей (ИВЦ). В РЛС реализована возможность одновременной обработки информации в когерентном и амплитудном режимах, что позволяет проводить оптимизацию зоны обзора, представленную на рис. 1.3.
Рис.1.3. Зона обзора РЛС «Скала-М»
Границы зоны обнаружения устанавливаются в зависимости от помеховой ситуации. Их выбор определяется импульсами, вырабатываемыми в КИ, управляющими коммутацией в АПОИ и видеотракте.
Участок 1 имеет протяженность не более 40 км. Информация формируется при помощи сигналов верхнего луча. При этом подавление отражений от местных предметов в ближней зоне составляет 15 ... 20 дБ.
На участке 2 используются сигналы верхнего луча при работе приемо-анализирующего устройства в амплитудном режиме и сигналы нижнего луча, обработанные в системе СДЦ, причем в канале нижнего луча используется ВАРУ, имеющая динамический диапазон на 10 ...15 дБ больше, чем в канале верхнего луча, что обеспечивает контроль за местоположением ВС, находящимся под малыми углами места.
Второй участок заканчивается на таком удалении от РЛС, при котором эхо-сигналы от местных предметов, принимаемые нижним лучом, имеют незначительный уровень.
На участке 3 используются сигналы верхнего луча, а на 4 - нижнего луча. В приемо-анализирующем тракте осуществляется режим амплитудной обработки.
Вобуляция частоты запуска РЛС позволяет устранить провалы в амплитудно-скоростной характеристике и устранить неоднозначность отсчета. У ПРДЗ частота повторения зондирующих сигналов 1000 Гц, а у первых двух 330 Гц. Увеличенная частота следования повышает эффективность СДЦ за счет уменьшения влияния флюктуации местных предметов и вращения антенны.
Принцип работы аппаратуры ПРК заключается в следующем.
Высокочастотные сигналы передающих устройств подаются через антенные переключатели на устройства сложения мощностей и далее через вращающиеся сочленения и устройство управления поляризацией к облучателю нижнего луча. Причем на участках 1 и 2 зоны обнаружения используются сигналы первого приемопередатчика, поступающие по верхнему лучу и прошедшие обработку в СДЦ. На 3 - композиционные сигналы, поступающие по обоим лучам и обработанные в амплитудном канале первого и второго приемопередатчиков, а на 4 - сигналы первого и второго приемопередатчиков, поступающие по нижнему лучу и обработанные в амплитудном канале. При отказе любого из комплектов его место автоматически занимает третий приемопередатчик.
Устройства сложения мощностей производят фильтрацию принятых нижним лучом эхо-сигналов и в зависимости от несущей частоты передают их через АП на соответствующие приемо-анализирующие устройства. Последние имеют раздельные каналы обработки сигналов основного луча и луча канала индикации высоколетящих целей (ИВЦ). Канал ИВЦ работает только на прием. Его сигналы проходят поляризационное устройство и после блока разделения сигналов поступают на три приемника. Приемники выполнены по супергетеродинной схеме. Усиление и обработка сигналов промежуточной частоты выполняются в двухканальном УПЧ. В одном канале усиливаются и обрабатываются сигналы верхнего луча, в другом - нижнего.
Каждый из аналогичных каналов имеет два выхода: после амплитудной обработки сигналов и по промежуточной частоте для фазовых детекторов системы СДЦ. На фазовых детекторах выделяются синфазная и квадратурная составляющие.
После СДЦ сигналы поступают в АПОИ, объединяются с сигналами ВРК и далее подаются на аппаратуру отображения и обработки радиолокационной информации. В АС УВД в качестве АПОИ может использоваться экстратор СХ-1000. а в качестве устройств трансляции-модемы СН-2054.
Вторичный радиолокационный канал обеспечивает получение координатной и дополнительной информации от ВС, оборудованных ответчиками в режимах «УВД» или «RBS». Форма сигналов в режиме запроса определяется нормами ИКАО, а при приеме - нормами ИКАО или отечественного канала в зависимости от режима работы ответчиков. Структурная схема и параметры аппаратуры вторичного канала аналогичны автономному ВРЛ типа «Корень-АС».
1.3 Особенности функциональных узлов РЛС «Скала-М»
Антенно-фидерное устройство ПРК состоит из антенны, формирующей ДНА, и фидерного тракта, содержащего коммутирующие устройства.
