Методология социологических исследований

Основные типы социологического дискурса. Правильность как критерий достоверности обществоведческих данных. Релевантность переменных и понятие квазипогрешности согласования. Важнейшие ошибки при построении шкал. Экспериментальный метод в социологии.

Рубрика Социология и обществознание
Вид курс лекций
Язык русский
Дата добавления 15.03.2016
Размер файла 495,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вряд ли возможно предвидеть все систематические ошибки, встречающиеся в массовых опросах. Например, в исследовании воспроизводства трудовых ресурсов Киева в 1984г. применялся отбор респондентов по избирательным спискам -- выписывался адрес каждого сотого избирателя. В.И. Паниотто заметил, что, если начинать отбор по алфавитному списку, получат преимущество респонденты, фамилия которых начинается на букву «А». Возникнет систематическая ошибка: в частности, большие шансы на то, чтобы попасть в выборку в Киеве, получат армяне, поскольку их фамилии часто начинаются на «А». Чтобы избежать этого, В.И. Паниотто начинал отбор в каждом списке с номера, равного целой части числа к/7 + 6/7 , где к -- номер избирательного участка, изменяющийся от 1 до 70023.

Каковы способы отбора единиц исследования? Н.Н. Чурилов выделяет сплошной, случайный и неслучайный способы отбора единиц исследования. К случайной выборке он относит выборку вероятностную, систематическую, районированную и гнездовую. Неслучайные методы отбора--«стихийная» выборка, квотная выборка и метод «основного массива»24.

Если генеральная совокупность имеет небольшой объем и можно обеспечить равную вероятность отбора каждой единицы исследования, применяется вероятностная выборка. Это не просто случайный бессистемный отбор, а строгая процедура, чаще всего основанная на использовании таблицы случайных чисел. Такого рода процедуру можно использовать только в том случае, если единицы исследования удается пронумеровать.

Однако чаще всего приходится разделять обследуемую совокупность на более или менее однородные части и затем осуществлять отбор единиц внутри этих частей. Такое разделение совокупности на части называется районированием. Проблема заключается в обеспечении однородности выделяемых классов на основе существенных для исследователя критериев. Для решения такой задачи необходимо располагать данными о структуре генеральной совокупности и, в частности, о распределении признака районирования. Выделенные «районы» должны существенно отличаться друг от друга, но им должна быть присуща внутренняя однородность.

Противоположность районированной выборке составляет выборка гнездовая, где обследуется промежуточный объект. Первоначально гнездовая выборка разрабатывалась в сельскохозяйственной статистике. В качестве социологических гнезд могут выступать населенные пункты, районы, предприятия, бригады. Реализовать такую выборку намного легче, чем вероятностную либо районированную. Единицы исследования здесь размещены компактно. Проблемы, которые возникают при гнездовом отборе, связаны с определением величины гнезда, количеством гнезд, которые надо обследовать, и их размещением в генеральной совокупности.

Систематический отбор является упрощенным вариантом случайного отбора. В основу выборки здесь положены не вероятностные процедуры, а алфавитные списки, картотеки, схемы, которые, как предполагается, не зависят от изучаемого признака и обеспечивают равновероятность попадания в выборку всех единиц генеральной совокупности.

Квотный отбор основан на целенаправленном формировании структуры выборочной совокупности. Интервьюер получает задание опросить некоторое количество лиц определенного возраста, пола, образования и профессии. Удельный вес квоты в выборочной совокупности должен соответствовать ее удельному весу в генеральной совокупности. Обычно квотная выборка используется на последних ступенях отбора и завершает процесс районирования и применения вероятностных процедур. Например, в штате Нью-Йорк проживает 10% населения США. Следовательно, 10% интервью должны быть проведены в Нью-Йорке. Если объем национальной выборки 10 000 человек, то на Нью-Йорк приходится 1000 интервью. Далее. НьюЙорк Сити включает 40% населения штата. Следовательно, 400 интервью будут проведены в Нью-Йорк Сити. Поскольку третья часть жителей Нью-Йорк Сити живет в Бруклине, 133 интервью будут проведены в этом районе. Кроме территориальных признаков, для определения квоты выбираются социальный статус, возраст, пол, иногда раса. Распределение этих признаков в генеральной совокупности известно и нетрудно обеспечить ее идентичность структуре выборки. Но при соблюдении квот остается много возможностей для систематических ошибок. В частности, интервьюер, разыскивая респондента определенного пола, статуса и возраста в заданном районе, предпочтет беседовать с более привлекательными и коммуникабельными людьми. Дж. Гэллап отмечал, что в квотных выборках обнаруживается слишком много людей, окончивших колледж, с доходами выше среднего, республиканцев по политическим ориентациям25. Поэтому вероятностный отбор обладает немалым преимуществом перед квотным: выборка меньше зависит от инициативы интервьюера. Метод стихийного отбора внешне похож на случайный. Исследователь здесь имеет дело с максимально доступными для него единицами наблюдения и исходит по преимуществу только из критерия принадлежности респондента к проектируемой генеральной совокупности. Чаще всего в данном случае допускаются неконтролируемые систематические ошибки. Особенно это относится куличным опросам, когда фиксируется мнение тех, кто имеет возможность и желание поговорить с интервьюером. Существенную роль в данном случае играет взаимное расположение при встрече. Нередко интервьюер, получив задание провести опрос, обращается к своим знакомым. Обследования, проводимые с помощью публикуемых в газетах вопросников, строго говоря, относятся к воображаемому объекту. Оценить репрезентативность выборочных средних при стихийном отборе практически невозможно. К стихийному отбору относится и метод основного массива, преимущество которого состоит в том, что выборочная совокупность составляет значительную долю генеральной и перекрывает возможное смещение. Например, при обследовании коллектива предприятия вполне достаточно опросить «большинство» работников и это обеспечит близость выборочной и генеральной средних.

5.5 Теоретические основы случайного отбора

Вариация выборочной средней. Центральная предельная теорема. Правило «трех сигм».

Предположим, что мы имеем дело с идеальной генеральной совокупностью, каждый элемент которой обладает абсолютно равными шансами попасть в выборку. Численность генеральной совокупности не должна быть особенно большой, чтобы не усложнять дело. Предположим, что объем нашей генеральной совокупности 5 человек. Предположим, далее, что тема нашего исследования -- «затраты времени на чтение». Значения переменной «затраты времени на чтение» устанавливаются в минутах в среднем за день26.

