Функционирование дизельного двигателя
Система питания дизельного двигателя. Особенности и принципы смесеобразования в данном рабочем узле. Типы камер сгорания. Дизельное топливо и его свойства, общая схема системы питания. Приборы системы питания. Фильтры грубой и тонкой очистки топлива.
Рубрика | Транспорт |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 06.12.2013 |
Размер файла | 63,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Смесеобразование в дизелях
Смесеобразование в дизельных двигателях осуществляется в конце такта сжатия и начале такта расширения. Процесс продолжается короткий промежуток времени, соответствующий 20-60° поворота коленчатого вала. Этот процесс в дизеле имеет следующие особенности:
– смесеобразование протекает внутри цилиндра и в основном осуществляется в процессе впрыскивания топлива;
– по сравнению с карбюраторным двигателем продолжительность смесеобразования в несколько раз меньше;
– горючая смесь, приготовленная в условиях ограниченного времени, характеризуется большой неоднородностью, т.е. неравномерным распределением топлива по объему камеры сгорания. Наряду с зонами высокой концентрации топлива (с малыми значениями локального (местного) коэффициента избытка воздуха), имеются зоны с малой концентрацией топлива (с большими значениями б). Это обстоятельство предопределяет необходимость сжигания топлива в цилиндрах дизелей при относительно большом суммарном коэффициенте избытка воздуха .
Поэтому в отличие от карбюраторного двигателя, имеющего пределы воспламеняемости горючей смеси, в дизеле б не характеризует условия воспламенения топлива. Воспламенение в дизеле практически возможно при любом суммарном значении б, т.к. состав смеси в различных зонах камеры сгорания (КС) изменяется в широком диапазоне. От нуля (например, в жидкой фазе капель топлива) до бесконечности - вне капли, где нет топлива. [2, c 86-87]
топливо дизельный двигатель смесеобразование
2. Особенности смесеобразования
Процессы смесеобразования в дизелях включают в себя распыливание топлива и развитие топливного факела, его прогрев, испарение топливных паров и смешивание их с воздухом.
Распыливание топлива. Впрыскивание и распыливание топлива в цилиндре дизеля осуществляется с помощью специальных устройств - различных типов форсунок, имеющих, в частности, разное число сопловых отверстий распылителя.
Распыливание струи на мелкие капли резко увеличивает поверхность дозы жидкости. Отношение поверхностей образовавшегося множества капель к единичной капле той же массы примерно равно корню кубическому из количества капель. Общее количество капель в результате распыливания достигает (0,5-20)·106, что дает увеличение поверхности приблизительно в 80-270 раз. Последнее обеспечивает быстрое протекание процессов тепло- и массообмена между каплями и воздухом в камере сгорания, имеющим высокую температуру до 2000 C и более. Размеры частиц, обеспечивающих быстрое сгорание в дизеле, составляют 540 мкм. [2, c. 88]
Для одновременной оценки мелкости и однородности распыливания пользуются характеристикой распыливания, представляющей собой зависимость между диаметрами капель dк и их относительным содержанием Щ - отношением объема капель, имеющих диаметры от минимального до данного, к объему всех капель. Зависимость Щ = f(dк) приведена на рис. 1. Чем круче и ближе к оси ординат располагается суммарная характеристика распыливания, тем мельче и однороднее распылено топливо. Вместо указанных объемов по оси ординат можно откладывать относительную массу капель.
Развитие топливного факела. Первичный распад струи (на относительно крупные частицы) происходит посредством турбулентных возмущений, возникающих при течении топлива через сопловое отверстие, а также упругого расширения топлива при выходе из устья сопла. В последующем крупные частицы разбиваются при полете на более мелкие посредством сил аэродинамического сопротивления среды.
Форма факела (струи) характеризуется его длиной Lст, углом конусности гст и шириной Вст. Формирование факела происходит постепенно по мере развития процесса впрыскивания. Длина факела Lст увеличивается вследствие непрерывного "выдвижения" новых частиц топлива к его вершине. Скорость ст продвижения вершины факела при увеличении сопротивления среды и уменьшении кинетической энергии частиц уменьшается, а ширина факела Вст увеличивается. Угол конусности Вст при цилиндрической форме соплового отверстия распылителя составляет Вст=12-20°.
Топливо, введенное в цилиндр в виде факелов, распределяется в воздушном заряде неравномерно, т.к. число факелов, определяемое конструкцией распылителя, ограничено. Другой причиной неравномерного распределения топлива в камере сгорания является неоднородная структура самих факелов.