Конструктивно антенна первичного канала выполнена в виде параболического отражателя размером 15x10,5 м и двух рупорных облучателей. Нижний луч формируется однорупорным облучателем основного канала и отражателем, а верхний - отражателем и однорупорным облучателем, расположенным ниже основного. Форма ДН в вертикальной плоскости cosec2и , где и - угол места. Ее вид приведен на рис. 4.
Для уменьшения отражений от метеообразований предусмотрены поляризатор основного канала, обеспечивающий плавное изменение поляризации излучаемых сигналов от линейной до круговой, и поляризатор канала ИВЦ, постоянно построенный на круговую поляризацию.
Рис.1.4.Диаграмма направленности антенной системы РЛС «Скала-М» в вертикальной плоскости
Развязка между устройствами сложения мощностей не менее 20 дБ, а развязка между отдельными каналами не менее 15 дБ. В волноводном тракте предусмотрена возможность регистрации коэффициента стоячих волн не менее 3, при абсолютной погрешности измерения 20 %.
Формирование ДНА вторичного канала производится отдельной антенной, аналогичной антенне ВРЛ типа «Корень - АС», расположенной на отражателе основной антенны. На дальностях, превышающих 5 км, обеспечивается сектор подавления сигналов по боковым лепесткам в пределах 0..360є.Обе антенны помещены над радиопрозрачным куполом, что позволяет существенно снизить ветровую нагрузку и повысить защиту от атмосферных воздействий.
Передающая аппаратура первичного канала предназначена для генерирования импульсов СВЧ длительностью 3.3 мкс со средней мощностью в импульсе 3.6 кВт, а также для формирования опорных сигналов промежуточной частоты для фазовых детекторов и сигналов гетеродинных частот для смесителей приемоанализирующих трактов. Передатчики выполнены по типовому для истинно когерентных РЛС принципу, что позволяет получить достаточную фазовую стабильность. Сигналы несущей частоты получаются путем преобразования частоты задающего генератора промежуточной частоты, имеющего кварцевую стабилизацию.
Оконечным каскадом передатчика является усилитель мощности, выполненный на пролетном клистроне. Модулятор выполнен в виде накопителя с полным разрядом из пяти параллельно включенных модулей. Несущие частоты и частоты гетеродина имеют следующие значения: f1=1243 МГц; fГ1=1208 МГц; f2=1299 МГц; fГ2=1264 МГц; f3=1269 МГц; fГ3=1234 МГц.
Приемный тракт ПРК предназначен для усиления, селектирования, преобразования, детектирования эхо-сигналов, а также для ослабления сигналов, отраженных от метеообразований.
Каждый из трех приемоанализирующих трактов имеет два канала - основной и индикации высотных целей и выполнен по супергетеродинной схеме с однократным преобразованием частоты. Выходные сигналы с приемников подаются на СДЦ (по промежуточной частоте) и на формирователь зоны обнаружения - видеосигналы.
В приемниках осуществляется обработка сигналов в линейном и логарифмическом амплитудных подканалах, а также в когерентном подканале, чем достигается стабилизация уровня ложных тревог до уровня собственных шумов в логарифмическом видеоусилителе.
Частичное восстановление динамического диапазона осуществляется с помощью видеоусилителей с антилогарифмической амплитудной характеристикой. Для сжатия динамического диапазона эхо-сигналов на малых дальностях, а также ослабления ложного приема по боковым лепесткам ДНА применена ВАРУ. Имеется возможность временного бланкирования одной или двух областей при интенсивном воздействии помех. помеха защита перегрузка радиолокационный
В каждом приемном канале обеспечивается поддержание заданных уровней шумов (схема ШАРУ) на выходах каналов с точностью не менее 15 %.
Цифровое устройство СДЦ имеет два идентичных канала, в которых обрабатываются синфазная и квадратурная составляющая. Выходные сигналы с фазовых детекторов после обработки во входных устройствах аппроксимируются ступенчатой функцией с шагом дискретизации 27 мкс. Затем они поступают на АЦП, где преобразуются в 8-миразрядный код и вводятся в запоминающее и вычислительное устройства. Запоминающее устройство рассчитано на запоминание 8-миразрядного кода в 960 квантах дальности.
В СДЦ предусмотрена возможность двойного и тройного череспериодного вычитания сигналов. Квадратичное сложение осуществляется в экстракторе модуля, а устройство ЛОГ-МПВ-АНТИЛОГ производит селекцию видеоимпульсов по длительности и восстанавливает динамический диапазон выходных видеоимпульсов. Предусмотренный в схеме редиркуляционный накопитель позволяет повысить сигнал-шум и является средством защиты от несинхронных импульсных помех. С него сигналы поступают на ЦАП, усиливаются и подаются на АПОИ и КУ. Дальность действия СДЦ при частоте повторения fп=330 Гц - 130 км, fп=1000Гц - 390 км, а коэффициент подавления сигналов от неподвижных объектов 40 дБ.