Следующее допущение еще более условно. Мы должны определить параметры каждой из единиц генеральной совокупности и вычислить средние затраты времени на чтение. В реальности, где объем генеральных совокупностей составляет обычно тысячи и миллионы единиц, такая задача социологу не по силам. Но в нашем-то примере генеральная совокупность состоит всего из пяти человек. Вернемся к примеру и предположим, что мы обладаем неким демоническим знанием о затратах времени на чтение у пяти человек (табл. 5.8).

Таблица 5.8 Затраты времени на чтение, матрица данных генеральной совокупности из пяти человек

Единицы генеральной совокупности

Затраты времени на чтение в среднем за день, мин

1. Иван

10

2. Петр

20

З. Александр

40

4. Иосиф

50

5. Павел

80

Искомая характеристика генеральной совокупности -- средние затраты времени на чтение: 40 мин. Нормальные проектировщики выборки всего этого не знают -- у них нет возможности обследовать всю генеральную совокупность из пяти семей -- поэтому и начинают строить выборку. Допустим, что объем выборочной совокупности из 2 человек достаточен для заданного уровня надежности предсказания. Тогда мы можем начать процедуру отбора единиц исследования. Напомним, что все 5 человек имеют равные шансы быть опрошенными. Здесь не помешает и напоминание об аналогии социологического отбора со случайным процессом: как будто мы вынимаем из мешка шар и регистрируем его параметры. Поскольку объем выборки 2 человека, опросим Ивана и Павла, подсчитаем их средние затраты времени на чтение и зарегистрируем результат: 45 мин. Обследование завершено. В социологической практике опросы ограничиваются одной выборкой, а в нашем примере полезно осуществить и другие выборки из той же генеральной совокупности. Ведь кроме Ивана и Павла есть и иные единицы, имеющие такие же шансы быть обследованными. Произведем вторую выборку -- опросим Ивана и Петра. Их средняя составит 15 мин. В третью выборку оба раза попал Павел -- после регистрации результатов опроса единица возвращается в генеральную совокупность и может быть «вынута» вторично -- такая выборка называется возвратной. Выборочная средняя «двойного» опроса Павла составляет 80 мин. Четвертый раз выпали Александр и Иосиф -- средняя 45 мин. Предположим, в пятую выборку два раза вошел Иван, средняя составляет 10 мин. Мы видим, что все происходящее слишком случайно и, тем не менее, следует подсчитать ошибки выборки -- разницу между значениями выборочной и генеральной совокупности по модулю (пока безразлично, какой знак имеет отклонение): (табл. 5.9)

Таблица 5.9 Затраты времени на чтение в пяти случайных выборках и соответствующие отклонения выборочных средних от генеральной средней, мин

Выборки

Выборочные средние

Генеральные средине

Ошибка выборки

1. Иван+Павел

45

40

5

2. Иван+Петр

15

40

25

3. Павел+Павел

80

40

40

4. Александр+ Иосиф

45

40

5

5. Иван+Иван

10

40

30

Уже на этой стадии мы можем сделать некоторые важные выводы. Во-первых, мы видим, что в одной и той же генеральной совокупности можно произвести много выборок, результаты которых иногда значительно отличаются друг от друга. У нас в одной выборке средняя составила 80 мин, а в другой-- 10 мин. Во-вторых, поскольку никаких специальных действий для получения определенной выборки не предпринимается и каждая выборка (пара индивидов) имеет равный шанс, можно надеяться, что выборочная средняя является случайной величиной.

То обстоятельство, что случайные выборки дают столь различающиеся результаты, подозрительно, и есть основания заняться установлением всех возможных выборочных средних и, соответственно ошибок выборки. Для этого надо выписать все сочетания единиц исследования по две в генеральной совокупности из пяти единиц (вместо имен опрошенных удобнее оперировать номерами). Напомним, что отбор единиц -- возвратный, т. е. каждая из них возвращается обратно в генеральную совокупность и может попасть в выборку еще и еще раз, разумеется, с такими же шансами, что и остальные единицы. Всего таких сочетаний может быть пт, где п -- объем генеральной совокупности, т -- объем выборки (табл. 5.10).

Таблица 5.10 Все возможные выборки по 2 единицы из генеральной совокупности в 5 единиц и соответствующие им значения выборочной средней

Первый замер

Второй замер

1

1

10

2

15

3

25

4

30

5

45

2

1

15

2

20

3

30

4

35

5

50

Первый замер

Второй замер

3

1

25

2

30

3

40

4

45

5

60

4

1

30

2

35

3

45

4

50

5

65

5

1

45

2

50

3

60

4

65

5

80

Мы видим, что из 25 возможных выборок и соответствующих средних только одна совпала с генеральной средней. Разброс значений выборочной средней составляет от 10 до 80 мин. Отсюда видно, что выборки могут быть хорошими и плохими.

Теперь мы имеем возможность оценить вероятность различных выборок. Мы видим весь диапазон вариации выборочных параметров -- от 10 до 80 мин. Однако эта картина еще мало о чем говорит. Ясно одно: каждая отдельная выборка в той или иной степени далека от «истинной» -- генеральной -- средней. Вместе с тем нетрудно заметить, что из 25 выборок одни встречаются редко, а другие часто. Дальнейшая задача заключается в том, чтобы организовать совокупность выборок и найти в ней внутреннюю логику. Речь идет уже не о выборочных совокупностях (у нас они включают по две единицы), а о совокупности выборок. Ее объем составляет 25 единиц. Просмотрим правую колонку табл. 5.10 сверху вниз и сгруппируем значения выборочных средних в порядке их возрастания: 10, 15, 15, 20, 25, 25, 30, 30, 30, 30, 35, 35, 40, 45, 45, 45, 45, 50, 50, 50, 60, 60, 65, 65, 80. Здесь уже можно видеть, что «срединные» выборочные средние встречаются чаще, чем «крайние». Эта важная особенность распределения выборочных средних становится особенно отчетливой, если мы подсчитаем для каждого значения выборочной средней частоту, с которой она встречается среди всех 25 выборок (табл. 5.11).

Таблица 5.11 Частотное распределение всех выборочных средних затрат времени на чтение в генеральной совокупности из пяти единиц, условный пример

Значения выборочных средних, мин

Количество выборок, которые имеют данное среднее значении

Вероятность появления данной выборки

10

1

0,04

15

2

0,08

20

1

0,04

25

2

0,08

30

4

0,16

35

2

0,08

40

1

0,04

45

4

0,16

50

3

0,12

60

2

0,01

80

1

0,04

Всего

25

1,00

Удивительно: несмотря на то что частотное распределение стремится к своему центру тяжести, «истинное» значение исследуемой переменной встретилось в наших 25 выборках только один раз. Однако продолжим расчеты и вычислим среднюю величину всех выборочных значений. Если вспомнить о том, что выборочное значение само представляет собой среднюю величину, задача формулируется более точно: подсчитаем среднюю всех выборочных средних. Это можно сделать в ранжированном ряду выборочных средних, который мы построили, но лучше исчислить средневзвешенную величину: умножить каждое значение переменной на его частоту, сложить произведения, а полученную сумму разделить на общее число наблюдений.

