Повышение помехоустойчивости трассовой обзорной радиолокационной станции "Скала-М"
Особенности функциональных узлов радиолокационной станции "Скала-М". Методы защиты приемного тракта РЛС от помех. Защита приемников от перегрузок. Расчет активной помехи и параметров средств помехозащиты. Средства подавления статической электризации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 26.05.2018 |
Размер файла | 2,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для частичной борьбы с синхронными помехами, поступающими на ВРЛ по основному лепестку ДНА, дешифраторы информационных кодов, как правило, выполняются в двухканальном варианте и обеспечивают обработку информации от двух ответчиков одновременно.
Несинхронная помеха подавляется в наземной аппаратуре ВРЛ фильтром несинхронных помех. Работа фильтра основана на случайном характере повторения импульсов помехи. Все сигналы, частота которых отличается от частоты повторения запросных импульсов ВРЛ, отфильтровываются.
Кроме того, в ВРЛ применяется метод адаптивной импульсной ВАРУ, заключающейся в том, что управляющее напряжение ВАРУ запирает тракт лишь в моменты, соответствующие дальностям на которых расположены самолеты, подверженные воздействию переизлученных сигналов.
Значительный эффект в борьбе с факторами, ухудшающими показатели работы существующих ВРЛ, дает введение моноимпульсного метода определения направления, а так же использование индивидуально-адресной системы запроса.
2.3 Помеха в полосе основной частотной селекции
Учтем существенное отличие характера воздействия помех в тракте основной селекции вне полосы основной селекции.
Учитывая, что прохождение помехи в тракт основной селекции сопровождается ее усилением, наибольшую интенсивность она имеет в оконечных каскадах радиоприемного устройства (РПУ).
Искажения формы выходного импульса принято рассматривать раздельно для областей низких частот (так называемых больших времен) и высоких частот (малых времен), т.к. в импульсных каскадах, эти области достаточно удалены друг от друга. В каждом отдельном случае к форме импульса предъявляются различные требования. Нас интересуют искажения в области больших времен с целью выбора оптимальных условий обеспечивающих минимальную длительность переходного процесса по окончании импульсной помехи. Поскольку определение искажений импульсов в общем виде является одной из сложнейших задач теории радиотехнических цепей, то для качественного их рассмотрения необходимо ввести условные понятия напряжения, функции и времени последействия помехи. Под напряжением последействия помехи будем понимать напряжение на выходе каскада по окончании действия помехи(окончании заднего фронте импульса), а функция последействия - это аналитическое выражение, описывающее временную зависимость этого напряжения Время последействия - это время, в течение которого напряжение последействия остается заметным по сравнению с сигналом. Время последействия отсчитывается от момента заднего фронта помехи и продолжается до того момента, когда напряжение последействия становится меньше некоторого значения т.е. когда выполняется условиеВеличина зависит от конкретных требований к отношению .
Например, для надежного выделения сигнала на фоне помехи часто принимают это отношение равным 2. В общем случае аналитически процесс восстановления описывается, исходя из равенства характерного уровня полезного сигнала Uс min и напряжения последействия Un(tn), где время tn отсчитывается от момента прихода заднего фронта.
Уравнение |Uс min|»n|Un(tn)|, (где коэффициент пропорциональности n выбирается на основе принятых критериев обнаружения сигнала), позволяет определить время tn, в течение которого приемник нечувствителен к сигналам с амплитудой UсЈUс min, как функцию Uс min и параметров элементов приемника.
Как известно, спад плоской вершины прямоугольного видеоимпульса и последующий выброс противоположной полярности связаны с переходными процессами в базовой и эмиттерной цепях ВУ. Эти искажения обусловлены свойствами частотной характеристики каскада в области низких частот. В упрощенном виде эти свойства можно отразить с помощь следующей математической модели
(1.1)
Здесь tВУ=RВУЧСВУ. - постоянная времени видеоусилителя в области низких частот, KВУ- максимальный коэффициент усиления видеоусилителя, Uп(t) - огибающая импульса помехи на входе ВУ, UВУ(t) - огибающая импульса помехи на выходе ВУ. Напряжение на выходе ВУ при действии на входе прямоугольного импульса запишется следующим образом:
(1.2)
гденормированная переходная характеристика в области больших времен;
UВУm - амплитуда выходного импульса, UВУm=KВУЧUn.
Импульс сигнала с достаточной точностью можно охарактеризовать его амплитудой, не интересуясь небольшими изменениями его формы, обусловленными действиями усилителя, т.е. полагать Uс=Ucm.
Из условия - Ucm (tn)=nUn имеем
Из этого уравнения имеем для времени последействия:
(1.3)
Здесь и в дальнейшем будем рассматривать два предельных случая: длительной импульсной помехи tn>>tВУ и кратковременной помехи tn<<tВУ. Уточним понятие ''кратковременная" и "длительная" помехи. Такая идеализация необходима для упрощения расчетов и получения легко анализируемых выражений. Математически такая идеализация позволяет обратить экспоненциальную функцию ехр(-х) в нуль (если хі5)или представить ее линейной зависимостью вида (1-х) (если хЈ0,5). При таком подходе можно считать помеху длительностью tnі5tВУ - длительной, а помеху tnЈ0,5tВУ -кратковременной (здесь tВУ - постоянная времени анализируемого каскада). Физически такая идеализация позволяет рассмотреть два наиболее интересных случая:
установившийся режим и режим линейного изменения исследуемого напряжения.
1. Длительная помеха tn>>tВУ. Из выражения (1.3) имеем
(1.4)
Таким образом, в случае воздействия на видеоусилитель длительной помехи, для уменьшения времени ее последействия надо уменьшать постоянную времени усилителя только до определенного предела, который зависит от допустимых искажений полезного сигнала.
2. Кратковременная мощная помеха tn<<tВУ. В этом случае уравнение (1.3) примет вид
(1.5)
Проанализируем это выражение при некоторых значениях аргумента, стоящего под знаком логарифмической функции (при n=2).
При этом время последействия помехи равно нулю или отрицательно tnЈ0. Отрицательные значения tn означают, что всегда уровень сигнала выше максимального уровня напряжения последействия помехи, т.е. измерение всегда возможно. Иначе говоря, в данном случае схема слишком инерционна и не успевает среагировать на короткую помеху. Из этого условия оптимальная постоянная времени усилителя определяется как
(1.6)
Отсюда ясно, что чем сильнее кратковременная помеха (чем больше tnЧUnm - "площадь "помехи), тем больше должна быть постоянная времени усилителя, чтобы был возможен приём сигнала.