1.4 Обзорная РЛС с вращающейся антенной
Обзорная РЛС содержит вращающуюся антенну для получения информации о дальности и азимуте обнаруженного объекта и электрооптический датчик, вращающийся вокруг оси вращения антенны, для получения дополнительной информации о параметрах обнаруженного объекта. Антенна и датчик вращаются несинхронно. С антенной электрически соединено устройство, которое при каждом обороте антенны определяет азимут, дальность и доплеровскую скорость обнаруженных объектов. С электрооптическим датчиком соединено устройство, которое при каждом обороте датчика определяет азимут и угол места объекта. К устройствам, определяющим координаты объекта, избирательно подключается общий блок сопровождения, объединяющий полученную информацию и выдающий данные для сопровождения обнаруженного объекта.
Предметом радиолокации как науки является разработка радиолокационных методов обнаружения целей, методов определения их координат, методов конструирования и эксплуатации радиолокационных устройств с учетом их тактического назначения и технических данных, а также изучение физических процессов, происходящих в этих устройствах.
РЛС дальнего обнаружения предназначена для обнаружения целей на возможно большем удалении. От этих РЛС не требуется высокой точности определения координат, но они должны обладать возможно большей дальностью обнаружения.
С появлением радиолокационных станций (РЛС) сначала в наземных системах ПВО, а впоследствии и на самолётах (бортовых РЛС-БРЛС) встала задача уменьшить возможность обнаружения самолета с помощью РЛС.
Самолет 2, летящий на большой высоте по траектории 3 к цели 8, будет обнаружен в точке 4 лучом 5 антенны РЛС 9 системы ПВО на достаточно большом удалении от объекта 8. Более раннему обнаружению самолета препятствуют неровности рельефа местности (возвышенности, горы) 10, которые луч РЛС не может обогнуть. Мощность (дальность) РЛС самолета 2 не позволяет ему в точке 4 обнаружить цель 8, однако бортовые системы самолета, зафиксировав его облучение РЛС системы ПВО, могут расчетными методами обнаружить положение РЛС системы ПВО.
Для нападения на объекты с сильной ПВО начали применять тактику уничтожения РЛС системы ПВО специальными ракетами, запуск которых с борта самолета 2 возможен в точке траектории 4, если достаточна дальность действия ракеты. Начали применять тактику полета самолета 14 к цели на малой высоте по траектории 12 по огибающей рельефа местности. В этом случае самолет 14 будет обнаружен в точке 11 траектории, т.е. на значительно меньшем удалении от цели, что резко повышает вероятность ее поражения.
Стремление обнаружить самолет противника на большом удалении от цели привело к созданию специальных самолетов дальнего радиолокационного обнаружения (ДРЛО).
Самолет дальнего радиолокационного обнаружения 7, патрулирующий на большой высоте в зоне охраняемого объекта, лучом 6 мощной бортовой РЛС может обнаружить самолет противника 2 в точке 1, а низколетящий самолет 14 - в точке 13 , что резко повышает вероятность поражения самолета.
В задачах ПВО после обнаружения и опознавания цели стоит задача об определении параметров цели. Существуют несколько принятых в радиолокации систем координат. В зависимости от выбора системы координат, будут ставиться задачи об определении тех или иных параметров цели. Например, в земной сферической системе координат параметрами движения являются азимут, угол места, и дальность цели. Здесь дальность цели - это расстояние от РЛС до самой цели.
Основными характеристиками РЛС являются:
- точность измерений,
- разрешающая способность,
- предельные значения ряда параметров (максимальная и минимальная дальность действия, сектор и время обзора и др.),
- помехоустойчивость.
К основным характеристикам относят также мобильность РЛС, её массу, габариты, мощность электропитания, срок службы, количество обслуживающего персонала и многие др. эксплуатационные параметры.
Задача выбора конкретных средств радиоэлектронного подавления (РЭП) может быть решена на основе имеющейся информации о тактико-технических характеристиках РЛС противоположной стороны. С другой стороны, при выборе характеристик систем помехозащиты необходимы некоторые априорные сведения о типах помех, которые вероятно будут применяться, и их энергетических параметрах. Таким образом, для проектирования систем, участвующих в радиоэлектронном конфликте, важно наличие достоверной информации о технических средствах противника.