Обычно в факеле (рис. 4) различают три зоны: сердцевину, среднюю часть и оболочку. Сердцевина состоит из крупных частиц топлива, которые имеют наибольшую скорость движения. Средняя часть факела содержит большое количество мелких частиц, образовавшихся при дроблении передних частиц сердцевины силами аэродинамического сопротивления. Распыленные и потерявшие запас кинетической энергии частицы топлива оттесняются и продолжают движение лишь за счет потока воздуха, увлекаемого попутно факелом. В оболочке находятся наиболее мелкие частицы, имеющие минимальную скорость движения.
Влияние на параметры распыливания топлива и развитие топливного факела оказывают конструкция распылителя, давление впрыскивания, состояние среды, в которую впрыскивается топливо, свойства самого топлива.
Распылители с цилиндрическими сопловыми отверстиями (рис. 5а) могут быть многодырчатыми и однодырчатыми, открытыми и закрытыми (с запорной иглой). Штифтовые распылители (рис. 5б) выполняются только однодырчатыми, закрытого типа. Распылители со встречными струями и с винтовыми завихрителями могут быть только открытыми (рис. 5в, г). Цилиндрические сопловые отверстия обеспечивают получение сравнительно компактных факелов с малыми конусами расширения и большой пробивной способностью.
С увеличением диаметра отверстия d0 соплового отверстия распылителя глубина проникновения факела возрастает. Распылитель открытого типа без запирающейся иглы характеризуется менее качественным распыливанием, чем закрытый, и для впрыскивания топлива в КС дизелей не применяется. У штифтовых распылителей факел имеет форму полого конуса. Это улучшает распределение топлива в воздушной среде, но уменьшает пробивную способность факела.
С увеличением давления впрыскивания длина факела возрастает, тонкость и равномерность распыливания улучшается. При повышении нагрузки двигателя и частоты вращения n улучшается качество распыливания.
Состояние среды (рабочего тела) внутри цилиндра дизеля существенно влияет на процесс смесеобразования. С повышением давления в КС, обычно в пределах 2,55,0 МПа, увеличивается сопротивление продвижению факела, что приводит к уменьшению его длины. При этом качество распыливания изменяется незначительно. Возрастание температуры воздуха в пределах 750…1000 К приводит к снижению длины факела вследствие более интенсивного испарения частиц топлива. Движение среды в цилиндре положительно влияет на равномерность распределения топлива в факеле и в объеме камеры сгорания. Повышение температуры топлива приводит к уменьшению длины факела и более тонкому распыливанию, что обусловлено снижением вязкости нагретого топлива. Более тяжелые топлива, имеющие большие плотность и вязкость, естественно, при прочих одинаковых условиях распыливаются хуже, чем легкие автотракторные топлива.
Прогрев, испарение и смешивание. Распыленные частицы топлива, находящиеся в среде горячего воздуха, быстро нагреваются и испаряются. Более интенсивно этот процесс протекает для распыленных частиц, имеющих наибольшее отношение площади поверхности к объему. Практика показывает, что частицы диаметром 1020 мкм в камере сгорания успевают полностью испариться за время (0,50,9) - 10-3 с, т.е. до начала воспламенения. Испарение более крупных частиц заканчивается в ходе начавшегося процесса сгорания.
Концентрация паров вокруг еще не испарившихся капель переменна. Она максимальна у их поверхности и непрерывно убывает по мере удаления в стороны. Как отмечено выше, местные значения коэффициента избытка воздуха изменяются в очень широких пределах. Движение частиц относительно воздуха несколько выравнивает распределение топлива в микросмеси, т.к. часть образующихся паров рассеивается по траектории движения частиц. Смешивание топлива и воздуха частично происходит внутри факела, что обусловлено вовлечением воздуха в сердцевину факела в процессе его формирования. Но большая концентрация топлива в сердцевине и менее благоприятные температурные условия значительно замедляют процесс испарения в этой зоне. Изложенное выше характеризует процесс смесеобразования той части топлива, которая поступила в цилиндр до начала воспламенения. В дальнейшем смесеобразование остальной части топлива значительно ускоряется, т.к. оно протекает в условиях начавшегося процесса горения при более высоких температурах и давлениях. Качество горючей смеси значительно определяется скоростью перемешивания топлива с воздухом. Существенное влияние на рабочие процессы в КС оказывает смесеобразование части топлива, поступившей в камеру в начале впрыскивания. В ходе предпламенных химических реакций в отдельных зонах микросмеси возникает критическая концентрация промежуточных продуктов окисления, что приводит к тепловому взрыву и появлению первичных очагов пламени. Наиболее вероятной зоной появления таких очагов является пространство около испаряющихся частиц, где концентрация паров топлива оптимальна (б = 0,8-0,9). Первичные очаги пламени, прежде всего, образуются на периферии факела, т.к. физические и химические процессы подготовки топлива к сгоранию заканчиваются здесь раньше. [3, c. 370-371]
3. Способы смесеобразования. Типы камер сгорания
Распределение топлива по КС осуществляется за счет кинетических энергий топлива и движущегося воздушного заряда. Соотношение этих энергий обусловлено способом смесеобразования и формой КС. В современных автомобильных дизелях нашли применение объемное, пристеночное (пленочное), комбинированное, предкамерное и вихревое смесеобразования. КС в сочетании с топливоподающей аппаратурой определяют условия протекания процессов смесеобразования и сгорания. Камеры сгорания предназначены обеспечивать:
– полное сгорание топлива при минимально возможном коэффициенте и в предельно короткий срок у ВМТ;
– плавное нарастание давления при сгорании и допустимые значения максимального давления цикла рz;
– минимальные потери теплоты в стенки;
– приемлемые условия работы топливной аппаратуры.