Наиболее перспективным методом уменьшения времени последействия ВУ, по-видимому, является управление величинами его реактивных элементов в зависимости от потока измеряемых сигналов и помех. Tак, целесообразно после окончания действия импульса помехи на входе ВУ быстро уменьшать низкочастотную постоянную времени BУ. Это приводит к очень быстрому разряду накопительных элементов (емкости, индуктивности), и, как следствие этого к уменьшению времени последействия.
В ВУ последействие которого определяется эмиттерной цепью, поставленная цель достигается тем, что разряд конденсатора, стоящего в цепи эмиттера, обуславливающий возникновение импульса противоположной полярности, осуществляется через транзистор, работающий в ключевом режиме и управляемый триггером Шмитта (рис. 2.4).
Рис.2.4.Структурная схема, управляемая триггером Шмитта
Триггер Шмитта, соединенный с выходом ВУ, подключает к конденсатору СЭ транзистор V на время действия обратного выброса. Транзистор V, работающий в ключевом режиме, практически мгновенно, разряжает конденсатор СЭ после окончания действия импульса, тем самым, уменьшая время его разряда и длительность выброса противоположной полярности.
На осциллограммах, изображенных на рис. 2.5, показаны импульс помехи и сигнала навходе ВУ (рис. 2.5 а), на выходе ВУ без устройства защиты (рис. 2.5 б) и на выходе ВУ сустройством защиты (рис. 2.5 в). По полученным результатам можно судить оцелесообразности применения такого устройства в ВУ.
Рис.2.4.Осциллограмма импульсов
Подавление модуляции сигнала синусоидальной помехой
Рассмотрим случай одновременного воздействия на безынерционный линейный детектор сигнала и помехи при любом соотношении их амплитуд.
Пусть на входе детектора имеется напряжение сигнала
(1.7)
и напряжение помехи
(1.8)
Тогда напряжение на выходе линейного безынерционного детектора будет пропорционально амплитуде результирующего напряжения
(1.9)
Разлагая выражение (1.9) в биномиальный ряд и суммируя члены, получим выражение для амплитуды напряжения частоты модуляции W на выходе детектора для случая модуляции сигнала синусоидальным напряжением
(1.10)
где пUh = - отношение сигнал/помеха.
Если пользоваться формулой (1.10), то при любом h погрешность не превышает двухпроцентов. Выражение (1.10) можно записать и в другом виде
(1.11)
где kп - коэффициент помехоустойчивости модуляции сигнала. Выражения (1.10) и (1.11)справедливы при любом отношении сигнала к помехе h, которое может быть больше,меньше или равно единице. Они показывают, что имеет место подавление не толькослабого сигнала сильным, но и сильного слабым.
На рис. 2.5 дан график зависимости коэффициента помехоустойчивости модуляциисигнала, равного согласно (1.10).
Рис. 2.5.График зависимости коэффициента помехоустойчивости
(1.12)
На том же рисунке приведены кривые, вычисленные по формуле В.И. Сифорова
(1.13)
справедливой при h < 0,5 и по приближённой формуле
(1.14)
справедливой для синусоидальной помехи лишь при h>0,6ё0,7, а для флюктуационной помехи при любом h.
На рис. 2.6 приведены также экспериментальные точки, показывающие хорошее совпадение с результатами расчёта по формуле (1.12).
Рис. 2.6.График экспериментальных точек
Глава 3. Расчет параметров помехоустойчивости
3.1 Расчет активной помехи
Активные помехи работе РЛС создаются путем излучения электромагнитной энергии. Основным средством создания организованных активных помех являются специальные передатчики помех. Ввиду того, что одним передатчиком помех невозможно перекрыть весь диапазон частот, применяемый в радиолокации, в состав станций помех обычно входит несколько передатчиков, каждый из которых перекрывает часть общего диапазона. Чтобы число передатчиков было наименьшим, каждый из них должен создавать помехи в возможно более широком диапазоне частот. Вследствие этого и антенны передатчиков помех должны быть широкополосными.
Поскольку подавляемые РЛС принимают прямые сигналы передатчика помех, средняя мощность последнего может быть сравнительно небольшой, порядка десятков -- сотен ватт. При этом достигается достаточное превышение помехи над отраженным сигналом на входе приемника РЛС, необходимое для нарушения нормальной работы или полного ее подавления. Применение направленной антенны в передатчике помех позволяет увеличить эффективность активной помехи без увеличения мощности передатчика. Однако в этом случае эффективность помех зависит еще и от точности ориентирования направленной антенны, что вызывает необходимость определения направления на РЛС и ориентации антенны передатчика помех. При ненаправленной антенне эта необходимость отпадает, но возникает опасность создания помех своим станциям. Поэтому антенна выбирается из условий тактического использования передатчика помех и места его установки.
Передатчики помех могут устанавливаться на самолетах, воздушных шарах, ракетах, кораблях, на земле, а также могут выбрасываться на поплавках в море или на парашютах на территорию противника с густой сетью радиолокационных средств. Способ использования передатчиков помех выбирается исходя из конкретной обстановки, но в качестве постоянно действующего считается способ установки и использования передатчиков помех на самолетах, а также в районе защищаемых объектов. Самолеты, оборудованные передатчиками помех и разведывательной аппаратурой, могут включаться в состав боевых порядков для прикрытия их помехами от наблюдения РЛС противника. Наилучшие результаты дает применение комбинированных помех, т. е. одновременная постановка пассивных и активных помех. В зависимости от частоты настройки передатчика помех различают прицельные и заградительные активные помехи. Прицельная помеха может быть узкополосной, так как она создается путем настройки передатчика помех на рабочую частоту подавляемой РЛС с ошибкой, не превышающей половины полосы пропускания приемника РЛС. Заградительная помеха создается либо путем одновременного излучения передатчиком помех электромагнитных колебаний в широкой полосе частот, либо путем автоматической и периодической перестройки узкополосного передатчика помех в широком диапазоне частот.
Все активные помехи характеризуются плотностью мощности или числом ватт мощности, приходящимся на мегагерц полосы частот помехи. Плотность помехи определяет ее уровень на входе приемника РЛС. Узкополосная прицельная помеха имеет большую плотность при малой мощности передатчика и поэтому экономична. Однако создание прицельной помехи требует применения сложной аппаратуры управления для быстрой и точной настройки передатчика помех. Трудности создания прицельных помех возрастают с увеличением числа объектов подавления и применением быстрой перестройки в самих РЛС. Заградительная помеха, наоборот, не требует точной настройки передатчика помех на частоту подавляемой РЛС, так как она создается в широкой полосе частот и обеспечивает одновременное подавление всех РЛС (или каналов одной РЛС), работающих в этом диапазоне частот. При организации заградительных помех требуется знание меньшего количества разведданных о системе радиолокационного обеспечения противника. Однако для создания такой же плотности мощности, как у прицельной помехи, передатчик заградительной помехи должен иметь, значительно, большую полную мощность, габариты и вес.
