Фоторезисторы: конструкция, параметры
Изучено устройство, принцип действия и основные свойства полупроводниковых фоторезисторов, а также принцип действия построенных на их основе фотодетекторов. Применение фоторезисторов. Регистрация оптического излучения. Световое реле для освещения улиц.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 17.02.2022 |
Размер файла | 390,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
Федеральное государственное бюджетное образовательное
учреждение высшего образования
«Омский государственный технический университет»
Радиотехнический факультет
Функциональная электроника
«Фоторезисторы: конструкция, параметры»
Выполнил:
Фрик Д.М. ЗРТ-171.
Проверил: Козлов А.Г.
Омск 2020
Содержание
Введение
Виды и работа
Применение и особенности
Заключение
Список литературы
Введение
Фоторезисторы -- это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность. Сопротивление не зависит от величины напряжения, в отличие от обычного резистора.
В основном фотосопротивления применяются для индикации или отсутствия света. В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома. При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности. Величина сопротивления при этом может упасть до нескольких Ом.
Длина световой волны оказывает влияние на чувствительность фотосопротивления. Они применяются в различных устройствах, но не являются такими популярными, как фототранзисторы и фотодиоды. В некоторых зарубежных странах запрещено применение фотосопротивлений, так как в них содержится кадмий или свинец, вредные по экологическим требованиям.
Быстродействие фоторезисторов незначительное, поэтому они действуют только на низких частотах. В новых конструкциях устройств фоторезисторы редко применяются. Их можно встретить в основном при ремонте старых устройств.
Для проверки фотосопротивления к нему подключают мультитестер. Без света его значение сопротивления должно быть значительным, а при его освещении оно сильно падает.
В современной электронной технике широко используются полупроводниковые приборы, основанные на принципах фотоэлектрического и электрооптического преобразования сигналов. Первый из этих принципов обусловлен изменением электрофизических свойств вещества в результате поглощения в нем световой энергии (квантов света). При этом изменяется проводимость вещества или возникает э. д. с., что приводит к изменениям тока в цепи, в которую включен фоточувствительный элемент. Второй принцип связан с генерацией излучения в веществе, обусловленной приложенным к нему напряжением и протекающим через светоизлучающий элемент током. Указанные принципы составляют научную основу оптоэлектроники - нового научно-технического направления, в котором для передачи, обработки и хранения информации используются как электрические, так и оптические средства и методы.
Все многообразие оптических и фотоэлектрических явлений в полупроводниках можно свести к следующим основным:
- поглощение света и фотопроводимость;
- фотоэффект в p-n переходе;
- электролюминесценция;
- стимулированное когерентное излучение.
Виды и работа
Виды и принцип действия:
По материалам изготовления фоторезисторы делятся на виды:
· С внутренним фотоэффектом.
· С внешним фотоэффектом.
При изготовлении фотосопротивлений с внутренним фотоэффектом применяют нелегированные вещества: германий или кремний.
При попадании на чувствительную часть фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости. В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.
Фоторезисторы с возникновением внешнего фотоэффекта изготавливают из смешанных материалов, в которые входят легирующие добавки. Эти вещества создают обновленную энергетическую зону сверху валентной зоны, насыщенной электронами, нуждающимися в меньшем количестве энергии для осуществления перехода в проводимую зону, с помощью энергетической щели малого размера. В результате фотосопротивление становится чувствительным к разной длине световой волны.
Несмотря на вышеописанные особенности этих видов, оба вида снижают сопротивление при освещении. При повышении интенсивности освещения снижается сопротивление. Поэтому, получается обратная зависимость сопротивления от света, причем нелинейная.
На электрических схемах фотосопротивления обозначаются:
Основные параметры фоторезисторов:
Рабочее напряжение Uр - постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях (как правило, от 1 до 1000 в).
Максимально допустимое напряжение фоторезистора Umax- максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.
Темновое сопротивление Rт- сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности (варьирует в обычных приборах от 1000 до 100000000 ом).
Световое сопротивление Rс- сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.
Кратность изменения сопротивления KR- отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).