Здесь мы подходим к важному статистическому открытию, которое называется центральной предельной теоремой. Его суть заключается в том, что средняя всех возможных выборочных средних равна генеральной средней.

Действительно, подсчитав среднюю всех средних, мы получим = 40 мин. И что бы мы ни взяли и качестве предмета выборочного обследования, всегда случайные выборки будут распределяться вокруг генеральной средней.

Сама по себе центральная предельная теорема малопрактична, поскольку произвести все выборки из генеральной совокупности несоизмеримо труднее, чем обследовать всю генеральную совокупность. В нашем примере генеральная совокупность составляет 5 человек, а выборок -- 25. Если генеральная совокупность достаточно многочисленна, отдельные выборки остаются единственным средством приближения к генеральной средней. У нас каждая выборка, за исключением одной, показывающей истинное значение 40 мин, характеризуется некоторой ошибкой, и вероятность этой ошибки, равно как и вероятность точного попадания в середину, может быть исчислена путем деления частоты i-й выборки на число всех выборок.

Мы знаем генеральную среднюю в пяти наблюдениях и сейчас имеем возможность рассчитать вероятность «попадания» в среднюю каждого отдельного наблюдения. Это 1/5, или 20%. Вероятность того, что выборка из двух единиц покажет значение, равное генеральной средней, -- 1/25 (1/5х1/5), или 4%. Если бы мы производили отбор трех человек из пяти, вероятность построения «точной» выборки равнялась бы 1/125 (1/5 х 1/5х 1/5) , или 0,16%. Но в данном случае и количество всех возможных выборок равнялось бы 53 = 125.

Итак, точное «попадание» в генеральную среднюю маловероятно, но следующий шаг заключается в том, чтобы узнать, каково среднее отклонение от выборочной средней. Для этого нам понадобится показатель среднего квадратического отклонения:

где х1 -- i-я выборочная средняя, хср -- средняя

всех выборочных средних, pi--число наблюдений.

В нашем примере 25 выборок дают различные отклонения от средней, одни из них больше, другие меньше. Спрашивается, какова средняя вариация выборочных значений? Для подсчета м надо определить расстояние от каждой выборочной средней до «центра» -- общей средней, а сумму этих расстояний разделить на количество наблюдений -- п. В этом смысл приведенной формулы, которую полезно записать в виде аналитической таблицы, содержащей цифры из нашего условного примера (табл. 5.12).

Таблица 5.12 Расчет среднего квадратического отклонения 25 выборочных средних

-

-2

P

-2

10

40

-30

900

\

900

15

40

-25

625

2

1250

20

40

-20

400

1

800

25

40

-15

225

2

450

30

40

-10

100 '

4

400

. 35

40

-5

25

2

50

40

40

0

0

0

0

45

40

5

25

4

100

50

40

10

100

3

300

60

40

20

400

2

800

65

40

25

625

2

1250

80

40

40

1600

1

1600

Сейчас мы располагаем всеми данными для расчета среднего квадратического отклонения: м = 17,32 мин.

Величина среднего квадратического отклонения позволяет заранее предсказать, какое количество выборок в данной генеральной совокупности будут «плохими», т. е. отклонятся от средней на слишком большое расстояние, а сколько из них дадут приемлемые значения. Иными словами, ошибка выборки при условии, что она случайна, поддается априорному расчету. В нашем примере выборка (два человека из совокупности в пять человек) слишком мала, чтобы пытаться установить в ней какую-либо регулярность. Но сотни и тысячи случайных выборок, точнее, параметры случайных выборок, распределяются в соответствии с законом, который называется законом нормального распределения. Его суть заключается в том, что наибольшее число выборочных средних располагается в середине ряда плотности распределения, а крайние значения маловероятны. Чем больше число наблюдений, тем ближе распределение выборочных средних к нормальной кривой. Это дает возможность опираться на законы вероятностей и прогнозировать надежность выборочных наблюдений.

При идеальном случайном отборе в пределах одного среднего квадратического отклонения варьируют результаты 68,27% всех возможных выборок, в пределах двух средних квадратических отклонений -- 95,45%, а в пределах трех «сигм» -- 99,73%.

Это означает, что при достаточно большом числе замеров в среднем из каждых 1000 выборок 683 дадут значения, не выходящие за пределы одной «сигмы», 954 не выйдут за пределы двух «сигм», а 997 -- за пределы трех «сигм». Это означает также, что при любой выборке есть риск ошибиться. В среднем лишь в трех выборках из 1000 ошибка будет больше заданных значений. Увеличим точность приближения к средней всех выборочных средних до двух «сигм», и риск ошибиться возрастет до 46 случаев из 1000; за пределы одного среднего квадратического отклонения выйдут 317 выборок из 1000 (рис. 5.2).

«Правило трех сигм» позволяет заранее оценить вероятность ошибки случайной выборки. Чем выше требования к точности, тем выше риск ошибки и соответственно ниже вероятность правильного ответа. Вообще, выборка аналогична стрельбе в цель: чем больше по размеру мишень, тем выше вероятность попадания. Если сделать 1000 выстрелов из оружия, прицел которого установлен правильно, 683 выстрела будут удачными в том смысле, что не выйдут за пределы одной «сигмы».

«Правило трех сигм» действует применительно к случайным процессам -- выпадениям правильного «кубика», монетки, шарам. Но мы знаем, что и вариация выборочной средней является случайным процессом: средняя всех выборочных средних в точности равна генеральной средней, а среднее квадратическое отклонение тоже известно. Поэтому в любом ряду распределения можно установить пределы, в которых находятся выборочные средние с вероятностью 683 из 1000; 954 из 1000 и 997 из 1000.

Вернемся к условному примеру, где производилась выборка из двух человек в генеральной совокупности из пяти человек. Средние затраты времени на чтение составили в 25 выборках 40 мин. Среднее квадратическое отклонение 17,3 мин. Сейчас мы можем подсчитать область распределения, соответствующую одному среднему квадратическому отклонению: нижний предел 40 мин. -- 17,3 мин = 22,7 мин;

Рис. 5.2. Распределение выборочных средних верхний предел 40 мин + 17,3 мин = 57,3 мин.