Таким образом, важнейшими показателями активных помех являются полоса частот и плотность мощности. Чем больше спектр частот и плотность мощности помехи, тем труднее от нее отстроиться и тем эффективнее она поражает приемные каналы РЛС.
По ТЗ заданно рассмотреть активную шумовую помеху. Шумовая помеха представляет собой непрерывные колебания несущей частоты, модулированные по амплитуде напряжением шумов. Напряжение шумов для модуляции передатчика помех получают от специального источника шумов, которым может быть шумовой диод, фотоэлектронный умножитель, тиратрон, помещенный в магнитное поле и др. С анодной нагрузки тиратрона, например, можно получить напряжение шумов до 0,5 в/МГц (другие источники шумов имеют в тысячи раз меньший выходной эффект). Такое напряжение достаточно усилить широкополосным видеоусилителем в сотни раз, чтобы затем использовать его в качестве модулирующего. Амплитуда, частота и фаза шумовых флюктуаций изменяются хаотически во времени, ввиду чего шумовая помеха обладает очень широким спектром частот и поэтому является наиболее опасной. Для защиты РЛС от шумовой помехи трудно найти эффективные средства защиты. Изображение шумовой помехи на экране индикатора с амплитудной отметкой имеет вид сплошной шумовой дорожки, на фоне которой затрудняется или совсем исключается наблюдение отметок целей.
В вариант структурной схемы передатчика активных помех вкачестве передающей/приемной антенн используем ФАР,которая позволяет сконцентрировать энергию в узком луче и направит ее на подавляемые радиосредства и за счет фазирования можно довести
где Р - мощность подведенная к передающей антенне. Для рассчитываемой системы помехопостановки будем использовать передатчик АШП с мощностью излучения 10 кВт.
Организация и создание пассивных помех в работе РЛС противника имеют своим назначением обеспечить радиолокационную маскировку объектов в воздухе и на земле. Методы пассивного радиопротиводействия основаны на использовании или на подавлении отражения радиоволн -- явления, которое лежит в основе работы большинства самих РЛС. В связи с этим радиолокационная маскировка объектов осуществляется либо путем применения различного рода искусственных пассивных отражателей, интенсивно отражающих радиосигналы РЛС, либо путем нанесения на объект противорадиолокационных покрытий, эффективно ослабляющих отражение. В первом случае наблюдение отметки цели на экране индикатора РЛС затруднено на фоне интенсивных отметок пассивных отражателей, а во втором случае обнаружение цели затрудняется из-за весьма слабого отражения, ею радиоволн.
По ТЗ задана помеха от земной поверхности. Рассмотрим создание ложных целей и ложного радиолокационного рельефа местности. В интересах маскировки важных наземных и надводных объектов и дезориентации противника при наблюдении им подобных объектов с воздуха при помощи панорамных РЛС прибегают к созданию ложных целей или ложного радиолокационного рельефа местности. В таких случаях применяют как дипольные отражатели, так и пассивные отражатели специальной формы: уголковые, конические, вибраторные решетки, линзы Люнеберга, диэлектрические отражатели с полным внутренним отражением и др. Наиболее широкое применение получили уголковые отражатели, которые выполняются в виде жесткой конструкции из взаимно перпендикулярных проводящих поверхностей. Размеры, которых превышают длину отражаемой радиоволны (рис. 10).
Важнейшей особенностью уголкового отражателя является то, что он интенсивно отражает обратно к источнику излучения (после двух-трехкратного внутреннего отражения) энергию радиоволн, падающих на грани А,Б и В с любого направления в пределах телесного угла. Соединение четырех трехгранных уголков вместе позволяет получить интенсивное отражение обратно к РЛС энергии радиоволны, падающей на уголок с любого направления в пределах полусферы. Используются и более сложные конструкции уголковых отражателей. Устанавливать их можно как на земле, так и на воде (на поплавках), имитируя интенсивно отражающие цели и маскируя боевую технику и другие объекты от воздушного радиолокационного наблюдения.
При массовом применении уголковых и дипольных отражателей на поверхности земли и воды можно существенно изменить радиолокационный рельеф местности. Таким способом можно создавать ложные площадные цели, дублирующие изображение маскируемых объектов: аэродромов и стоянок самолетов, портов и стоянок кораблей или их боевого порядка в море, мостов, заводов и даже городов. Аналогичным образом можно изменить береговую черту, изображение одного озера можно разбить на части, на реках «поставить» дополнительные мосты и т. п. Создание ложного радиолокационного рельефа местности может сильно затруднить ориентировку противника по экрану самолетной панорамной РЛС и прицельное бомбометание, а также заставить противника наводить ракеты на ложные цели. В мирное время уголковые и другие отражатели используются для создания точечных целей, которые служат указателями при радиолокационном ориентировании кораблей, входящих в гавань, самолетов, приближающихся к аэродрому, или расчетов РЛС при их тренировке и проверке работы радиолокационной аппаратуры. Ложные цели создаются и в воздухе, например путем буксирования отражающих конусов. В последнее время для нарушения работы станций управления ракетами, зенитной артиллерией и истребителями-перехватчиками разрабатываются управляемые отвлекающие ракеты-ловушки и ракеты радиопротиводействия с аппаратурой помех, запускаемые с тяжелых бомбардировщиков в полете. После выполнения задачи по созданию помех и отвлечению на себя средств противника такие ракеты уничтожаются по радиокоманде с бомбардировщика.
3.2 Расчет зон прикрытия помехами
По ТЗ необходимо рассчитать параметры постановщика активной шумовой помехи. Как говорилось ранее, для создания активной шумовой помехи необходимо воздействие мощного источника помехи, тогда на дальность действия РЛС действуют как внутренние шумы приемника, так и мощность помехи.
Максимальная дальность действия РЛС в условиях радиопротиводействия может быть записана в виде:
.
РРЛС - мощность передатчика РЛС,
Т - время обзора сектора сканирования,
у - ЭПР цели,
R2П - дальность до источника помехи,
fП - ширина спектра помехи,
- уровень боковых лепестков, отнесенный к уровню главного лепестка антенны,
- угловой объем,
E/N0 - отношение энергии сигнала к мощности шума на единицу полосы, необходимое для надежного обнаружения,
PП - мощность помехи,
GП - коэффициент усиления антенны по помехе.
Проведем расчет коэффициента усиления антенны РЛС по помехе. Коэффициент усиления антенны РЛС при приеме полезного сигнала равен 600; помеха принимается в основном боковыми лепестками, примем уровень первого бокового лепестка антенны РЛС= -25дБ по мощности, тогда коэффициент усиления антенны РЛС по помехе будет равен:
=1,897.