Допустимая мощность рассеяния- мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.
Общий ток фоторезистора- ток, состоящий из темнового тока и фототока.
Фототок - ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.
Удельная чувствительность - отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм * В)
К0=Iф/ (ФU), (7)
где Iф- фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф - падающий световой поток, лм; U - напряжение, приложенное к фоторезистору, В.
Интегральная чувствительность - произведение удельной чувствительности на предельное рабочее напряжение Sинт=К0Umax.
Постоянная времени tф- время, в течение которого фототок изменяется на 63%, т. е. в e раз. Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.
При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени t, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону
iф=Iф (1 - e- t / t); iф=Iф e- t / t, (8)
где Iф- стационарное значение фототока при освещении.
По кривым спада фототока во времени можно определить время жизни t неравновесных носителей.
Чувствительность и длина световой волны
Длина волны света оказывает влияние на чувствительность фотосопротивления. Если величина длины световой волны выходит за пределы диапазона работы, то освещенность уже не оказывает влияния на такой резистор, и он становится нечувствительным в этом интервале длин световых волн.
Разные материалы обладают различными спектральными графиками отклика волны. Фотосопротивления с внешней зависимостью чаще всего используются для значительной длины волны, с приближением к инфракрасному излучению. При эксплуатации светового резистора в этом диапазоне следует быть осторожным, во избежание чрезмерного нагрева, который влияет на показания измерения сопротивления в зависимости от степени нагревания.
Чувствительность фотосопротивления
Фоторезисторы обладают меньшей чувствительностью, по сравнению с фототранзисторами и фотодиодами, которые являются полупроводниковыми приборами, с управлением заряженными частицами от светового луча, посредством р-n перехода. У фотосопротивлений нет полупроводникового перехода.
При нахождении интенсивности света в стабильном диапазоне, сопротивление фоторезистора может все равно меняться в значительной степени из-за изменения величины температуры, так как она также оказывает большое влияние на сопротивление. Это свойство не позволяет использовать фоторезистор для измерения точной интенсивности света.
Инертность
Еще одним уникальным свойством обладает фотосопротивление. Оно состоит в том, что существует время задержки между изменением сопротивления и освещения, что называется инертностью прибора.
Для значительного падения сопротивления от воздействия луча света необходимо затратить время, равное около 10 миллисекунд. При обратном действии для восстановления значения сопротивления понадобится около 1 секунды.
Включить звук
Благодаря этому свойству такой резистор не применяется в устройствах с необходимостью учета резких скачков освещенности.
Применение и особенности
Свойства и конструктивные особенности
Фотопроводность впервые обнаружили у элемента Селена. Затем были найдены и другие материалы с подобными свойствами. Фоторезисторы из сульфида кадмия являются наиболее популярными и имеют обозначение СDS-фоторезистора. Сегодня фотосопротивления производятся и из антимонида индия, сульфида свинца, селенида свинца.
Для производства фотосопротивлений из сульфида кадмия, порошок высокой степени очистки смешивают с веществами инертного действия. Далее, смесь спрессовывают и спекают.
На основание с электродами в вакууме напыляют светочувствительный слой в форме извилистой дорожки. Далее, это напыленное основание размещают в пластиковую или стеклянную оболочку, во избежание предотвращения попадания пыли и грязи на чувствительный элемент.
Спектральный график отклика чувствительного сульфида кадмия сочетается с временем отклика глаза человека. Длина волны света наибольшей чувствительности равна 600 нанометров. Это соответствует видимому спектру. Устройства с содержанием кадмия или свинца запрещены во многих зарубежных странах.
В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета - CdS.
Применение фоторезисторов
В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике.
Регистрация оптического излучения
Для регистрации оптического излучения его световую энергию обычно преобразуют в электрический сигнал, который затем измеряют обычным способом. При этом преобразовании обычно используют следующие физические явления:
- генерацию подвижных носителей в твердотельных фотопроводящих детекторах;
- изменение температуры термопар при поглощении излучения, приводящее к изменению термо-э. д. с.;
- эмиссию свободных электронов в результате фотоэлектрического эффекта с фоточувствительных пленок.