Какие из 25 выборочных средних попадают в этот интервал? Посмотрим табл. 5.11 и увидим, что в интервале от 22,7 мин до 57,3 мин имеются значения 25 мин -- две выборки, 30 мин --четыре выборки, 35 мин -- две выборки, 40 мин -- одна выборка, 45 мин -- четыре выборки и 50 мин -- три выборки. Общей сложностью насчитывается 16 выборок из 25 (2+4+2+1+4+3). Переведем эту цифру в проценты и получим 64 -- такова вероятность, что наша случайная выборка не выйдет за пределы одного среднего квадратического отклонения. Расхождение с одной «сигмой» обусловлено малочисленностью наблюдений.

Удвоенное среднее квадратическое отклонение равно 17,3 х 2 = 34,6 мин. Нижняя граница интервала составляет в данном случае 40 -- 34,6 = 5,4 мин; верхняя граница: 40 + 34,6 = 74,6 мин. Из всех наших выборок только одна (80 мин.) вышла из этих пределов, а 24 уместились в две «сигмы». В нормальном распределении данный интервал включает 95,4% выборок. У нас таких 96%. Утроенное среднее отклонение охватит в нашем условном примере все выборочные средние. В реальности же три из 1000 случайных выборок выйдут за пределы «трех сигм».

Производя выборку, исследователь не имеет возможности установить ее среднее квадратическое отклонение--для этого понадобилось бы анализировать все выборочные средние. Приходится использовать установленное теорией соотношение между средним квадратическим отклонением выборочных средних и средним квадратическим отклонением генеральной совокупности где п -- объем выборки.

Очевидно, чем больше объем выборки, тем меньше вариация выборочных средних.

Проверим это соотношение на нашем условном примере: установим среднее квадратическое отклонение затрат времени на чтение у пяти человек (табл.5. 13).

Таблица 5.13 Расчет среднего квадратического отклонения в генеральной совокупности из пяти человек

Респондент

Затраты времени на чтение, мин

Отклонение индивидуального значения от среднего

Квадратотклоненияот среднего

Иван

10

-30

900

Петр

20

-20

400

Александр

40

0

0

Иосиф

50

10

100

Павел

80

40

1600

У нас есть возможность вычислить среднее квадратическое отклонение генеральной совокупности уген =24,5 мин. Теперь, узнав среднее квадратическое отклонение генеральной совокупности, мы можем вычислить среднее квадратическое отклонение выборочных средних м = 17,32 мин.

Это соотношение, устанавливающее прямо пропорциональную зависимость средней ошибки выборки от среднего квадратического отклонения генеральной совокупности и обратно пропорциональную зависимость от корня квадратного из величины выборочной совокупности, позволяет не производить сотни и тысячи выборок. Ошибка выборки рассчитывается на основе сведений об однородности генеральной совокупности, а также об объеме выборки.

Вернемся к нашему примеру с затратами времени на чтение. Мы знаем среднее значение изучаемой переменной в генеральной совокупности -- 40 мин. -- и ее среднее квадратическое отклонение -- 24,52 мин. Средняя ошибка выборки объемом в две единицы равна 17,32 мин. Это означает, что из 1000 выборок 683 дадут результаты от 22,68 мин. (40 -- 17,32) до 57,32 мин. (40 + 17,32). Если бы выборка состояла из трех человек, ее ожидаемая ошибка была бы поменьше: 14,14 мин. В данном случае с такой же вероятностью в 683 из 1000 мы можем утверждать, что результат выборочного наблюдения не будет ниже 25,86 мин и выше 54,14 мин. Выборка из четырех человек еще больше повысит точность предсказания: 12,25 мин. Интервал среднего отклонения от истинного значения признака уменьшился: от 27,75 мин. до 52,25 мин.

Таким образом, величина средней ошибки выборки, т. е. средняя всех отклонений выборочной средней от общей средней, зависит от двух параметров: от степени однородности распределения изучаемого признака в генеральной совокупности и объема выборки.

Представим себе, что обследуемая совокупность совершенно однородна -- отклонения от средней равны нулю. Например, все респонденты имеют один и тот же возраст -- вариация данного признака нулевая. Величина знаменателя в формуле м не имеет значения, потому что, даже если выборка будет состоять из одного-единственного наблюдения, ошибка останется нулевой. При разнородной генеральной совокупности ошибка выборки уменьшается с увеличением ее объема. Если объем выборки приближается к объему генеральной совокупности, ошибка стремится к нулю.

Задача исчисления ошибки выборки сводится к определению вероятности того или иного варианта. В нашем примере выборочного наблюдения двух человек из пяти вероятность выборочного значения 40 мин, равно как и прочих, равна 0,04. Но вероятность установления значений от 35 до 45 мин. возрастает: 0,04 + 0,08 + 0,16 = 0,28 -- это хорошо видно в табл. 5.11. Чем меньше точность, тем выше надежность выборочных данных.

«Сигмы» имеют в каждом конкретном случае разную размерность: минуты, белые и черные шары, метры, баллы. Метры и минуты нельзя сопоставить друг с другом. Поэтому целесообразно нормировать отклонения выборочной средней путем введения относительной величины:.

Величина t показывает, в каком отношении находится средняя ошибка выборки к одному среднему квадратическому отклонению. Аналогия со стрельбами в данном случае не покажется лишней. Чем меньше размер цели, тем меньше уверенность в попадании. При t = 1 отклонение выборочной средней от генеральной равно одной «сигме» и, как мы знаем, вероятность такого варианта равняется 683 случаям из 1000, т. е. 0,683. При снижении точности предсказания в два раза, т. е. при t = 2, вероятность возрастает до 0,954, при t = 3 -- до 0,997, при t = 4 -- до 0,999.

Используя коэффициент t, мы можем ввести определение предельной ошибки выборки Д. Предельная ошибка выборки непосредственно зависит от принятого нами уровня точности -- коэффициента t. Д= t х м. Если мы не хотим ошибиться в своих заключениях, надо увеличить t, при t = 4 вероятность того, что выборочная средняя не выйдет за пределы четырех средних отклонений, составит 0,999.

Расчет средней ошибки выборки, как было показано выше, зависит от однородности генеральной совокупности -- уген. Новыборка производится как раз для того, чтобы установить параметры генеральной совокупности. Поэтому практического смысла формула не имеет. Вместе с тем, при достаточно большом числе наблюдений среднее квадратическое отклонение выборочных средних от общей средней становится равным среднему квадратическому отклонению генеральной совокупности, т. е. меру вариации в генеральной совокупности можно заменить мерой вариации в совокупности выборочной. В данном случае м обозначает пределы, в которых может находиться с определенной вероятностью генеральная средняя:

Рассмотрим частотное распределение выборочной совокупности 807 школьников по количеству имевшихся у них наличных денег (табл. 5.14).