Объемное смесеобразование. Если топливо распыливается в объеме однополостных (неразделенных) камер сгорания и лишь небольшая часть его попадает в пристеночный слой, то смесеобразование называют объемным. Такие КС имеют малую глубину и большой диаметр, характеризуемый безразмерной величиной - отношением диаметра КС к диаметру цилиндра: dкс/D = 0,750,85. Такая КС располагается обычно в поршне, причем оси форсунки, КС и цилиндра совпадают (рис. 6б).
Рабочий цикл дизелей с объемным смесеобразованием характеризуется следующими особенностями:
– смесеобразование обеспечивается путем мелкого распыливания топлива при высоких максимальных давлениях впрыскивания (рвпрmах=50150 МПа), турбулизация в КС возникает вследствие вытеснения воздуха из зазора между буртом поршня и головкой цилиндра при подходе поршня к ВМТ;
– равномерное распределение топлива в воздухе обеспечивается посредством взаимного согласования формы КС с формой и расположением топливных факелов;
– протекание процесса сгорания на номинальном режиме осуществляется при б = 1,50-1,6 и более, т.к. в результате неравномерного распределения топлива по объему КС при меньшем б не удается обеспечить бездымного сгорания, несмотря на согласование форм камеры и факелов, а также применения высокого давления впрыскивания;
– рабочий цикл характеризуется высокими максимальными давлениями сгорания рz и большими скоростями нарастания давления Др/Дц;
– двигатели с объемным смесеобразованием имеют высокий индикаторный к.п.д. из-за сравнительно быстрого сгорания топлива у ВМТ и меньших потерь теплоты в стенки КС, а также хорошие пусковые качества. [5, c. 345]
Важное значение имеет поверхность топливных струй, через которую происходит диффузия паров топлива в окружающий воздух. Угол рассеивания топливных струй обычно не превышает 20°. Для обеспечения полного охвата струями всего объема камеры сгорания и использования воздуха число распыливающих отверстий форсунки теоретически должно быть ic=360/20 = 18.
Величина проходного сечения распыливающих отверстий fc определяется типом и размерами дизеля, условиями перед впускными органами. Она существенно влияет на продолжительность и давление впрыскивания, ограничена условиями обеспечения хорошего смесеобразования и тепловыделения. Поэтому при большом количестве распыливающих отверстий их диаметр должен быть небольшим. Чем меньше количество распыливающих отверстий, тем более интенсивно приводится во вращательное движение для полного сгорания топлива воздух, т.к. в этом случае заряд за характерный промежуток времени, принимаемый обычно равным продолжительности впрыскивания топлива, должен повернуться на больший угол. Это достигается применением винтового или тангенциального впускного каналов.
Создание вращательного движения заряда при впуске приводит к ухудшению наполнения цилиндров воздухом. Увеличение максимального значения тангенциальной скорости tmax вызывает уменьшение v (рис. 7). Пристеночное смесеобразование. Способ смесеобразования, при котором топливо подается на стенку камеры сгорания и растекается по ее поверхности в виде тонкой пленки толщиной 1214 мкм, получил название пристеночного или пленочного.
При таком смесеобразовании КС может быть расположена соосно с цилиндром, а форсунка смещена к ее периферии. Одна или две струи топлива направляются либо под острым углом на стенку КС, имеющей сферическую форму (рис. 6г), либо вблизи и вдоль стенки КС (рис. 6д). В обоих случаях заряд приводится в достаточно интенсивное вращательное движение (тангенциальная скорость движения заряда достигает 5060 м/с), способствующее распространению топливных капель вдоль стенки камеры сгорания. Топливная пленка испаряется за счет теплоты поршня.
После начала горения процесс испарения резко возрастает под действием теплопередачи от пламени к пленке топлива. Испарившееся топливо уносится потоком воздуха и сгорает во фронте пламени, распространяющегося от очага воспламенения. При впрыскивании топлива из-за затрат теплоты на его испарение существенно снижается температура заряда (до 150200°С по осям струй). Это затрудняет воспламенение топлива вследствие уменьшения скорости химических реакций, предшествующих возникновению пламени.