Рассмотрим следующие зависимости:
а) дальность действия РЛС от мощности передатчика (рис. 11).
Рисунок 3.1. График зависимости дальность действия РЛС от мощности передатчика.
Мощность передатчика РЛС, необходимая для обнаружения РРЛС=200кВт, из графика видно, что при такой мощности обеспечивается дальность действия РЛС - 200км. По ТЗ необходимо обеспечить 260км, для этого нужно увеличить РРЛС в 2,5 раза.
б) зоны прикрытия АП от мощности РЛС в условиях АП, при мощности АП равной 10кВт и расстоянием между РЛС - ПАП равным 260км (рис. 3.2.).
Рисунок 3.2. График зависимости зоны прикрытия АП от мощности РЛС в условиях АП.
Из графиков видно, что применение АШП значительно снижает дальность действия РЛС. При мощности передатчика РЛС 200кВт, дальность действия РЛС равна 2,7км.
Отношение мощности АП к мощности сигнала, отраженного от цели, на входе РЛС можно записать в виде:
При дальности от РЛС до Ц 200 км, при расстоянии от РЛС до ПАП 260 км, GАП=100, GРЛС=600, G=1.897, РперРЛС=200 кВт для формирования на входе РЛС отношения РАП/Рс=3, получаем:
в) зависимость дальности действия РЛС, от отношения мощностей P=РРЛС/РПАП(рис. 2.3).
(м)
Рисунок 3.3. График зависимости дальность действия РЛС от отношения мощностей P=РРЛС/РПАП.
Из графика следует, что даже при небольшом изменении РПАП, дальность действия РЛС значительно снижается. При Р=20, дпльность действия РЛС равна 2,7км.
г) дальности действия РЛС от расстояния РЛС-ПАП.
Рисунок 3.4. График зависимости дальность действия РЛС от расстояния РЛС-ПАП.
Пусть ПАП находится на удалении 260-500км, тогда, как видно из графика, дальность действия РЛС изменяется несущественно: в пределах 5км.
д) дальности действия РЛС от Кпер=.
Рисунок 3.5. График зависимости дальность действия РЛС от Кпер.
Из графика следует вывод, что с увеличение Кпер дальность действия РЛС уменьшается. Коэффициент перекрытия по частоте показывает на сколько спектр сигнала согласован со спектром помехи. Когда Кпер=1, то дальность действия РЛС всего 15 км.
3.3 Расчет параметров средств помехозащиты
1. Средства защиты от пассивных помех.
В основу борьбы с пассивными помехами положено использование операции режектирования ( операция обеления).
Отношение ш/п на входе РЛС составляет -39,33дБ.
Подавление в режекторном фильтре должно осуществляться до уровня шумов, коэффициент подавления должен составлять около 39дБ.
Отношение с/(ш+п) на входе РЛС составляет -22,22дБ.
Для расчёта коэффициентов режекторного фильтра воспользуемся программой «Стрела 2.0» (рис. 16 - 18.):
Выбираем оптимальный СС-фильтр, т.к. получим уточненные коэффициенты фильтра. Порядок фильтра выбираем так, чтобы необходимое число импульсов в пачке было на единицу больше порядка фильтра. Посредством остальных 15-7=8 отсчетов можно произвести когерентное накопление. Эти накопленные импульсы могут пойти на улучшение отношения с/ш. Можно добиться увеличения отношения с/ш в N раз, где N=8.
Относительная фаза сигнала рассчитывается исходя из доплеровской частоты сигнала.
FD=Гц.
Относительная фаза помехи равна нулю, так как помеха создается отражением от земной поверхности.
Коэффициент подавления помехи получается равным 39дБ, что вполне удовлетворяет для дальнейшего накопления.
Коэффициенты цифрового режекторного фильтра:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||
Wi |
1 |
-5,085387 |
11,51271 |
-14,85135 |
11,51361 |
-5,086176 |
1,000232 |
Так как коэффициенты цифрового режекторного фильтра симметричные, то структурную схему цифрового РжФ можно свернуть. Структурная схема примет следующий вид (рис. 3.6):
Рисунок 3.6. Структурную схему цифрового РжФ.
2. Средства защиты от активных помех.
Методы защиты РЛС от активных помех основываются на использовании различий в структуре полезных сигналов и помех: различия по несущей частоте, спектру, фазе, амплитуде, длительности, частоте повторения или комбинации импульсных посылок и др.
По ТЗ необходимо обеспечить защиту от активной шумовой помехи. Несмотря на общую высокую эффективность применения активной шумовой помехи, существует недостаток при их использовании. Недостаток заключается в том, что такие помехи легко обнаружить. А это ставит в уязвимое положение ПАП, а также позволяет применять различные меры борьбы с помехами. Например:
· Работа РЛС в короткие промежутки времени;
· Смена несущих частот, применение многочастотных РЛС;
· Использование сложных сигналов. При их использование значительно снижается импульсная мощность передатчика РЛС, т.е. Рс/Рш снижается.
· Использование длительного когерентного накопления сигнала.
Перестройка РЛС по диапазону является одним из самых радикальных методов защиты от активных помех любого вида и повышения помехоустойчивости РЛС. После изменения рабочей волны РЛС противник должен заново обнаружить ее работу, определить ее новую волну и перестроить передатчик помех. На это уходит определенное время, в течение которого РЛС может нормально работать. Однако перестройка РЛС может быть эффективным способом защиты от помех лишь тогда, когда время перехода с одной волны на другую мало, а диапазон перестройки широк. Медленная перестройка и в узком диапазоне не обеспечивает надежной защиты, особенно когда противник располагает широкодиапазонными и быстро перестраиваемыми передатчиками помех. Следует заметить, что перестройка РЛС является одним из основных средств защиты от наиболее эффективной шумовой помехи; и то лишь в том случае, если диапазон перестройки РЛС намного превосходит ширину спектра шумовой помехи.
В современных РЛС обеспечивается быстрая автоматическая перестройка в достаточно широком диапазоне частот. Особенно хорошие результаты при защите от прицельных и шумовых помех дает непрерывное изменение несущей частоты РЛС от импульса к импульсу. В перестраиваемых РЛС применяются широкополосные антенно-фидерные тракты и антенные переключатели, а передатчик и приемник содержат автоматику механической или электрической перестройки в широком диапазоне и систему точной автоматической подстройки частоты (АПЧ).
Для борьбы с АП можно использовать компенсационный метод (применяют специальную компенсационную антенну и компенсационный канал, направленный на АП). (рис. 3.7.)