Прежде всего необходимо подсчитать среднюю арифметическую где х -- значения переменной, р -- частоты. Среднее

количестводенег у ребенка составляло тогда 45 руб. Затем надо выяснить, насколько велика разнородность обследованных по интересующей нас переменной, т. е. среднее квадратическое отклонение

По формуле средней ошибки выборки устанавливаем, что она равна 1,3 руб. Далее у нас есть возможность рассчитать предельную ошибку выборки Д =t х м. При t = 3, т. е. при вероятности 0,997, Д = 3x1,3 = 3,9 руб. Определим интервал, в котором с вероятностью 997 шансов из 1000 заключена генеральная средняя: нижний предел =45-3,9=41,1 руб, верхний предел =45+3,9=48,9 руб.

Таблица 5.14 Распределение школьников по количеству имевшихся у них наличных денег, 1987 г., %

Количество денег, хi

Частота i-го признака, p

до 3 руб

25

75

3-10 руб

48

312

10 - 25 руб

230

4025

25 - 50 руб

280

10 500

50 -100 руб

160

12 000

100 -150 руб

52

6500

150 -200 руб

12

2100

больше 200 руб

5

1000

Всего

812

36 512

Вывод: с вероятностью 0,997 можно утверждать, что среднее количество денег у советских школьников в 1987 г. составляло от 41,1 до 48,9 руб. Если этот вывод не устраивает нас из-за своей приблизительности, мы имеем возможность повысить точность предельной ошибки, например, принять t = 1. Тогда Д= 1,3 руб. Интервал сокращается: нижний предел составляет 45 -- 1,3 = 43,7 руб; верхний предел 45 + 1,3 = 46,3 руб. Утверждать, что генеральная средняя будет находиться в установленных таким образом пределах, мы можем с вероятностью 0,683. Это значит, что мы ошибемся в 317 случаях из 1000.

Выборка должна быть достаточно большой, но, как мы знаем из опыта, ее объем выше определенного предела расширять нецелесообразно -- на точность результата это уже не влияет. Поэтому прежде всего требуется определить точность предстоящего измерения. Вряд ли нужно измерять сумму наличных денег с точностью до рубля или затраты времени с точностью до минуты. Если требуются самые высокие гарантии и самая точная информация, выборка должна быть большой. Кроме точности и надежности результатов выборочного наблюдения, на объем выборки влияет независимый от исследователя фактор -- степень однородности генеральной совокупности. В однородной совокупности не нужны многократно повторяющиеся замеры.

Представим три фактора, влияющие на объем выборки, в формальном виде. Греческая буква Д обозначает заданную точность -- предельную ошибку выборки; t -- коэффициент, обозначающий заданную надежность предсказания генеральной средней, -- обычно устанавливается вероятность 0,997, t = 3; степень однородности генеральной совокупности измеряется средним квадратическим отклонением уген.

Предельная ошибка выборки А = t x м, а средняя ошибка выборки. Путем подстановки получаем формулу объема выборки.

Часто при измерении социологических признаков приходится оперировать долями. В этом случае формула видоизменяется. Средняя ошибка для выборочной доли равна где w -- доля данного признака. Тогда Производим преобразование формулы и получаем. Как и в случае с непрерывной переменной, остается неизвестной вариация генеральной совокупности. Выход из ситуации -- максимизировать w(l - w). Максимальная вариация доли бывает при w = 0,5 и соответственно 1 - w = 0,5. Тогда w(1 - w) = 0,25. Это значение и подставляется в формулу.

Б.Ц. Урланис приводит следующий пример27. Производится обследование студентов по полу. Предельная ошибка выборки (точность) устанавливается 2 процента (0,02). Надежность t = 3, т. е. в 997 случаях из 1000 генеральная средняя попадет в требуемый интервал. В итоге вычисляется объем выборки:

Исходя из возможноймаксимальной вариации признака в генеральной совокупности В.И. Паниотто рекомендует следующие объемы выборочной совокупности в зависимости от величины генеральной совокупности (при допущении, что с вероятностью 0,954 генеральная средняя попадает в интервал -- 5 %)28.

Таблица 5.15 Соотношение объемов выборочной и генеральной совокупностей при Р = 0,954 и ошибке 5%

Генеральная совокупность

Выборочная совокупность

500

222

1000

286

2000

333

3000

350

4000

360

5000

370

10 000

385

100 000

398

400

Таким образом, для выборки с пятипроцентной ошибкой достаточно обследовать 400 единиц при практически бесконечной генеральной совокупности и уровне надежности 95%. Повышение требований к точности предсказания до 4% при сохранении прочих условий увеличивает объем выборки до 625 единиц, точность 3% предполагает объем 1111 единиц, 2% -- 2500 единиц и 1% -- 10 000 единиц. Фактически объем выборки зависит не столько от величины генеральной совокупности и допустимой ошибки, сколько от количества градаций, используемых при анализе массива.

Для часто используемых в социологии двумерных распределений основную роль играет значимость различий между долями изучаемого признака при сравнении двух совпадающих по численности групп респондентов, выбранных случайным образом из бесконечной генеральной совокупности. Например, различия в 10% не случайны с вероятностью 0,954, если сравниваются группы по 200 человек. Двухпроцентные различия не случайны с той же вероятностью при сравнении пятитысячных групп (табл. 5.16)29.

Таблица 5.16 Зависимость численности сравниваемых групп от значимости различий при Р=0,954, %

Численность сравниваемых групп

Значимые различия

50

20,0

100

14,0

150

11,5

200

10,0

300

8,0

500

6,3

1000

4,5

5000

2,0

Таким образом, увеличение выборочной совокупности необходимо лишь для статистически корректного анализа межгрупповых различий.

Глава 6. Экспериментальный метод в социологии

6.1 Схема эксперимента

Для чего нужна контрольная группа? Три способа выравнивания контрольной и экспериментальной групп. Задачи, решаемые экспериментом: сравнение, манипулирование, контроль, генерализация. Три условия экспериментального вывода: временная последовательность, ковариация, контроль «третьего» фактора. Определения внутренней и внешней валидности. Типичные нарушения внешней валидности: отсутствие репрезентативности и искусственно созданная экспериментальная ситуация.

Всякое человеческое действие, предпринятое для достижения определенного результата, -- это эксперимент, более или менее успешный. Задача науки заключается в том, чтобы установить точные правила экспериментирования и применять их для достижения заданных параметров. Объектом эксперимента для социолога являются люди и социальные общности -- часто их реакция на «научное» вмешательство оказывается непредсказуемой, во всяком случае для экспериментатора.