Существенное улучшение воспламеняемости низкоцетановых топлив обесценивается при увеличении , которую у специальных многотопливных дизелей приходится повышать до 26. Для камер с пристеночным смесеобразованием опасность впрыскивания с недостаточной длиной топливных струй существенно меньше, чем в случае камер с объемным смесеобразованием. Поэтому повышение не вызывает ухудшения смесеобразования. При пристеночном способе смесеобразования требуется менее тонкое распыливание топлива. Максимальные величины давления впрыскивания не превышают 4045 МПа. Используют одно-два распыливающих отверстия большого диаметра.
В дизелях нашла применение КС, разработанная Центральным научно-исследовательским дизельным институтом (ЦНИДИ) (рис 6в). Топливные факелы в такой камере попадают на ее боковые стенки под входной кромкой. Отличительная особенность смесеобразования - встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме КС, и сближает этот процесс с объемным смесеобразованием. При использовании камеры ЦНИДИ применяют 35 сопловых отверстий. Параметры впрыскивания топлива близки к тем, которые имеют место в КС типа ВТЗ и ЯМЗ.
Объемно-пристеночное смесеобразование. Такое смесеобразование получается при меньших диаметрах КС, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Часть этого топлива непосредственно соприкасается со стенкой КС. Другая часть располагается в пограничном слое заряда. Частичное попадание топлива на стенки камеры сгорания и интенсивное перемешивание воздуха и частиц топлива снижают количество паров топлива, образующихся в период задержки воспламенения. В результате снижается и скорость тепловыделения в начале сгорания. После появления пламени скорости испарения и смешивания резко возрастают. Поэтому подача части топлива в пристеночную зону не затягивает завершение сгорания, если температура стенки в местах попадания на нее струй находится в пределах 200300°С.
При dкс/D = 0,5-0,6 (рис. 6а, б, ж) в связи со значительным ускорением вращения заряда при перетекании его в КС удается использовать 35 распыливающих отверстий достаточно большого диаметра. Значение тангенциальной составляющей скорости движения заряда достигает 2530 м/с. Максимальные значения давлений впрыскивания, как правило, не превышают 5080 МПа.
В связи с тем, что на такте расширения во время обратного перетекания заряда из камеры часть несгоревшего топлива переносится в пространство над вытеснителем, где имеется еще не использованный для сгорания воздух. Он не полностью участвует в процессе окисления. Поэтому стремятся уменьшить до минимума объем заряда, находящегося в пространстве между поршнем (при положении в ВМТ) и головкой цилиндра, доводя высоту его диз (рис. 6а) до 0,9-1 мм. При этом важной оказывается стабилизация зазора при изготовлении и ремонте дизеля. Положительные результаты обеспечивает также минимизация зазора между головкой поршня и гильзой и уменьшение расстояния от днища поршня до первого компрессионного кольца. [5, c. 351-352]
Смесеобразование в разделенных камерах сгорания. Разделенные камеры сгорания состоят из основной и вспомогательной полостей, соединенных горловиной. В настоящее время применяют в основном вихревые КС и предкамеры.
Вихревые камеры сгорания. Вихревая камера сгорания (рис. 8) представляет собой шаровое или цилиндрическое пространство, соединенное с надпоршневым пространством цилиндра тангенциальным каналом. Объем VK вихревой КС 2 составляет примерно 60-80% общего объема сжатия Vс, площадь fc поперечного сечения соединительного канала 3 cоставляет 1-5% площади поршня Fп.
Как правило, в вихревых камерах сгорания используются закрытые форсунки 1 штифтового типа, обеспечивающие полый факел распыленного топлива.
При поступлении воздуха из цилиндра в вихревую камеру во время такта сжатия воздух интенсивно завихривается. Воздушный вихрь, непрерывно воздействуя на формирующийся топливный факел, способствует лучшему распыливанию топлива и смешиванию его с воздухом. В ходе начавшегося горения воздушный вихрь обеспечивает подвод к факелу свежего воздуха и отвод от него продуктов сгорания. При этом скорость вихря должна быть такой, чтобы за время впрыскивания топлива воздух мог совершить в камере сгорания не менее одного оборота.
Сгорание вначале происходит в вихревой камере. Повышающееся при этом давление вызывает перетекание продуктов сгорания и топливовоздушной смеси в цилиндр, где процесс сгорания завершается.
На рис. 9 представлены конструктивные элементы вихревых камер. Нижняя часть камеры, как правило, образуется специальной вставкой из жаропрочной стали, которая предохраняет головку от обгорания. Высокая температура вставки (800-900 К) способствует сокращению периода задержки воспламенения топлива в КС. Интенсивное вихреобразование и наличие вставки позволяют получить устойчивое протекание рабочего цикла в широком диапазоне нагрузочных и скоростных режимов.