По ТЗ определяем:
· Дальность обнаружения цели R=260 км;
· Максимальную скорость цели V=940м/с;
· ЭПР цели Е=6м2;
Расчёт параметров РЛС будем производить, используя программу «Стрела 2.0».
Для чего в диалоговых окнах зададим необходимые для расчета параметры. Так как РЛС дальнего обнаружения работает в метровом диапазоне волн, то задаем длину волны равной 1,8м. Однозначно измеряемая дальность - это наибольшее расстояние, при котором радиосигнал, излученный станцией, еще доходит до цели и после отражения от нее регистрируется приемником РЛС. Однозначно измеряемая дальность зависит от характера распространения радиоволн используемого диапазона, условий распространения, технических параметров станции и отражающих свойств цели. Однозначно измеряемая дальность зададим равной 260км.
Разрешение по дальности - это то минимальное расстояние между двумя соседними объектами в пространстве, когда РЛС может различить эти два объекта отдельно. Зададим разрешение по дальности равным 160м.
Пусть РЛС работает в режиме спирального обзора пространства (рис.ниже). Такой обзор получается путем вращения антенны с частотой вокруг горизонтальной оси и одновременно качанием по углу места в пределах сектора
Спиральный обзор применяется для поиска и наблюдения целей в пределах некоторого телесного угла, ограниченного как по азимуту от 00 до 240, так и по углу места от 00 до 200.
Результаты вычислений показывают, что при выбранных значения цель обнаруживается с запасом в 1,299дБ.
Зависимости характеристик обнаружения от параметров РЛС приведены на рис. 1.7.
Рис.1.7. Зависимости характеристик обнаружения от параметров РЛС
Глава 2. Методы защиты приемного тракта РЛС от помех
2.1 Селекция сигналов
Все многообразие характеристик РЛС можно разделить на три группы: тактические, технические и эксплуатационные. В качестве исходных данных при расчете РЛ берутся их тактические показатели. К тактическим характеристикам, определяющим возможности использования РЛС как источника информации, относятся: назначение, зона обнаружения, время обзора зоны; число измеряемых координат и точность их определения; разрешающая способность; помехоустойчивость; объем и количество получаемой дополнительной информации; способ отображения информации.
Помехоустойчивость - это свойство РЛС сохранять тактические показатели при воздействии помех.
Достоверность информации о ВС, получаемой в РЛС, можно повысить путем применения методов помехозащиты и обработки результатов измерений.
Методы защиты от помех зависят от вида этих помех. Различают помехи двух видов: шумы приемного устройства РЛС и помехи, создаваемые внешними источниками.
Внешние помехи делятся на активные и пассивные. К активным относятся сигналы, излучаемые соседними радиотехническими средствами, атмосферные и индустриальные помехи, шумы космического пространства. Пассивные помехи - это сигналы, отраженные от подстилающей поверхности, местных предметов, метеообразований и спорадические помехи.
Защита от активных помех может быть организована с помощью следующих устройств: селекции сигналов, защиты приемников РЛС от перегрузок и компенсации радиопомех. Широкое распространение в современных РЛС получают устройства с адаптацией, которые изменяют параметры сигнала или характеристики РЛС таким образом, чтобы в условиях помех данного типа в максимальной степени снижался уровень ложных тревог РЛС.
Различают первичную, вторичную и функциональную селекцию. Существуют следующие виды первичной селекции: пространственная, поляризационная, частотно-фазовая, временная, амплитудная, структурная.
Пространственная селекция осуществляется антенной системой РЛС. Чем уже ДНА и меньше уровень боковых лепестков, тем сильнее подавление мешающих сигналов, выше уровень пространственной селекции.
Для борьбы с пассивными помехами от метеообразований используют поляризационную селекцию. Для реализации метода подавления, основанного на поляризационной селекции, современные РЛС излучают колебания с круговой поляризацией. Капли дождя сохраняют круговую поляризацию, изменяя лишь направление вращения вектора её электрического поля на противоположное. Такой сигнал является ортогональным по отношению к излученному и существенно подавляется в антенно-волноводном тракте. Применение круговой поляризации в РЛС увеличивает отношение сигнал/помеха для слабого дождя на 25...30дБ.
Первичная частотно-фазовая селекция основывается на различии частотно-фазовых характеристик принимаемых сигналов и помех. При этом используются системы частотной и фазовой автоподстройки, позволяющие сузить полосу пропускания приемника, методы оптимальной фильтрации, осуществляющие селекцию на основе различия спектров сигнала и помехи.