Наиболее важными типами оптических детекторов являются следующие устройства:
- фотоумножитель;
- полупроводниковый фоторезистор;
- фотодиод;
- лавинный фотодиод.
Полупроводниковый фотодетектор
Сфера использования фоторезисторов
Такой вид светочувствительных сопротивлений применяется в виде датчиков света, если необходимо определять отсутствие или наличие света, либо фиксацию значения интенсивности освещения. Таким примером служит автоматическая система включения освещения улиц, а также работа фотоэкспонометра.
Световое реле для освещения улиц
В виде примера на схеме изображено уличное фотореле освещения. Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.
полупроводниковый фоторезистор фотодетектор оптическое излучение
При падении луча света на фоторезистор, его сопротивление снижается, становится значительным падение напряжения на переменном сопротивлении R2, транзистор VТ1 открывается. Коллектор этого транзистора соединен с базой VТ2 транзистора, который в это время закрыт, и реле отключено. При наступлении темноты сопротивление фоторезистора повышается, напряжение на переменном сопротивлении снижается, а транзистор VТ1 закрывается. Транзистор VТ2 открывается и выдает напряжение на реле, подключающее лампу освещения.
Заключение
В этой работе мы рассмотрели устройство, принцип действия и основные свойства полупроводниковых фоторезисторов, а также принцип действия построенных на их основе фотодетекторов.
Список литературы
1. Гершунский Б. С. Основы электроники и микроэлектроники. - К.: Вища школа. 1989. - 423 с.
2. Практикум по полупроводникам и полупроводниковым приборам; под ред. К. В. Шалимовой. - М.: Высшая школа. 1968. - 464 с.
3. Федотов Я. А. Основы физики полупроводниковых приборов. - М.: Советское радио. 1970. - 591 с.
4. Yariv A. Introduction To Optical Electronics. - М.: Высшая школа. 1983. - 400 с.
5. Kittel C. Introduction To Solid State Physics, 3d Ed. - New York: Wiley, 1967. - p. 38.
6. Kittel C. Elementary Solid State Physics. - New York - London: Wiley, 1962.
Размещено на Allbest.ru
...Подобные документы
Фотоэлектрические приемники лучистой энергии. Электрические, фотоэлектрические и оптические свойства материалов. Фоторезисторы, их свойства и принцип работы. Световые характеристики фоторезисторов. Энергетический спектр валентных электронов в материалах.
реферат [1,3 M], добавлен 15.01.2015Физические основы работы фоторезисторов, их вольтамперные, световые и спектральные характеристики; инерционность. Структура фоторезистора, схема его включения и принцип действия. Характеристика примесной фотопроводимости, явление электропроводности.
контрольная работа [4,0 M], добавлен 12.03.2015Принцип действия и параметры элементов ПЗС, а также разновидности их конструкций. Распределение поверхностного потенциала в МДП-структуре в направлении, перпендикулярном затвору. Принцип действия ПЗС основан на накоплении и хранении зарядовых пакетов.
реферат [104,5 K], добавлен 11.12.2008Оптические кабели и разъемы, их конструкции и параметры. Основные разновидности волоконно-оптических кабелей. Классификация приемников оптического излучения. Основные параметры и характеристики полупроводниковых источников оптического излучения.
курс лекций [6,8 M], добавлен 13.12.2009Устройство, эквивалентная схема биполярного транзистора. Назначение эмиттера и коллектора. Основные параметры, принцип действия и схемы включения n–p–n транзистора. Режимы его работы в зависимости от напряжения на переходах. Смещение эмиттерного перехода.
реферат [266,3 K], добавлен 18.01.2017Типы проводимостей полупроводников и их отличия. Преимущества гетероэпитаксиальных структур КРТ по сравнению с объемными кристаллами КРТ, выращивание. Разновидности полупроводниковых фотоприёмников. Приборы на основе КРТ: принцип действия и устройство.