Логика экспериментального метода была разработана английским социологом и моралистом Джоном Стюартом Миллем, жившим в XIX в. Милль установил пять логических схем индуктивного вывода, одна из которых -- «метод различия» -- являет собой классическую схему эксперимента.

Схема эта довольно проста. Сначала берутся две совокупности (два объекта) и выравниваются по значимым признакам. Иначе говоря, нужно сделать так, чтобы группы практически не различались. Конечно, они не могут не различаться вовсе. Поэтому внимание экспериментатора сосредоточивается на значимых признаках, т. е. на тех, которые могут оказать влияние на результаты эксперимента.

Например, изучая воздействие телепередачи на политические установки зрителей, исследователь должен убедиться, что возраст испытуемых в различных группах варьирует незначительно. Почему возраст? Потому что из предшествующих исследований известно, что возраст влияет на политические установки. Следовательно, этот признак подлежит контролю. Несколько по-иному оценивается, например, численность блондинов, брюнетов или шатенов. Обычно такого рода параметрами при изучении политических установок пренебрегают, почему-то не считая их значимыми. Чем больше параметров учитывает исследователь, тем надежнее эксперимент.

Затем начинается полевой или лабораторный этап эксперимента. Иногда утверждается, что это самый главный этап -- собственно эксперимент. Такое суждение опрометчиво. Успех или провал эксперимента зависит прежде всего от того, насколько тщательно проработаны его идеальная схема, план проведения и ожидаемые результаты. Лабораторное (полевое) исследование не должно сталкиваться с «нештатными» ситуациями, т. е. ситуациями, не предусмотренными предварительно разработанным планом. Если это происходит, полевую работу надо немедленно прекратить и вернуться к проектированию исследования. Неудача исследования заключается отнюдь не в отрицательном результате -- иногда он имеет большее значение, чем Положительный, -- а в получении ничего не означающих данных.

Предположим, что все идет «штатно» и мы находимся на полевом этапе эксперимента. Здесь одна группа объектов подвергается воздействию экспериментальной переменной. Все, кто работает в «опытных» науках, делают примерно одно и то же. Химик подвергает вещество воздействию реактива и затем наблюдает, как оно меняет цвет. Физик нагревает газы с целью продемонстрировать их расширение при нагревании. Агробиолог охлаждает семена и затем фиксирует динамику роста яровых (правда, потом это оказывается ошибкой). Социолог показывает студентам учебный фильм и констатирует усвоение материала.

На этом эксперимент не заканчивается. Чтобы убедиться в том, что данные результаты возникли вследствие воздействия именно экспериментальной переменной, а не какой-либо иной, следует сопоставить параметры экспериментальной группы с параметрами группы, где никаких воздействий не применялось. Различие между этими параметрами и есть результат воздействия экспериментальной переменной. Если различие нулевое или несущественное, мы констатируем отсутствие связи. Если применение экспериментальной переменной значительно изменяет распределение изучаемого признака, имеются основания предполагать причинную связь между ними. Такова общая схема, которая лежит в основании более сложных планов эксперимента.

Классический проект проверки гипотез предполагает работу с двумя объектами: экспериментальным и контрольным. Это не значит, что все экспериментаторы обязаны работать с двумя объектами. Естественные науки XIX в. не знали такого разделения объектов. Впервые экспериментальную и контрольную группы стали выделять в начале XX в.

В социологии и социальной психологии в качестве объектов выбираются группы, идентичные по составу. Экспериментальной группой называется та группа, к которой «применяется» изучаемая независимая переменная; контрольная группа остается вне экспериментального воздействия.

Экспериментальная и контрольная группы должны быть практически идентичными. Идентичность экспериментальной и контрольной групп достигается двумя способами. Первый способ -- попарное выравнивание объектов по значимым переменным, установленным до проведения экспериментальных операций. Выравнивание можно осуществить путем подбора для каждого объекта экспериментальной группы идентичного объекта в контрольной группе. Например, если в экспериментальную группу входит мужчина 40 лет с высшим гуманитарным образованием, в контрольной группе должен быть его «двойник» с такими же параметрами. Очевидно, подбор «двойников» возможен лишь при очень ограниченном числе переменных. В противном случае комплектование групп превращается в неразрешимую задачу.

Второй, более доступный, метод выравнивания групп основан на выравнивании частотных распределений, а не каждой пары в отдельности. Например, экспериментатор обеспечивает 30-процентную долю испытуемых с высшим образованием и в той, и в другой группе. Аналогичные выравнивания осуществляются и по другим признакам, а отдельные испытуемые уже не контролируются. Разумеется, в данном случае не достигается высокого сходства между группами, но комплектование групп намного облегчается.

Третий способ обеспечения идентичности экспериментальной и контрольной групп -- случайное распределение объектов по группам. Чаще всего такой способ называют рандомизацией. В отличие от выравнивания рандомизация, как предполагается, устраняет систематические различия между группами по всем признакам, а не только контролируемым исследователем.

Для осуществления рандомизации массив надо как следует перемешать и разделить равновероятно. Данный способ особенно предпочтителен в тех случаях, когда у исследователя нет уверенности, что различия между группами контролируются по значимым переменным. А такой уверенности нет никогда. Обеспечить равновероятное распределение контингента на две группы не так просто, как это кажется. Каждый объект должен иметь одинаковую вероятность попасть в экспериментальную и контрольную группы, поэтому рекомендуется осуществлять отбор с помощью таблицы случайных чисел либо жребия.

Для определения эффекта, производимого экспериментальной переменной, осуществляются несколько замеров и в той, и в другой группах. Предварительный замер -- претест -- производится до того, как экспериментальная группа подвергнется воздействию изучаемой переменной. При этом различия между значениями зависимой переменной в контрольной и экспериментальной группах должны быть минимальными. После того как экспериментальная группа подверглась воздействию определенного стимула, осуществляются замеры в обеих группах. Если значение зависимой переменной в экспериментальной группе статистически значимо отличается от значения претеста и превышает (статистически значимо) значение претеста в контрольной группе, делается вывод (с указанием вероятности случайной ошибки), что переменная-стимул связана с переменной-реакцией. Таким образом, гипотеза принимается (как неопровергнутая, а не как подтвержденная) или опровергается.