Вихрекамерный рабочий цикл обеспечивает бездымное сгорание топлива при малых коэффициентах избытка воздуха (б = 1,2-1,3) вследствие благоприятного влияния интенсивного воздушного вихря. Сгорание значительной части топлива в дополнительной камере, расположенной вне цилиндра, обусловливает снижение максимального давления сгорания (рz=7-8 МПа) и скорости нарастания давления (0,3-0,4 МПа/°ПКВ) в надпоршневой полости цилиндра на полной нагрузке.
Рабочий цикл вихрекамерного двигателя менее чувствителен к качеству распыливания топлива, что позволяет использовать однодырчатые распылители с невысокими максимальными давлениями впрыскивания (рвпр = 20-25 МПа) и сопловым отверстием сравнительно большого диаметра - до 1,5 мм.
Основные недостатки вихрекамерного двигателя: повышенный удельный эффективный расход топлива, достигающий на режиме полной нагрузки 260270 г./(кВт·ч), а также худшие по сравнению с двигателями с неразделенными КС пусковые качества. Однако при использовании свечей накаливания в вихрекамере пусковые качества существенно улучшаются.
Более низкая экономичность вихрекамерных дизелей объясняется увеличением теплоотдачи в стенки основной и дополнительной КС вследствие более развитой их поверхности, наличия в КС интенсивного вихреобразования, больших гидравлических потерь при перетекании рабочего тела из цилиндра в вихревую камеру и обратно, а также зачастую увеличением продолжительности процесса сгорания. Ухудшение пусковых качеств двигателя обусловлено понижением температуры воздуха при перетекании в вихревую камеру и увеличением теплоотдачи в стенки вследствие развитой поверхности дополнительной КС. К числу двигателей с вихрекамерным смесеобразованием относятся тракторные дизели СМД, ЗИЛ-136, Д50, Д54 и Д75, автомобильные дизели «Перкинс», «Ровер» (Великобритания) и др. [5, c. 355-358]
Предкамерные дизели. Объем предкамеры (рис. 10) составляет 25-35% общего объема сжатия Vс. Площадь проходного сечения соединительных каналов равна 0,3-0,8% площади поршня. В КС используется однодырчатая (обычно штифтовая) форсунка 1, обеспечивающая впрыскивание топлива в направлении соединительных каналов 3.
В предкамерном дизеле воздух в процессе сжатия частично перетекает в предкамеру, где продолжает сжиматься. В нее же в конце сжатия впрыскивается топливо, которое воспламеняется и горит, вызывая быстрое повышение давления. В объеме предкамеры сгорает часть топлива, т.к. количество воздуха в ней ограничено. Несгоревшее топливо продуктами сгорания выносится в цилиндр, где дополнительно распыливается и тщательно перемешивается с воздухом за счет образующихся интенсивных газовых потоков. Сгорание переносится в надпоршневое пространство, вызывая повышение давления в цилиндре.
Таким образом, в предкамерных дизелях для смесеобразования используется энергия газа, перетекающего из предкамеры вследствие предварительного сгорания части топлива в ее объеме.
Использование для смесеобразования газового потока позволяет интенсифицировать перемешивание топлива с воздухом при сравнительно грубом распыливании топлива форсункой. Поэтому в предкамерных дизелях сравнительно низкие начальные давления впрыскивания, не превышающие 10-15 МПа, а коэффициент избытка воздуха на режиме полной нагрузки составляет 1,3-1,
Другое важное преимущество предкамерных дизелей - небольшая жесткость сгорания топлива . Давление газа в надпоршневом пространстве - не более 5,56 МПа вследствие дросселирования газа в соединительных каналах.
К преимуществам предкамерных дизелей следует отнести также меньшую чувствительность рабочего цикла к виду применяемого топлива и к изменению скоростного режима работы. Первое объясняется влиянием на условия воспламенения разогретой поверхности днища предкамеры, второе - независимостью энергии газового потока, вытекающего из предкамеры, от скорости движения поршня. Максимальная частота вращения для предкамерных дизелей малой размерности цилиндра (малого диаметра) составляет 30004000 мин-1.
Основные недостатки предкамерного дизеля: низкая топливная экономичность вследствие тепловых и гидравлических потерь, возникающих при перетекании газов, из-за растянутости процесса сгорания, а также увеличенной суммарной поверхности КС. Среднее давление механических потерь рм у предкамерных дизелей на 2535% выше, чем у двигателей с неразделенными камерами, а удельный эффективный расход топлива равен 260290 г./(кВт·ч).