К частотной селекции относятся методы, основанные на изменении несущей частоты и частоты следования зондирующих импульсов. Использование зондирования на двух частотах улучшает характеристики обнаружения и уменьшает ошибки измерения угловых координат благодаря усреднению значений ЭПР цели на разных несущих частотах. Изменение периода следования зондирующих импульсов служит в основном для борьбы со «слепыми» скоростями в когерентно-импульсных РЛС.
Устройства временной селекции, осуществляющие сравнение импульсов по длительности, по частоте повторения и по времени их появления позволяют выделить сигналы на фоне импульсных помех.
Устройства с амплитудной селекцией предназначены для борьбы с хаотическими импульсными помехами. Амплитудную селекцию осуществляют методом накопления с помощью некогерентного (последетекторного) накопителя или с помощью систем ограничителей, селектирующих сигнал по его интенсивности на входе приемника.
Структурная селекция основывается на особенностях модуляции сигналов РЛС. Примером её реализации может служить метод сжатия в приемном устройстве импульсных сигналов с частотной модуляцией.
Вторичная селекция связана с контролем сопутствующих сигналов РЛС. Различают частотную, фазовую, временную, амплитудную и структурную вторичные селекции.
Функциональная селекция осуществляется на этапе третичной обработки информации в видеотракте РЛС.
2.2 Защита приемников от перегрузок
На входе приемника РЛС присутствуют сигналы и помехи с широким динамическим диапазоном (ШДД) изменения амплитуд порядка 100дБ. В то же время для нормальной работы линейной части приемника динамический диапазон не должен превышать 40дБ. Для согласования ШДД амплитуд входных колебаний с рабочим динамическим диапазоном реальных устройств производят сжатие динамического диапазона обрабатываемых колебаний.
Для защиты от перегрузок приемно-усилительных трактов и индикаторов РЛС используют три метода: регулировку усиления, формирование нелинейной амплитудной характеристикой (АХ) усилительного тракта, применение антенн с ДНА близкой к cosecІц.
Для борьбы с перегрузкой применяются следующие разновидности систем АРУ: временная (ВАРУ), быстродействующая автоматическая (БАРУ), мгновенная (МАРУ).
Система ВАРУ служит для защиты приемника от перегрузки отражениями от местных предметов и выравнивания яркости отметок от целей, находящихся на различном удалении от РЛС. Кроме того, ВАРУ является одним из основных средств борьбы с помехами типа «ангел», представляющих собой эхо - сигналы от птиц, перемещающихся со скоростью ветра, а также сигналы, обусловленные появлением зон аномального распространения электромагнитных колебаний.
Для стабилизации вероятности ложных тревог осуществляют регулировку усиления в зависимости от уровня шума (ШАРУ).
В РЛС третьего и четвертого поколения применяют устройства сжатия амплитуд входных сигналов, в основе которых лежит обработка отдельных амплитудно-дальностных ячеек, на которые разделена рабочая зона РЛС. Ячейки дальности и азимута, в которых присутствует помеховый сигнал, отраженный от местных предметов или метеообразований, исключается при дальнейшей обработке радиолокационной информации. Так, ослабляя сигнал, поступающий по основному лучу в комбинации с сигналом дополнительного приподнятого луча в РЛС с двулучевой ДНА, можно менять угол приема отраженного сигнала, исключая отражения от местных предметов. Такой способ адаптивного подавления помех позволяет уменьшить уровень мешающих сигналов на 25...30дБ.
В импульсных РЛС применяются два основных метода компенсации помех: с помощью вспомогательных приемников и череспериодная компенсация в системе селекции движущихся целей.
Рис.2.1. Структурная схема корреляционного автокомпенсатора
Первый метод используется для компенсации помех, действующих по боковым лепесткам ДНА. По основному каналу (рис. 2.1) поступает смесь полезного сигнала с помехой. Вспомогательный канал служит для приема помехи. В результате последующей операции вычитания помехи из выходных колебаний основного канала на выход компенсатора проходят сигналы, отраженные от цели.
Основным средством борьбы с помехами от подстилающей поверхности и местных предметов является система селекции движущихся целей. В основе работы устройств СДЦ лежит эффект смещения несущей частоты сигнала, отраженного от движущегося объекта (эффект Доплера). При этом на практике используется метод фиксации изменения череспериодного вычитания импульсов с неизменной фазой. Сравнение фазовых соотношений зондирующего и отраженного сигналов осуществляется, как правило, на промежуточной частоте. При этом структурная схема системы СДЦ включает фазовый детектор и устройство череспериодной компенсации (ЧПК).