Пример экспериментальной проверки гипотезы -- исследование влияния мнения учителей об интеллектуальном развитии учеников на интеллектуальное развитие учеников. Исследование проведено Р. Розенталем и Л. Джейкобсом1. Экспериментаторы предположили, что ученики, способности которых оцениваются учителями более высоко, действительно обнаруживают большие успехи. Гипотеза проверялась на материале обследования учеников средней школы в районе, где жили преимущественно бедные. Все ученики прошли тестирование по уровню интеллектуальности (использовалась невербальная техника тестирования). Затем с результатами тестирования ознакомили учителей: им сообщили имена детей, обнаруживших большие способности. На самом деле имена «вундеркиндов» были выбраны случайным порядком. Таким образом, экспериментальная группа состояла из «ожидаемых» вундеркиндов, а остальные дети составляли группу контрольную. Ожидания учителей являли собой экспериментальную переменную, а интеллектуальное развитие детей -- зависимую переменную. Через год тест был повторен и обнаружились значимые различия: развитие детей экспериментальной группы было выше, чем в контрольной.

Несмотря на внешнюю убедительность, эксперимент не доказывает, что интеллектуальное развитие детей обусловлено именно «эффек

Таблица 6.1 Схема экспериментального проекта

Группы

Измерение до эксперимента

Экспериментальная переменная

Измерение после эксперимента

Установлениеразличий

Экспериментальная

О1

Применяется

О2

О1 - O2

Контрольная

О3

Не применяется

О4

О3 - О4

Пигмалиона». Вполне возможны и альтернативные объяснения. Имея дело с людьми, совершенно невозможно избежать реактивного эффекта, когда изучаемый признак неотделим от процедуры замера.

Социологические исследования, в которых независимая и зависимая переменные выделяются путем группировки данных, нельзя назвать экспериментом в полном смысле слова. Однако анализ результатов поддается методам, применяемым при управляемом экспериментальном воздействии.

Обычно результатом неуправляемых социологических экспериментов с естественной возникающей независимой переменной является мера корреляции между признаками. При достаточно высокой корреляции гипотеза о неслучайном характере связи не отвергается. Низкая корреляция также не является решающим аргументом в пользу отсутствия причинной зависимости. Лучше всего использовать анализ корреляций для поиска тесных зависимостей, а уже потом выбирать из них гипотезы, требующие дополнительной валидизации.

Чтобы избежать нерелевантных воздействий («шума»), исследователи нередко прибегают к косвенным, квазиэкспериментальным признакам. Вряд ли целесообразно спрашивать посетителей музея, нравятся ли им импрессионисты (конечно же, нравятся). Вместо этого социологи пытаются замерить степень истертости лакового покрытия полов у художественных полотен, считающихся знаменитыми. Самые популярные книжки -- не те, о которых идет разговор респондента и интервьюера, а имеющие совершенно затрепанный вид библиотечные экземпляры приключенческих и любовных романов. Методическое требование формулируется вполне отчетливо: экспериментальная переменная не должна привносить существенные изменения в объект и обязана быть незаметной.

С помощью сравнения устанавливается, влечет ли за собой изменение значения независимой переменной изменение значения переменной зависимой. Например, если существует связь между некоторым методом преподавания и степенью усвоения материала студентами, то студенты обнаруживают более высокую успеваемость после применения данного метода. Для того чтобы установить совместную изменяемость метода преподавания и успеваемости, сравниваются успеваемость в группе студентов, подвергшихся воздействию переменной х (метода преподавания) с успеваемостью в группе студентов, не подвергшихся такому воздействию.

Иными словами, чтобы установить ковариацию, значения зависимой переменной замеряются до и после применения независимой переменной. Иная версия сравнения: данные по группе, где применялась независимая переменная, сравниваются с данными по группе, где независимая переменная не применялась. В первом случае группа сравнивается с самою собой, во втором -- экспериментальная группа сравнивается с контрольной. Без сравнения никакой экспериментальный план невозможен.

Распределение испытуемых по группам -- довольно сложная этическая и методическая проблема. Если проинформировать человека, что он включен в контрольную группу, это может повлиять на результат эксперимента. Нетрудно предугадать, какой эффект вызовет переход половины класса в отдельное помещение. Если не сообщать испытуемым о замысле исследования, возникают некоторые этические сложности, связанные с тем, что личность становится объектом манипуляции. В большинстве случаев испытуемый не должен ничего знать об истинных исследовательских гипотезах. Поэтому в полевой работе, как правило, предусматривается «легенда», маскирующая истинные намерения экспериментатора. Даже если испытуемый знает, что находится под наблюдением, он не должен догадываться, какая задача на самом деле решается в эксперименте. Демаскировка равнозначна срыву полевой работы.

Этические проблемы, возникающие в социологическом экспериментировании, не более серьезны, чем аналогичные проблемы в медицине и биологии. Манипулирование людьми, обращение с ними, как с материалом, -- неизбежный факт исследовательской работы. Конечно, здесь возможны злоупотребления, но где их нет?

В отличие от естественных и технических наук в социологии отсутствуют теоретические схемы, являющиеся основанием для оценки значимости переменных. Когда инженер проверяет надежность прибора на стенде, он знает, что окраской корпуса в большинстве случаев можно пренебречь. Иное дело -- живые респонденты, для которых могут оказаться весьма существенными параметрами как раз те, которые не воспринимаются серьезно исследователем. Например, если в хорошо подобранной экспериментальной группе окажется несколько энтузиастов, результаты экспериментирования нельзя считать «чистыми» вне зависимости от темы исследования.

Из сказанного следует, что проконтролировать все значимые переменные невозможно, но необходимо. Поэтому исследователь создает измерительные конфигурации, исходя из своих теоретических представлений.

С помощью сравнения устанавливаются лишь различия между группами, но вопрос о зависимости признаков остается открытым. Манипуляция с экспериментальными объектами позволяет включить в научный вывод суждение о причинной зависимости между переменными. Со времен Дэвида Юма известно, что причинность не может быть выведена с помощью одного только рассудка и опирается на привычку -- суждение, находящее свои основания в практическом, вненаучном опыте. Экспериментирование заключается в манипуляциях, которые вызывают соответствующие изменения в объекте. Здесь отчетливо прорисовывается критерий зависимости / независимости: зависимая переменная всегда реагирует на внесение изменений в независимую переменную. Однако объект может изменяться под влиянием и иных, альтернативных факторов.

Известно также, что «после этого -- не по причине этого». Предшествование по времени является необходимым, но недостаточным условием причинения. Нужна еще уверенность в том, что причини лежит именно в данной, а не в иной переменной. Поскольку имеется практически бесконечное число возможных причин, повлиявших на изменения, такая уверенность никогда не достигается. Исследователь может лишь проверить гипотезу и не отвергнуть ее.