Как и вихрекамерные, дизели с предкамерным смесеобразованием имеют низкие пусковые качества. Поэтому эти дизели часто отличаются повышенной (до 18-20) степенью сжатия и снабжены пусковыми свечами накаливания.
Особенности смесеобразования при наддуве. Существенно большая цикловая подача топлива должна осуществляться за время, не большее, чем топливоподача в базовом дизеле без наддува. Для увеличения цикловой подачи топлива и сохранения общей продолжительности впрыскивания дп можно увеличить до приемлемого предела эффективное проходное сечение распыливающих отверстий.
Вторая возможность - увеличение давлений впрыскивания. На практике обычно прибегают к сочетанию этих мероприятий. Увеличение давлений впрыскивания при прочих одинаковых условиях обеспечивает более мелкое и однородное распыливание топлива, что может способствовать повышению качества смесеобразования. Необходимую степень увеличения давлений впрыскивания устанавливают исходя из требуемой степени ускорения процесса смесеобразования. При впрыскивании в более плотную среду увеличивается угол рассеивания топливных струй.
Характеристика смесеобразования
Вид смесеобразования |
бmin |
pz, МПа |
Дp/Дц, МПа/ 0ПКВ |
ре, МПа |
gе, г/(кВт·ч) |
||
объемное и объемно- пристеночое |
1,41,8 |
1416 |
7059 |
1,5 |
0,70,8 |
225255 |
|
пристеночное |
1,1 |
1416 |
6,58,0 |
1,0 |
0,70,8 |
220240 |
|
вихрекамерное |
1,21,3 |
1618 |
6,07,0 |
0,5 |
0,70,85 |
260290 |
|
предкамерное |
1,31,4 |
1720 |
5,56,0 |
0,5 |
0,650,75 |
260300 |
Отмеченная величина дп при необходимости может быть сокращена также другими, более трудоемкими способами, в частности путем увеличения диаметра плунжера топливного насоса и увеличения крутизны его кулачков. При модернизации дизелей с наддувом часто вносятся существенные изменения во все основные его системы и механизмы: снижают степень сжатия, частоту вращения n, изменяют угол опережения впрыскивания и т.д. Эти мероприятия, естественно, влияют и на смесеобразование в КС.
В случае газотурбинного наддува плотность заряда в цилиндре увеличивается с ростом частоты вращения n и нагрузки, а продолжительность периода задержки воспламенения по времени сокращается. Чтобы обеспечить требуемое проникновение топливных струй в слой воздуха за период задержки воспламенения, топливоподающая аппаратура должна обеспечить более резкое увеличение значений давления впрыскивания с увеличением частоты вращения n и нагрузки, чем на дизеле без наддува. При высоких степенях форсирования наддувом применяются насосы-форсунки и топливные системы аккумуляторного типа. В малоразмерных вихрекамерных дизелях легковых автомобилей =21-23. [5, c. 363-368]
4. Дизельное топливо и его свойства. Общая схема системы питания
Хорошие технико-экономические показатели дизелей способствуют их широкому применению на грузовых автомобилях и автобусах.
Для дизелей используют сорта нефтяных топлив (керосиногазойлевые и соляровые фракции), имеющие более низкую стоимость, чем бензины. Согласно ГОСТ 305 - 82 дизельное топливо выпускается трех марок: Л (летнее); З (зимнее); А (арктическое). Топливо предназначено для питания дизелей в зависимости от температуры окружающего воздуха. Топливо Л используется при температуре воздуха О ос и выше; З - при температуре окружающего воздуха минус 200С и выше (если 140 температура застывания топлива не выше минус 35 ОС) и минус 30 ос и выше (если температура застывания топлива не выше минус 45 ОС); А - при температуре окружающего воздуха минус 50 ОС и выше.
По содержанию серы дизельные топлива подразделяют на два вида - с массовой долей серы не более 0,2% и с массовой долей серы не более 0,5% (для топлива марки А не более 0,4%). Таким образом, выпускаются топлива: Л - 0,2 и Л - 0,5; З - 0,2 и З - 0,5; А - 0,2 и А - 0,4. В условное обозначение топлива марки Л должны входить массовая доля серы и температура вспышки; топлива марки З - массовая доля серы и температура застывания; топлива марки А - массовая доля серы. Примеры: обозначение - топливо дизельное Л - 0,2-40 ГОСТ 305-82 означает: топливо летнее, серы до 0,2% и температура вспышки 40 ОС; топливо дизельное З - 0,2 минус 35 ГОСТ 305 - 82 означает: топливо зимнее, серы до 0,2% и температура застывания минус 35 ОС; топливо дизельное А - 0,4 ГОСТ 305-82 означает: топливо арктическое, серы до 0,4%.