Рис.2.2. Упрощенная схема СДЦ в структуре РЛС
В радиолокаторах, используемых в АС УВД, опорное колебание фазового детектора (Uоп) и зондирующий высокочастотный сигнал обладают истинной внутренней когерентностью, которая позволяет получить высокую степень компенсации пассивных помех.
Работа передающего (ПРД) и приемного (ПРМ) трактов в истинно когерентных радиолокаторах (рис. 2.2) обеспечивается едиными высокостабильными генераторами - задающим (ЗГ) и опорным (ОГ).\
Радиолокаторы, в которых фаза опорного колебания синхронизируется принимаемым сигналом, относятся к РЛС с внешней когерентностью. РЛС, в которой фаза опорного колебания синхронизируется начальной фазой высокочастотного заполнения зондирующего импульса, в каждом периоде повторения относятся к классу псевдокогерентных РЛС. Как правило, качественные показатели систем СДЦ в подобных РЛС ниже, чем у истиннокогерентных РЛС.
Наиболее совершенными являются подавители на дискретных цифровых фильтрах. Если последовательность видеоимпульсов пропустить через устройство череспериодного вычитания, т.е. произвести вычитание каждого последующего импульса из предыдущего, то сигналы, отраженные от неподвижных целей, идентичные по структуре, взаимно скомпенсируются и не поступят на дальнейшую обработку. Система СДЦ (схема ЧПК) представляет собой режекторный-гребенчатый фильтр, частотная характеристика которого (рис. 2.3) имеет провалы в окрестностях частот, кратных частоте повторения импульсов.
Спектральные линии радиоимпульсов, отраженных от неподвижных предметов, совпадают с положением нулей АЧХ фильтра, и такой сигнал подавляется. Так как частотные интервалы между спектральными составляющими радиоимпульсов, отражаемых от движущихся объектов, имеют доплеровское смещение частоты 2Vр/л, где Vр - радиальная скорость движения цели, то такой сигнал ЧПК не подавляется.
Рис.2.3. Амплитудно-частотная характеристика системы ЧПК
При определенной радиальной скорости цели Vр=Vсл фаза высокочастотного отраженного сигнала за время Т может измениться на 360°.
В этом случае сигнал будет подавлен аналогично сигналу от неподвижного объекта. Скорости Vсл носят название «слепых» скоростей и определяются как
Vсл=nл/ Тп
где n -целое число.
Среди известных методов уменьшения числа «слепых» скоростей в пределах рабочего диапазона радиальных скоростей цели наибольшее распространение получил способ вобуляции частоты, то есть изменения периода повторения зондирующих импульсов. Далее рассмотрим принцип построения радиолокационных станций УВД, находящихся в настоящее время на эксплуатации.
Преимуществами двухчастотной схемы построения РЛС перед одночастотной РЛС являются: увеличение суммарной мощности излучения РЛС при наличии ограничений мощности отдельного передатчика; увеличении дальности обнаружения и точности измерения координат; увеличения надежности работы РЛС и её помехозащищенности по отношению к помехам искусственного и естественного происхождения.
Увеличение дальности обнаружения и точности измерения координат объясняется тем, что диаграмма переотражений сложных целей на разных частотах имеет провалы на различных углах визирования. Поэтому сумма выходных напряжений в двухканальной РЛС имеет значительно меньше флуктуаций амплитуды, чем в случае приема сигналов от целей на одной частоте. В некоторых типах РЛС зона обнаружения в вертикальной плоскости (рис. 2.2) формируется с учетом применения локальной обработки принимаемых сигналов
В других современных РЛС применяется более гибкий подход к формированию зоны обнаружения, реализующий идею динамической адаптации РЛС к помеховой обстановке. При этом вся зона обнаружения по дальности разбивается на два равных участка. Участок I,. для которого характерно наибольшее влияние помех от местных предметов, разбивается на элементарные зоны по азимуту 5,6є (64 сектора), а по дальности - на 16 участков. В результате вся зона обзора в горизонтальной плоскости в пределах первой половины максимальной дальности действия РЛС получается разбитой на 16 · 64 = 1024 ячейки. В течение рабочего цикла, равного трем периодам обзора, осуществляется анализ помеховой обстановки и в специальном запоминающем устройстве РЛС формируется текущая карта помех, содержащая информацию об уровне помех в каждой из 1024 ячеек. На основе этой информации производится выбор весовых коэффициентов для формирования взвешенной суммы сигналов, принятых по основному и дополнительному лучам ДНА, для каждой из этих ячеек в отдельности.