Рис. 3.7. Компенсационный метод борьбы помехами
Суть метода заключается в следующем: когда ПАП действует по боковым лепесткам ДН антенны РЛС, то тогда направления на источники сигнала и активной помехи не совпадают. Для того чтобы скомпенсировать помеху, применяют устройство с основной и дополнительной антеннами. Пусть А1 является основной антенной, принимающей сигнал и помеху U0=Ut+UАП, а дополнительная компенсационная антенна А2 - только помеху UАП= Uk с некоторым сдвигом по фазе от U0. Кк - коэффициент комбинированного канала (для выравнивания мощности). Если разложить на ортогональные составляющие Uk и подобрать для них оптимальные весовые коэффициенты W и W1, то можно скомпенсировать помеху, принимаемую антенной А1.
Этот метод основан на корреляционно обратной связи. Корреляция осуществляется между компенсационным каналом и сигналом на выходе. Такая связь осуществляется с помощью блока Мас (операция суммирования с накоплением). Корреляция будет возможной только при работе обоих каналов. Структурная схема алгоритма, реализующего такой квадратурный компенсатор с корреляционными обратными связями, приведена на рис. 3.8
Рис. 3.8.Структурная схема квадратурного компенсатора
Минимум среднего квадрата напряжения (мощности) помехи на выходе будет при Кк>1:
W= -0/1, W1= -00/10
где 0 и 1 - СКО помех, принимаемых антеннами А1 и А2, - коэффициент корреляции помехи в первом квадратурном канале, 0 - коэффициент корреляции помехи во втором квадратурном канале. Тогда коэффициент подавления активной шумовой помехи:
КП=(1-/2)-1.
При некоррелированной помехе/2=2+(0)20, Кп1, и подавление помехи нет. Присильно коррелированной помехе /21, Кп, подавление помехи максимально.
Следует, заметить, что никакое устройство для подавления помех не является универсальным. Каждое устройство защиты позволяет эффективно бороться только с каким-то одним видом помех и является менее эффективным или вовсе непригодным для борьбы с другими видами помех. Поэтому оператор РЛС должен уметь определять вид помехи по ее изображению на экране индикатора, а также четко знать и умело использовать имеющиеся в станции средства подавления помех. В данном курсовом проекте для подавления пассивной помех использовался режекторный фильтр, а активной шумовой - гребенчаты фильтр или копенсационное устройство.
Необходимо помнить, что включение той или иной схемы защиты, как правило, вызывает ослабление полезного сигнала и уменьшение дальности обнаружения, а потому является вредным в отсутствии помех или при воздействии помехи, на подавление которой схема не рассчитана.
Однако для создания эффективных помех, как правило, необходимо разведать основные технические параметры подавляемой РЛС. Такая разведка может быть осуществлена обычными общевойсковыми методами или при помощи радиотехнических средств. Техническая радиолокационная разведка связана с меньшими потерями и вполне осуществима, благодаря тому, что любая активная РЛС, излучая электромагнитную энергию, демаскирует себя. В настоящее время успешная борьба с радиолокацией противника немыслима без хорошо организованной радиолокационной разведки. Вместе с тем, организация радиолокационной разведки и создание эффективных помех в работе РЛС представляют нелегкую задачу, которая постоянно усложняется вследствие непрерывного совершенствования РЛС. В данном курсовом проекте для создания пассивной помехи использовались уголковые отражатели, а для активной шумовой - схема генератора прицельных помех.
Уже после первых опытов применения помех стало ясно, что РЛС, не имеющие средств защиты от помех, не могут быть надежным видом вооружения. Поэтому развитие радиолокации постоянно сопровождается развитием средств радиопротиводействия, а это в свою очередь вынуждает непрерывно совершенствовать радиолокационную технику, усложнять аппаратуру РЛС средствами защиты от помех, а иногда даже переходить к новым принципам работы и построения РЛС.
Из сказанного ясно, что проблему радиопротиводействия логически составляют следующие основные вопросы:
-- принципы радиолокационной разведки и построения разведаппаратуры;
-- способы и средства создания организованных помех;
-- способы и средства защиты РЛС от помех.
Произведенный расчет параметров, выбор структурных схем и алгоритмов работы постановщиков помех показывает, что необходимо задействовать мощные передающие устройства. Аппаратура ПАП должна обладать высокой надежностью работы элементов схемы. Так как средства постановки активных помех является достаточно мощным устройством. Но в тоже время, аппаратура ПАП должна иметь минимальное энергопотребление, хорошую электромагнитную совместимость, небольшие габариты и массу, и сохранять работоспособность при различных климатических условиях.
Аналогичные требования можно предъявить и к средствам защиты от помех.
В процессе разработки данной РЛС было установлено, что с использованием РжФ можно добиться коэффициента подавления помехи на выходе равным 39дБ, т.е. сигнал помехи от земной поверхности фильтр подавляет до уровня шумов, а коэффициент улучшения с/(п+ш) составляет порядка 20дБ. А это говорит об эффективности работы фильтра.
Основными требованиями к программным ресурсам конфликтующих сторон можно считать высокую производительность, быстродействие и надежность.
3.4 Расчет экономической эффективности
Обработка сигнала в современных РЛС осуществляется в цифровой форме, поэтому важным является выбор технологической базы для цифровой обработки сигналов. В настоящее время широко используются методы обработки радиотехнических сигналов с помощью ПЛИС (программируемых логических интегральных схем). Например, семейство FLEX10K фирмы Аltera.
Применение ПЛИС в радиотехнических системах существенно улучшает их массогабаритные, технические и экономические показатели, открывает широкие возможности реализации сложных алгоритмов цифровой обработки сигналов. Цифровые фильтры имеют ряд преимуществ. Основные из них : надежность в работе и стабильность характеристик. Они обладают высоким быстродействием, малым энергопотреблением, массой и габаритами, возможностью перепрограммирования. Защита ПЛИС от источников электромагнитного излучения может быть решена путем экранирования. Но данные ПЛИС имеют относительно высокую стоимость по сравнению с другими цифровыми сигнальными процессорами, однако это не является преградой, т.к. в радиолокации важным является такие показатели как быстродействие, надежность и достоверность принятой информации.
Статья затраты на покупные изделия и полуфабрикаты статья включает в себя затраты на приобретенные готовые изделия и полуфабрикаты. Список изделий и полуфабрикатов составляется в соответствии со схемой электрической принципиальной и сборочным чертежом блока. Составим таблицу для расчета стоимости покупных комплектующих изделий.
Статья «основная заработная плата производственных рабочих» включает в себя основную заработную плату производственных рабочих и других категорий работников за работу, непосредственно связанную с изготовлением продукции. Основная зарплата рабочих включает тарифную зарплату, доплаты и надбавки. Тарифную заработную плату определяют по каждой операции (виду работ) как произведение норм времени и часовых тарифных ставок рабочих.