Качество дизельного топлива оценивают метановым числом. Дизельное топливо сравнивают со смесью из двух топлив: метана и альфалина. Метан обладает минимальным периодом запаздывания воспламенения, обеспечивает более мягкую работу двигателя, для него метановое число условно принимают равным 100. Альфатилнафталин обладает наибольшим периодом запаздывания воспламенения (трудно воспламеняется) и вызывает жесткую работу двигателя; его метановое число условно принимаю т равным нулю. Если испытуемое топливо воспламеняется как объемная смесь, состоящая, например, из 45% метана и 55% альфа-метилнафталина, то метановое число такого топлива равно 45 и т.д.
Дизельные топлива Л, З и А имеют метановые числа не менее 45. Срок хранения дизельного топлива - 5 лет со дня изготовления. [1, c. 140]
Система питания дизеля служит для подачи в цилиндры двигателя воздуха и топлива. Топливо подается под большим давлением в определенные моменты (характеризуемые углом опережения подачи топлива) и в определенном количестве в зависимости от нагрузки двигателя. Система питания дизель состоит из системы подачи воздуха и топливной системы.
В систему питания четырехтактного дизеля ЯМЗ-236 входят топливный бак 9 (рис. 11, а), фильтры грубой 8 и тонкой 1 очистки топлива, топливоподкачивающий насос 11, топливопроводы, топливный насос 5 высокого давления с всережимным регулятором, форсунки 6, воздухоочиститель 4 и другие приборы и детали.
Рассмотрим путь топлива в топливной системе. Из бака 9 через фильтр 8 грубой очистки по топливопроводу 10 топливо поступает к топливоподкачивающему насосу 11, от которого подается по топливопроводу 12 к фильтру 1 тонкой очистки, а по топливопроводу 2 к насосу 5 высокого давления. Насос по топливопроводами 3 высокого давления подает топливо в форсунки 6 в соответствии с порядком работы цилиндров двигателя (l - 4 - 2 - 5 - 3 - 6). Независимо от частоты вращения коленчатого вала двигателя в топливопроводах насоса поддерживается постоянное давление топлива 130 - 150 кПа вследствие работы перепускного клапана 13 и жиклера фильтра тонкой очистки. Топливо, не использованное в насосе высокого давления, по топливопроводу 14 сливается в бак. Топливопроводы 7 служат для отвода в бак топлива, просочившегося между распылителем форсунки и иглой. Топливо, постоянно циркулирующее в топливной системе, охлаждает головку насоса, отводит в бак воздух, попавший в систему.
Особенностью топливной системы дизеля КамАЗ-740 автомобиля КамАЗ-5320 является наличие в ней двух топливоподкачивающих насосов 11 и 28 (рис. 11,6). Насос 11, установленный на кронштейне коробки передач, имеет только ручной привод, а насос 28, укрепленный на корпусе насоса 5 высокого давления, имеет два привода: ручной и механический.
При работе двигателя топливо из бака 9 по топливопроводу 24 поступает в фильтр 8 грубой очистки, затем подходит к тройнику 21 и по топливопроводу 27 к топливоподкачивающему насосу 28. Насос 28 нагнетает топливо по топливопроводу 16 к фильтру 1 тонкой очистки, а из него по топливопроводу 20 к впускной полости насоса 5 высокого давления. От насоса 5 по топливопроводам 15 топливо подается в форсунки 6 в соответствии с порядком работы цилиндров двигателя (l - 5 - 4 - 2, - 6 - 3 - 7 - 8).