курсовая работа [3,3 M], добавлен 18.10.2009Характеристики полупроводниковых материалов. Классификация источников излучения. Светоизлучающие диоды. Лазер как прибор, генерирующий оптическое когерентное излучение на основе эффекта вынужденного или стимулированного излучения, его применение.
курсовая работа [551,5 K], добавлен 19.05.2011Принцип действия полупроводниковых диодов, свойства p-n перехода, диффузия и образование запирающего слоя. Применение диодов в качестве выпрямителей тока, свойства и применение транзисторов. Классификация и технология изготовления интегральных микросхем.
презентация [352,8 K], добавлен 29.05.2010Внешний вид ряда датчиков: света, давления, температуры, скорости, перемещения. Перечень разновидностей фоторезисторов и перечисление области их применения. Внешний вид и принципиальная схема работы лабораторного стенда "Исследование фоторезисторов".
презентация [3,2 M], добавлен 14.03.2011Классификация и условные обозначения полупроводниковых диодов. Назначение, область применения и общий принцип их действия. Вольтамперная характеристика и основные параметры полупроводниковых диодов. Диод Есаки (туннельный диод) и его модификации.
курсовая работа [1,8 M], добавлен 19.10.2009Анализ блок-схемы включения приемника излучения и вариантов предварительных усилителей, выбор типа фоторезистора по минимальному уровню флуктуационных шумов. Принципиальная схема и уровни шума предварительных усилителей на полевом транзисторе и ОУ.
курсовая работа [409,3 K], добавлен 16.01.2015Устройство и принцип действия биполярных транзисторов. Структура и технология изготовления полупроводниковых интегральных микросхем на основе биполярного транзистора с помощью метода диэлектрической изоляции; подготовка полупроводниковой подложки.
контрольная работа [710,2 K], добавлен 10.06.2013Конструкции и поляризационные свойства световодов, дисперсия сигналов оптического излучения. Виды оптических коннекторов и соединительных адаптеров. Принцип работы и структура оптического рефлектометра, его применение для измерения потерь в коннекторах.
курсовая работа [1,5 M], добавлен 11.11.2012Устройство интегратора, построенного на операционном усилителе. Принцип действия прибора, принципиальные схемы и основные выражения. Основные проблемы и способы их решения. Применение интегратора на операционных усилителях. Тестирование и описание схем.
курсовая работа [529,2 K], добавлен 21.06.2014Технология изготовления полупроводниковых диодов, структура, основные элементы и принцип действия. Процесс образования p-n перехода, его односторонняя проводимость. Электрофизические параметры электро-дырочных переходов. Контактная разность потенциалов.
курсовая работа [1,0 M], добавлен 28.01.2015Типовая структурная схема электронного аппарата и его работа. Свойства частотного фильтра, его характеристики. Расчет входного преобразователя напряжения. Устройство и принцип действия релейного элемента. Расчет аналогового элемента выдержки времени.
курсовая работа [921,8 K], добавлен 14.12.2014Типы и конструкция сенсоров на поверхностном плазмонном резонансе. Классификация, устройство и принцип действия сенсоров. Сенсоры с параллельным и расходящимся световым пучком. Применение поверхностного плазмонного резонанса для биохимических анализов.
курсовая работа [894,9 K], добавлен 18.07.2014Физические основы полупроводниковых приборов. Принцип действия биполярных транзисторов, их статические характеристики, малосигнальные параметры, схемы включения. Полевые транзисторы с управляющим электронно-дырочным переходом и изолированным затвором.
контрольная работа [637,3 K], добавлен 13.02.2015Характеристика электромеханических систем, их классификация и использование в устройствах релейной защиты и автоматики систем электроснабжения. Принцип действия и выполнение электромагнитных измерительных, логических, индукционных, поляризационных реле.
курсовая работа [3,3 M], добавлен 11.08.2009Назначение и конструкция электродинамического громкоговорителя, его основные параметры и классификация. Устройство и принцип действия импульсного источника питания. Типовые неисправности узла, алгоритм поиска неисправности, его настройка и регулировка.
курсовая работа [646,7 K], добавлен 02.04.2012