Найдём тарифную заработную плату по формуле:
(5.1)
где -общая трудоёмкость изготовления блока волоконно-оптического передающего устройства;
- средняя ставка рабочих. Общую трудоёмкость изготовления устройства, можно рассчитать по формуле:
(5.2)
где -трудоёмкость монтажно - сборочных работ;
-удельный вес данного вида работ в общей трудоёмкости, для изделий типа оптический передатчик полагаем. Трудоёмкость монтажно сборочных работ определяем по типовым нормам времени на монтажно-сборочные работы.
Подставляя численные значения в (5.1) получаем:
Основная заработная плата с учетом 60 % надбавки будет составлять:
Нижняя граница цены изделия () защищает интересы производителя продукции и предвидит, что цена должна покрыть затраты производителя, связанные с производством и реализацией продукции, и обеспечит уровень рентабельности не ниже за тот, который имеет предприятие при производстве своей основной продукции.
где оптовая цена изделия, в сумах;
полная себестоимость изделия, 1 754 237,96 в сумах;
нормативный уровень рентабельности, %, на опытном заводе, где будет выпускаться проектируемое изделие Рн = 17%;
налог на дополнительную стоимость, %, по состоянию на 1.12.2009 г. -20%.
Необходимость включения налога на дополнительную стоимость возникает в связи с тем, что когда будет определяется верхняя граница цены, а потом договорная цена, то цена базового изделия уже составляет этот налог.
Верхняя граница цены изделия () защищает интересы потребителя и определяется той ценой, которую потребитель готовый заплатить за продукцию с лучшим потребительским качеством.
где цена базового изделия и она составляет 2052458,3 в сумах;
коэффициент качества изделия относительно базового;
Договорная цена может быть установлена за договорённостью между производителем и потребителем в интервале между нижней и верхней граничными ценами.
Для продукции приборостроительных предприятиях можно принять, что в составе себестоимости продукции условно-переменные расходы составляют 65-75%, а условно-постоянные - 25-35%. Тогда при годовой мощности производства Х штук себестоимость годового выпуска продукции Ср составляет
где полная себестоимость единицы продукции, в сумах;
соответственно условно-переменные и условно-постоянные расходы в составе себестоимости продукции ()
годовая мощность производства продукции шт/год
годовой обьём выпуска продукции, шт/год;
Стоимость годового выпуска продукции:
принимаем среднее значение:
(2 105 085,55+3 181 310,54)/2=2 643 198,05 [в сумах]
Аналитически и могут быть рассчитаны по формулам:
Годовая прибыль при запланированном уровне рентабельности составит:
Таким образом, годовая прибыль составляет 200 016 01,40 сум.
4. Охрана труда
4.1 Меры и средства подавления статической электризации
Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия.
Устранение образования значительных статического электричества достигается при помощи следующих мер:
Заземление металлических частей производственного оборудования;
Увеличение поверхностной и объемной проводимости диэлектриков;
Предотвращение накопления значительных статических зарядов путем установки в зоне электрозащиты специальных нейтрализаторов.
4.2 Обеспечение электромагнитной безопасности
Большинство ученых считают, что как кратковременное, так и длительное воздействие всех видов излучения от экрана монитора не опасно для здоровья персонала, обслуживающего компьютеры. Однако исчерпывающих данных относительно опасности воздействия излучения от мониторов на работающих с компьютерами не существует и исследования в этом направлении продолжаются .
Допустимые значения параметров неионизирующих электромагнитных излучений от монитора компьютера представлены в табл. 1.
Максимальный уровень рентгеновского излучения на рабочем месте оператора компьютера обычно не превышает 10мкбэр/ч, а интенсивность ультрафиолетового и инфракрасного излучений от экрана монитора лежит в пределах 10…100мВт/м2.
Допустимые значения параметров электромагнитных излучений (в соответствии с СанПиН 2.2.2.542-96)
Наименование параметра |
Допустимые значения |
|
Напряженность электрической составляющей электромагнитного поля на расстоянии 50см от поверхности видеомонитора |
10В/м |
|
Напряженность магнитной составляющей электромагнитного поля на расстоянии 50см от поверхности видеомонитора |
0,3А/м |
|
Напряженность электростатического поля не должна превышать: для взрослых пользователей для детей дошкольных учреждений и учащихся средних специальных и высших учебных заведений |
20кВ/м 15кВ/м |
При неверной общей планировке помещения, неоптимальной разводке питающей сети и неоптимальном устройстве контура заземления (хотя и удовлетворяющем всем регламентируемым требованиям электробезопасности) собственный электромагнитный фон помещения может оказаться настолько сильным, что обеспечить на рабочих местах пользователей ПЭВМ требования СанПиН по уровням ЭМП не представляется возможным ни при каких ухищрениях в организации самого рабочего места и ни при каких (даже суперсовременных) компьютерах. Более того, сами компьютеры, будучи помещёнными в сильные электромагнитные поля, становятся неустойчивыми в работе, появляется эффект дрожания изображения на экранах мониторов, существенно ухудшающий их эргономические характеристики.
Можно сформулировать следующие требования, которыми необходимо руководствоваться при выборе помещений для обеспечения в них нормальной электромагнитной обстановки, а также для обеспечения условии устойчивой работы ПЭВМ в условиях электромагнитного фона:
1. Помещение должно быть удалено от посторонних источников ЭМП, создаваемых мощными электроустройствами, электрическими распределенными щитами, кабелями электропитания с мощными энергопотребителями, радиопередающими устройствами и пр. Если данная возможность в выборе помещения отсутствует, рекомендуется предварительно (до установки компьютерной техники) провести обследование помещения по уровню низкочастотных ЭМП. Затраты на последующее обеспечение устойчивом работы ПЭВМ в неоптимально выбранном но данному критерию помещении несравнимо выше, чем стоимость обследования.
2. Если на окнах помещения имеются металлические решетки, то они должны быть заземлены. Как показывает опыт, несоблюдение данного правила может привести к резкому локальному повышению уровня полей в какой-либо точке (точках) помещения и к сбоям к работе компьютера, случайно установленного в данной точке.
3. Групповые рабочие места (характеризующиеся значительной скученностью компьютерной и другой оргтехники) желательно размещать на нижних этажах здании. При подобном размещении рабочих мест минимально их влияние на общую электромагнитную обстановку в здании (энергонагруженные кабели питания не идут по всему зданию), а также существенно снижается общий электромагнитный фон на рабочих местах с компьютерной техникой (вследствие минимального значения сопротивления заземления именно на нижних этажах зданий).