В приемном устройстве ВРЛ может возникать целый ряд помех. Наиболее существенные из них следующие:
Внутрисистемные помехи в том числе:
а) синхронные помехи, образующиеся при запросе данным запросчиком нескольких ответчиков одновременно и при одновременном приеме ответов нескольких ответчиков на запрос данного запросчика как по основному, так и по боковым лепесткам ДНА;
б) несинхронные помехи, влияние которых проявляется при наличии нескольких запросчиков в одной зоне. Если ВС находится в области, перекрываемой несколькими наземными запросчиками, то ответы любому из них, попадая по боковым лепесткам на вход других ВРЛ, могут привести к возникновению ошибок определения азимута.
Уровень внутрисистемных помех растет с ростом интенсивности воздушного движения.
Многолучевое распространение сигнала ВРЛ по каналу “Земля-борт-земля”, связанное с переотражением от земли или от различных отражающих объектов.
В современных ответчиках, работающих по стандарту России для борьбы с внутрисистемными помехами, применяются схемы разрядки потока ответных сигналов, фильтры-аттенюаторы, уменьшающие чувствительность приемника, схемы блокирования приемника после приема запросного сигнала. В наземной аппаратуре ВРЛ используют двухканальные устройства декодирования ответных сигналов, устройства защиты от несинхронных помех, обеспечивают разнос частот повторения запросных сигналов близко расположенных запросчиков. Существенным источником внутрисистемных помех являются боковые лепестки ДНА запросчика.
Современные ВРЛ системы обеспечивают подавление сигнала боковых лепестков как по каналу запроса “земля-борт”, так и по каналу ответа “борт-земля”. В первом случае предотвращаются запуски ответчика боковыми лепестками ДНА, во втором - предохраняется тракт обработки ответных сигналов наземной аппаратуры от несинхронных помех.
Принцип подавления ответных сигналов, принятых боковыми лепестками ДНА ВРЛ, основан на сравнении амплитуд сигналов, поступающих по двум независимым, идентичным каналам приемника от основной антенны и антенны подавления. В случае, если Uосн < Uпод, что соответствует приходу ответной посылки по боковому лепестку основной антенны, ключевая схема запрета запирает выход приемника, реализуя режим подавления. Если Uосн > Uпод, ответная посылка, принятая главным лепестком, после усиления проходит в аппаратуру обработки. Для улучшения условий прохождения сигналов в обоих трактах приемника в современных ВРЛ амплитудные соотношения на входе преобразуются в фазовые (рис. 3.5). На выходе приемника соотношения фаз сигналов Uосн и Uпод с помощью фазового детектора вновь преобразуются в амплитудное.
Сигналы, принятые основной антенной и антенной подавления, одновременно складываются и вычитаются. Образующиеся при этом суммарный Uc и разностный Uр сигналы получают друг относительно друга определенную фазовую окраску, которая в зависимости от направления приема будет иметь одно из двух возможных значений:
-при приеме сигналов в направлении главного лепестка основной антенны угол между векторами суммарного и разностного сигналов будет острым;
-при приеме сигналов в направлении боковых лепестков угол между векторами суммарного и разностного сигналов будет тупым.
Суммарные и разностные сигналы, получившие фазовую окраску в зависимости от направления приема, усиливаются в независимых каналах УПЧ до необходимой величины.
Далее суммарные сигналы промежуточной частоты используются в качестве опорных и подаются в альтернативный канал как опорные.
...Подобные документы
Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.
курсовая работа [158,1 K], добавлен 05.03.2011Обоснование, выбор и расчет тактико-технических характеристик самолетной радиолокационной станции. Определение параметров излучения и максимальной дальности действия. Оценка параметров цели. Описание обобщённой структурной схемы радиолокационной станции.
курсовая работа [277,9 K], добавлен 23.11.2010Расчет требуемого отношения сигнал-шум на выходе радиолокационной станции. Определение значения множителя Земли и дальности прямой видимости цели. Расчет значения коэффициента подавления мешающих отражений. Действие станции на фоне пассивных помех.
контрольная работа [1,3 M], добавлен 22.11.2013Задачи и основные параметры радиолокационной станции системы управления воздушным движением. Особенности функциональных узлов РЛС "Скала-М". Потенциально опасные и вредоносные производственные факторы, организация рабочих мест диспетчерской службы.
курсовая работа [1,7 M], добавлен 05.03.2011Радиолокационные станции управления воздушным движением. Разработка алгоритмов работы и структурных схем постановщика помех и устройств защиты станции, анализ эффективности комплекса. Расчёт параметров помехопостановщика и зон прикрытия помехами.