В лабораторных условиях можно манипулировать переменными и осуществлять замеры до и после изменений. В естественной обстановке манипулировать обстоятельствами чаще всего невозможно. В последнем случае говорить о причинности особенно рискованно.

Контроль -- третья задача экспериментального проекта. Она направлена на устранение постороннего («третьего») фактора, влияющего на причинную зависимость между изучаемыми переменными. Часто контроль обозначается как обеспечение внутренней валидности научного вывода и соотносится с ответом на вопрос: действительно ли причиной наблюдаемого события (значения переменной) является признак, рассматриваемый исследователем как независимый.

Ф. Чэпин сравнивал экспериментальную группу семей -- тех, кого переселили в новые квартиры, с контрольной группой -- теми, кто остался жить в трущобах. Он изучал изменения в жизненном укладе обитателей трущоб, которые происходят под влиянием переселения семей в дома общественного сектора. Основной вывод исследования опирался на установленный факт: в экспериментальной группе уровень жизни значительно повысился. Отсюда следовало заключение, что проекты общественной застройки обусловливают положительные изменения в образе жизни людей. Однако этот вывод недостаточно обоснован, поскольку семьи, переселивши...


Подобные документы

  • Методологические проблемы социологических исследований. Функции социологии. Разработка программы социологического исследования. Обобщение и анализ данных, полученных в процессе его проведения. Описание и применение разных методов и методик в социологии.

    учебное пособие [339,5 K], добавлен 14.05.2012

  • Понятие контент-анализа в социологии, общая характеристика метода. Методология и технология интервью. Сущность анкетирования, типы анкетных вопросов. Социологическое наблюдение: особенности применения. Основные положения социологического эксперимента.

    курсовая работа [46,9 K], добавлен 13.02.2011

  • Понятия "парадигма", "аномия". Объект и предмет социологии, понятие социального. Структура социологического знания. Типы социологических теорий, концепции развития человеческого общества. Виды социологических исследований. Макро- и микросоциология.

    контрольная работа [20,6 K], добавлен 15.01.2009

  • Понятие методологии и современные концепции структуры социологического знания. Основные проблемы соотношения математики и социологии. Анализ опыта становления количественных методов в социологии, применение математики в социологических программах.

    курсовая работа [42,9 K], добавлен 18.02.2012

  • Проблемы надежности и условия достоверности наблюдения. Особенности социологического наблюдения и его применение в социологическом исследовании. Состояние психологического климата в трудовом коллективе. Виды и требования к наблюдению в социологии.

    контрольная работа [24,7 K], добавлен 12.03.2015

  • Понятие и типы социологических исследований, этапы их проведения, подготовительные и основные. Методы эмпирических социологических исследований, анализ и оценка, интерпретация полученных результатов, существующие проблемы и их решение, управление.

    контрольная работа [22,8 K], добавлен 14.06.2015

  • Теоретическое обоснование проблемы интерпретации результатов социологических исследований. Определение и виды социологических исследований, процедура анализа их результатов. Практическое применение интерпретации данных социологических исследований.

    курсовая работа [52,3 K], добавлен 10.01.2011

  • Понятие и сущность анкетных опросов, требования к их проведению и классификация вопросов. Анализ проблемы достоверности получаемой информации. Виды, принципы и правила проведения интервью. Основные методы анализа и классификации документов в социологии.

    реферат [38,8 K], добавлен 01.02.2010

  • Сбор социологических данных. Диалектика общего, особенного и единичного. Качественные и количественные методы социологических исследований. Обработка полученных данных. Анализ социальной действительности. Механизм адаптации людей к социальным изменениям.

    реферат [26,8 K], добавлен 27.01.2013

  • Социологическое исследование как система логически последовательных методологических, методических и организационно-технических процедур для получения данных об изучаемом процессе. Подготовка, основные этапы и методы социологического исследования.

    контрольная работа [26,4 K], добавлен 15.07.2010

  • Объект, предмет, функции и методы социологии, виды и структура социологического знания. История становления и развития социологии: становление социологических идей, классическая и марксистская социология. Школы и направления современной социологии.

    курс лекций [112,4 K], добавлен 02.06.2009

  • Изучение типов научности и структуры социологического знания как уточнение и объединение содержания социологии в основе формирования концепции подготовки специалистов. Социологический метод, признание примата целого над составляющими социальных фактов.

    реферат [27,0 K], добавлен 27.06.2009

  • Характеристика форм и методов проведения социологического исследования, его цели и задачи. Особенности выдвижения гипотез, этапов проведения исследования, разработки схемы сбора и анализа данных. Требования для написания отчета и пояснительной записки.

    курсовая работа [54,0 K], добавлен 11.02.2010

  • Понятие, объект, предмет социологии. Развитие социологии в России. Программа и этапы социологического исследования. Понятие и виды социальных институтов. Социальная стратификация и ее типы. Глобальные проблемы современности. Социальные общности и группы.

    шпаргалка [54,8 K], добавлен 23.09.2010

  • Основные особенности становления социологии как самостоятельной науки. Характеристика и анализ идеи Конта - уподобить изучение общества изучению природы. Ключевые методы и основные уровни социологического знания. Проведение социологических исследований.

    презентация [419,7 K], добавлен 09.12.2011

  • Парадигма как универсальный метод принятия эволюционных решений, ментальная модель мира и мироустройства, основанная на сформировавшихся идеях, взглядах и понятиях. Метатеория и метасоциология. Объект и предмет социологии. Типы социологических теорий.

    контрольная работа [27,9 K], добавлен 18.03.2009

  • Развитие социологии как науки, ее объект и предмет. Структура социологического знания. Методы социологии: биографический, аксиоматический, метод идеальных типов и обобщения характеристик. Место социологии в системе гуманитарных наук и ее специфика.

    контрольная работа [63,8 K], добавлен 03.04.2012

  • Структура социологии: общесоциологическая теория, специальные социологические теории и исследования. Опрос, анализ документов, наблюдение и эксперимент как основные методы сбора социологических данных. Социологические методы, применяемые в маркетинге.

    реферат [38,0 K], добавлен 01.12.2010

  • Характеристика методов социологических исследований (контент–анализ, опросные методы, социологическое наблюдение, кейс-стади, социологический эксперимент). Описание социологического телефонного опроса по выявлению потребности в услугах компании.

    курсовая работа [445,3 K], добавлен 12.11.2014

  • Понятие метода и методики социологических исследований. Метод опроса в социологическом исследовании. Методы механической, серийной, гнездовой и квотной выборки. Создание широких сетей интервьюеров. Качественные методы анализа социологических данных.

    курсовая работа [32,4 K], добавлен 27.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.