Вместе с тем можно сформулировать ряд конкретных практических рекомендаций, по организации рабочего места и размещению компьютерной техники в самих помещениях, выполнение которых заведомо улучшит электромагнитную обстановку и с намного большей вероятностью обеспечит аттестацию рабочего места без принятия для этого каких-либо дополнительных специальных мер:
ь Основные источники импульсных электромагнитных и электростатических полей - монитор и системный блок ПЭВМ должны быть в пределах рабочего места максимально удалены от пользователя.
ь Должно быть обеспечение надежное заземление, подводимое непосредственно к каждому рабочему месту (использование удлинителей с евророзетками, снабженными заземляющими контактами).
ь Крайне нежелательным является вариант одной линии питания, обходящей по всему периметру рабочего помещения.
ь Провода питания желательно проводить в экранирующих металлических оболочках или трубах.
ь Должно быть обеспечено наибольшее удаление пользователя от сетевых розеток и проводов электропитания.
Выполнение перечисленных выше требований может обеспечить снижение в десятки и сотни раз общего электромагнитного фона в помещении и на рабочих местах.
Заключение
В области радиолокационных систем (РЛС), как и в любой другой области техники, происходит непрерывный процесс обновления, замены устаревших средств новыми модификациями. Расширяются и усложняются решаемые ими задачи, растут их показатели эффективности и качества, совершенствуются прежние и создаются новые конструкции, расширяются связи РЭС с другими системами.
В развитии радиоэлектронных систем можно указать определенные этапы или поколения. Например, в истории развития радиоэлектронных систем значительный период занимал этап конструирования РЭС с использованием электронных ламп. Он сменился этапом развития радиоэлектронных систем с применением полупроводниковых элементов, за которым последовал новый этап построения РЭС на основе интегральной схемотехники (интегральных микросхем и микропроцессоров).
Развитие микроэлектроники и вычислительной техники дало широкие возможности для применения в радиоэлектронике цифровых методов обработки и преобразования информации. Применение идей и методов цифровой обработки сигналов открывает принципиально новые возможности в различных областях радиоэлектроники и прежде всего в таких, как радиосвязь, радиолокация, радиоуправление.
Особенно широко используются в радиоэлектронике достижения таких разделов физики, как физика твердого тела, оптика. Успехи в области когерентной оптики, голографии и в других областях физики способствовали созданию и развитию оптических методов обработки и преобразования информации. Они нашли свое применение, например, в радиолокации (РЛА), в микроволновой технике и других областях.
В данной работе был выполнен расчет основных параметров РЛС, необходимых для обнаружения цели с заданными характеристиками. Был рассмотрен вопрос о двух конфликтующих сторонах, их средствах постановки помех и помехозащиты. Проведенные расчеты показывают, что при наличии достаточно полной информации о средствах противоположной стороны возможно как эффективное применение помех, так и их эффективное подавление.
В настоящее время радиолокационные станции нашли широчайшее применение во многих сферах деятельности человека. Современная техника позволяет с большой точностью измерять координаты положения целей, следить за их движением, определять не только формы объектов, но и структуру их поверхности. Хотя радиолокационная техника разрабатывалась и развивалась в первую очередь для военных целей, ее преимущества позволили найти многочисленные важные применения радиолокации и в гражданских областях науки и техники; наиболее важным примером может служить управление воздушным движением.
С помощью РЛС в процессе УВД решаются задачи:
Обнаружения и определения координат воздушных судов
Контроля выдерживания экипажами воздушных судов линий заданного пути, заданных коридоров и времени прохождения контрольных точек, а также предупреждение опасных сближений воздушных судов
Оценки метеообстановки по маршруту полета
Коррекции местоположения воздушных судов, передачи на борт информации и указаний для вывода в заданную точку пространства.
В современных РЛС УВД используются самые последние достижения науки и техники. Элементной базой РЛС являются интегральные микросхемы. В них широко используются элементы вычислительной техники и, в частности, микропроцессоры, которые служат основой технической реализации адаптивных систем обработки радиолокационных сигналов.
Кроме того, к другим особенностям данных РЛС можно отнести:
Применение цифровой системы СДЦ с двумя квадратурными каналами и двойным или тройным вычитанием, обеспечивающей коэффициент подавления помех от местных предметов до 40..45 дБ и коэффициент подпомеховой видимости до 28..32 дБ;
Применение переменного периода повторения зондирующего сигнала для борьбы с помехами от целей, удаленных от РЛС на расстоянии превышающее максимальную дальность действия радиолокатора, и для борьбы со “слепыми” скоростями;
Обеспечение линейной амплитудной характеристики приемного тракта до входа системы СДЦ с динамическим диапазоном по входному сигналу до 90..110 дБ и динамическим диапазоном системы СДЦ, равным 40 дБ;
Повышение фазовой стабильности генераторных приборов приемника и передатчика РЛС и применение истинно когерентного принципа построения РЛС;
Применение автоматического управления положением нижней кромки зоны обзора РЛС в вертикальной плоскости благодаря использованию двулучевой диаграммы направленности антенны и формированию взвешенной суммы сигналов верхнего и нижнего лучей.
Развитие РЛС УВД характеризуется прежде всего тенденцией непрерывного повышения помехозащищенности РЛС с учетов возможных изменений помеховой обстановки. Повышение точности РЛС обеспечивается в основном благодаря применению более совершенных алгоритмов обработки информации. Повышение надежности РЛС достигается благодаря широкому использованию интегральных микросхем и значительному повышению надежности механических узлов (антенны, опорно-поворотного устройства и вращающегося перехода), а также за счет применения аппаратуры встроенного автоматического контроля параметров РЛС.
Список использованной литературы
1. Бакулев П.А. Радиолокационные системы. - М.,: Радиотехника, 2004 г.
2. Радзиевский В.Г., Сирота А.А. Теоретические основы радиоэлектронной разведки. - М.,: Радиотехника, 2004 г.
3. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием. - М.: Радиотехника, 2003 г.
4. Кошелев В.И. Теоретические основы радиоэлектронной борьбы. - Конспект лекций.
5. Основы системного проектирования радиолокационных систем и устройств: Методические указания по курсовому проектированию по дисциплине «Основы теории радиотехнических систем» / Рязан. гос. радиотехн. акад.; Сост.: В.И. Кошелев, В.А. Федоров, Н.Д. Шестаков. Рязань, 1995. 60 с.
6. Цыбин В.В., Закиров Р.Г., Эшмурадов Д.Э. Вопросы помехоустойчивости способов модуляции в современных системах вторичной радиолокации //Узбекский журнал проблемы информатики и энергетики. - Ташкент, 2007. - №4. - С.93-101.