курсовая работа [425,8 K], добавлен 21.03.2011Расчет параметров помехопостановщика: мощность передатчика помех и средств создания помех. Расчет зон прикрытия помехами. Анализ эффективности подавления и помехозащиты. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.
курсовая работа [814,9 K], добавлен 21.03.2011Разработка проекта импульсного приёмника радиолокационной станции (РЛС) дециметрового диапазона. Классификация радиолокации, параметры качества приема. Расчёт параметров узлов схемы структурной приёмника. Определение полосы пропускания приёмника.
дипломная работа [377,6 K], добавлен 21.05.2009Определение основных параметров радиолокационной станции, ее оптимизация по минимуму излучаемой мощности и коэффициенту шума УВЧ приемника в диапазоне длин волн. Выбор и обоснование активного элемента передатчика. Разработка функциональной схемы станции.
курсовая работа [511,3 K], добавлен 11.10.2013Расчет параметров радиоэлектронных средств разных сторон радиоэлектронного конфликта. Достоинства и недостатки тех или иных методов радиоэлектронного подавления и защиты РЭС. Анализ эффективности применения средств помехопостановки и помехозащиты.
курсовая работа [813,4 K], добавлен 19.03.2011Параметры средств помехозащиты и помехопоставщика, зоны прикрытия помехами. Анализ эффективности применения комплекса помех и средств помехозащиты. Требования к аппаратно-программным ресурсам средств конфликтующих сторон. Структурная схема устройства.
курсовая работа [2,4 M], добавлен 19.03.2011Расчет параметров помехопостановщика. Мощность передатчика заградительной и прицельной помех, средств создания пассивных помех, параметров уводящих помех. Алгоритм помехозащиты структуры и параметров. Анализ эффективности применения комплекса помех.
курсовая работа [1,4 M], добавлен 21.03.2011Эскизное проектирование радиолокационной головки самонаведения зенитной управляемой ракеты. Анализ эффективности применения средств помехопостановки и помехозащиты. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.
курсовая работа [1,4 M], добавлен 05.03.2011Разработка аппаратуры защиты от активно-шумовых помех, создание радиолокационной станции (РЛС) с высокой помехозащищенностью на базе цифровых комплектов элементов. Анализ тактики по применению помех и преодолению системы ПВО. Расчет РЛС боевого режима.
дипломная работа [122,7 K], добавлен 14.09.2011Расчет параметров средств помехозащиты. Способы оптимальной обработки сигналов в импульсно-доплеровской РЛС. Расчет параметров помехопостановщика. Защита от активной помехи. Расчет зон прикрытия помехами. Составление структурной схемы устройства.
курсовая работа [1,8 M], добавлен 05.03.2011Классификация радиолокационной станции управления воздушным движением и воздушных объектов и их краткая характеристика. Особенности построения трассовых радиолокационных станций. Система синхронизации и формирования меток азимута трассовой станции.
дипломная работа [2,5 M], добавлен 28.11.2022Описание аэродромных обзорных радиолокаторов. Выбор длины волны крылатых ракет. Определение периода следования зондирующего импульса. Расчет параметров обзора, энергетического баланса. Создание схемы некогерентной одноканальной радиолокационной станции.
курсовая работа [736,9 K], добавлен 09.08.2015Анализ тактики применения помех и преодоления системы ПВО. Ударный и эшелон прорыв. Длина волны как важный параметр РЛС. Выбор коэффициента шума, метода радиолокации. Обоснование структуры зондирующего сигнала. Анализ структуры антенно-фидерной системы.
дипломная работа [265,9 K], добавлен 14.09.2011Устройство функционально-диагностического контроля системы управления лучом радиолокационной станции (РЛС) боевого режима с фазированной антенной решеткой. Принципы построения системы функционального контроля РЛС. Принципиальная схема электронного ключа.
дипломная работа [815,8 K], добавлен 14.09.2011Радиолокация как область радиотехники, обеспечивающая радиолокационное наблюдение различных объектов. Назначение, технические данные, состав и работа РЛС 9S35М1 по структурной схеме. Источники радиолокационной информации. Преимущества импульсного режима.
курсовая работа [1,9 M], добавлен 12.06.2009Изучение взаимосвязи системотехнических параметров и характеристик при проектировании радиолокационной системы. Расчет и построение зависимости энергетической дальности обнаружения от мощности передатчика и числа импульсов в пачке зондирующего сигнала.
контрольная работа [574,9 K], добавлен 18.03.2011