7. Абдукаюмов А., Эшмурадов Д.Э. Сравнительный анализ способов улучшения помехоустойчивости устройств вычислительной техники и систем управления //Передовые технологии и методы создания и эксплуатации авиакосмической техники: Сб. тез.докл.. респ.науч.-техн. конф. 27-30 апреля 1998.- Ташкент, 1998. - С.62-63.
8. Эшмурадов Д.Э. О помехоустойчивости авиационных радиооборудований //Фан ва таълимда ахборот-коммуникация технологиялари: Республика илмий-амалий конференция материаллари. 6-7 апрель 2006 йил. - Ташкент, 2006. - С.143-144.
Интернет источники:
1. http://dasbook.ru (книги по электронике и программированию)
2. http://el-bock.narod.ru (интернет-библиотека)
3. http://osp.aanet.ru (GPS, ГЛОНАСС, КОСПАС/SARSAT)
4. http://www.interavionics.com (самолетная авионика)
5. http://www.pcports.ru (сопряжение PC с внешними устройствами)
6. http://www.spbstu.ru (помехоустойчивость передачи дискретных сообщений)
7. http://www.uzairways.com
Размещено на Allbest.ru
...Подобные документы
Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.
курсовая работа [158,1 K], добавлен 05.03.2011Обоснование, выбор и расчет тактико-технических характеристик самолетной радиолокационной станции. Определение параметров излучения и максимальной дальности действия. Оценка параметров цели. Описание обобщённой структурной схемы радиолокационной станции.
курсовая работа [277,9 K], добавлен 23.11.2010Расчет требуемого отношения сигнал-шум на выходе радиолокационной станции. Определение значения множителя Земли и дальности прямой видимости цели. Расчет значения коэффициента подавления мешающих отражений. Действие станции на фоне пассивных помех.
контрольная работа [1,3 M], добавлен 22.11.2013Задачи и основные параметры радиолокационной станции системы управления воздушным движением. Особенности функциональных узлов РЛС "Скала-М". Потенциально опасные и вредоносные производственные факторы, организация рабочих мест диспетчерской службы.
курсовая работа [1,7 M], добавлен 05.03.2011Радиолокационные станции управления воздушным движением. Разработка алгоритмов работы и структурных схем постановщика помех и устройств защиты станции, анализ эффективности комплекса. Расчёт параметров помехопостановщика и зон прикрытия помехами.
курсовая работа [425,8 K], добавлен 21.03.2011Расчет параметров помехопостановщика: мощность передатчика помех и средств создания помех. Расчет зон прикрытия помехами. Анализ эффективности подавления и помехозащиты. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.
курсовая работа [814,9 K], добавлен 21.03.2011Разработка проекта импульсного приёмника радиолокационной станции (РЛС) дециметрового диапазона. Классификация радиолокации, параметры качества приема. Расчёт параметров узлов схемы структурной приёмника. Определение полосы пропускания приёмника.
дипломная работа [377,6 K], добавлен 21.05.2009Определение основных параметров радиолокационной станции, ее оптимизация по минимуму излучаемой мощности и коэффициенту шума УВЧ приемника в диапазоне длин волн. Выбор и обоснование активного элемента передатчика. Разработка функциональной схемы станции.
курсовая работа [511,3 K], добавлен 11.10.2013Расчет параметров радиоэлектронных средств разных сторон радиоэлектронного конфликта. Достоинства и недостатки тех или иных методов радиоэлектронного подавления и защиты РЭС. Анализ эффективности применения средств помехопостановки и помехозащиты.
курсовая работа [813,4 K], добавлен 19.03.2011Параметры средств помехозащиты и помехопоставщика, зоны прикрытия помехами. Анализ эффективности применения комплекса помех и средств помехозащиты. Требования к аппаратно-программным ресурсам средств конфликтующих сторон. Структурная схема устройства.
курсовая работа [2,4 M], добавлен 19.03.2011Расчет параметров помехопостановщика. Мощность передатчика заградительной и прицельной помех, средств создания пассивных помех, параметров уводящих помех. Алгоритм помехозащиты структуры и параметров. Анализ эффективности применения комплекса помех.
курсовая работа [1,4 M], добавлен 21.03.2011Эскизное проектирование радиолокационной головки самонаведения зенитной управляемой ракеты. Анализ эффективности применения средств помехопостановки и помехозащиты. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.
курсовая работа [1,4 M], добавлен 05.03.2011Разработка аппаратуры защиты от активно-шумовых помех, создание радиолокационной станции (РЛС) с высокой помехозащищенностью на базе цифровых комплектов элементов. Анализ тактики по применению помех и преодолению системы ПВО. Расчет РЛС боевого режима.
дипломная работа [122,7 K], добавлен 14.09.2011Расчет параметров средств помехозащиты. Способы оптимальной обработки сигналов в импульсно-доплеровской РЛС. Расчет параметров помехопостановщика. Защита от активной помехи. Расчет зон прикрытия помехами. Составление структурной схемы устройства.
курсовая работа [1,8 M], добавлен 05.03.2011Классификация радиолокационной станции управления воздушным движением и воздушных объектов и их краткая характеристика. Особенности построения трассовых радиолокационных станций. Система синхронизации и формирования меток азимута трассовой станции.
дипломная работа [2,5 M], добавлен 28.11.2022Описание аэродромных обзорных радиолокаторов. Выбор длины волны крылатых ракет. Определение периода следования зондирующего импульса. Расчет параметров обзора, энергетического баланса. Создание схемы некогерентной одноканальной радиолокационной станции.
курсовая работа [736,9 K], добавлен 09.08.2015Анализ тактики применения помех и преодоления системы ПВО. Ударный и эшелон прорыв. Длина волны как важный параметр РЛС. Выбор коэффициента шума, метода радиолокации. Обоснование структуры зондирующего сигнала. Анализ структуры антенно-фидерной системы.
дипломная работа [265,9 K], добавлен 14.09.2011Устройство функционально-диагностического контроля системы управления лучом радиолокационной станции (РЛС) боевого режима с фазированной антенной решеткой. Принципы построения системы функционального контроля РЛС. Принципиальная схема электронного ключа.
дипломная работа [815,8 K], добавлен 14.09.2011Радиолокация как область радиотехники, обеспечивающая радиолокационное наблюдение различных объектов. Назначение, технические данные, состав и работа РЛС 9S35М1 по структурной схеме. Источники радиолокационной информации. Преимущества импульсного режима.
курсовая работа [1,9 M], добавлен 12.06.2009Изучение взаимосвязи системотехнических параметров и характеристик при проектировании радиолокационной системы. Расчет и построение зависимости энергетической дальности обнаружения от мощности передатчика и числа импульсов в пачке зондирующего сигнала.
контрольная работа [574,9 K], добавлен 18.03.2011