Топливо, не использованное в насосе высокого давления, и воздух, попавший в систему, отводятся через перепускной клапан насоса и сливной клапан фильтра тонкой очистки по топливопроводам 17, 18 и 25 в топливный бак. Топливопроводы 23 и 26 с тройником 22 служат для отвода в бак топлива, просочившегося между распушителем и иглой. [1, c. 141]
Самовоспламеняемость (цетановое число). Цетановое число - основной показатель воспламеняемости дизельного топлива. Оно определяет запуск двигателя, жесткость рабочего процесса (скорость нарастания давления), расход топлива и дымность отработавших газов. Чем выше цетановое число топлива, тем ниже скорость нарастания давления и тем менее жестко работает двигатель. Однако с повышением цетанового числа топлива сверх оптимального, обеспечивающего работу двигателя с допустимой жесткостью (менее 0,5 МПа/°ПВК), ухудшается его экономичность в среднем на 0,2-0,3% и дымность отработавших газов на единицу цетанового числа повышается на 1-1,5 единицы Хартриджа. Чем выше цетановое число топлива, тем быстрее произойдут процессы предварительного окисления его в камере сгорания, тем скорее воспламенится смесь и запустится двигатель. Ниже приведены данные по влиянию цетанового числа на время запуска двигателя:
Цетановое число…………. 53 38
Время запуска, с…………. 3 45-50
Цетановое число топлив зависит от их углеводородного состава. Наиболее высокими цетановыми числами обладают нормальные парафиновые углеводороды, причем с повышением их молекулярной массы оно повышается, а по мере разветвления - снижается. Самые низкие цетановые числа у ароматических углеводородов, не имеющих боковых цепей; ароматические углеводороды с боковыми цепями имеют более высокие цетановые числа и тем больше, чем длиннее боковая парафиновая цепь. Непредельные углеводороды характеризуются более низкими цетановыми числами, чем соответствующие им по строению парафиновые углеводороды. Нафтеновые углеводороды обладают невысокими цетановыми числами, но большими, чем ароматические углеводороды. Чем выше температура кипения топлива, тем выше цетановое число, и эта зависимость носит почти линейный характер; лишь для отдельных фракций цетановое число может снижаться, что объясняется их углеводородным составом. [4, c. 596]
Цетановые числа дизельных топлив различных марок, вырабатываемых отечественной промышленностью, характеризуются следующими значениями:
Марка дизельного топлива Л 3 (-35°С) 3 (-45°С) А
Метановое число 47-51 45-49 40-42 38-40
Применение топлив с цетановым числом менее 40 приводит к жесткой работе двигателя, а более 50 - к увеличению удельного расхода топлива вследствие уменьшения полноты сгорания. Летом можно применять топлива с цетановым числом, равным 40, а зимой для обеспечения холодного пуска Двигателя - с цетановым числом не менее 45. Цетановое число и низкотемпературные свойства топлива - это взаимосвязанные величины: чем лучше низкотемпературные свойства топлива, тем ниже его цетановое число. Так, топлива с температурой застывания ниже -45°С характеризуются цетановым числом около 40.
Хорошие низкотемпературные свойства достигаются несколькими способами: существенным облегчением фракционного состава (температура конца кипения 300-320°С вместо 360°С), проведением депарафинизации топлива (извлечение н-парафиновых углеводородов), переработкой нафтено-ароматических нефтей с малым содержанием н-парафиновых углеводородов. При этом во всех случаях снижается цетановое число.
Они допущены к применению, но их вводят в крайне ограниченных количествах для повышения цетанового числа с 38 до 40, так как при этом понижается температура вспышки и повышается коксуемость топлива.
Установление оптимальных цетановых чисел имеет большое практическое значение, поскольку с углублением переработки нефти в состав дизельного топлива будут вовлекаться легкие газойли каталитического крекинга, коксования и фракции, обладающие относительно низкими цетановыми числами. Бензиновые фракции также имеют низкие цетановые числа, и добавление их в дизельное топливо всегда заметно снижает цетановое число последнего. Европейским стандартом на дизельное топливо установлен нижний предел цетанового числа - 48 единиц. [4, c. 596]
5. Приборы системы питания дизельного ДВС
Система питания дизельного двигателя автомобиля КамАЗ-5320 состоит из топливного бака 16; топливного фильтра 18 предварительной (грубой) очистки топлива; топливоподкачивающего насоса 2 с устройством 1 для ручной подкачки топлива; топливного насоса 4 высокого давления; форсунок 6; электромагнитного клапана 8; факельной свечи 10; фильтра 12 для окончательной (тонкой) очистки топлива; топливопроводов низкого 3 и высокого 5 давления; топливоотводящих (дренажных) трубопроводов 9, 11, 14 и 15 с тройником 17; топливопроводов 7 и 13 для подвода топлива соответственно к электромагнитному клапану и топливному насосу; воздушных фильтров; трубопровода для подвода воздуха в цилиндры двигателя и отвода отработавших газов из них; глушители шума выпуска отработавших газов; указателя уровня топлива в топливном баке; регулятора частоты вращения коленчатого вала; педали газа с системой тяг для управления рейкой топливного насоса; автоматической муфты опережения впрыска топлива.
На отдельных двигателях устанавливают турбокомпрессор для подачи воздуха в цилиндры двигателя под давлением с целью повышения мощности двигателя и снижения токсичности отработавших газов. [1, c. 141-142]
Фильтр грубой очистки топлива. Топливный фильтр предварительной (грубой) очистки топлива двигателя автомобиля КамАЗ-5320 (рис. 13, а) состоит из корпуса 10, к которому при помощи болтов 7 и фланца 8 с уплотнительной прокладкой 9 прикреплен стакан-отстойник 2 со сливной пробкой 1. В корпусе установлен распределитель топлива 6, сетчатый фильтрующий элемент 4 с отражателем 5 и успокоителем 3. Во время работы двигателя топливо подводится в фильтр по топливопроводу через штуцер 11, направляется в распределитель 6 и стекает через успокоитель 3 в стакан-отстойник, где из него выпадают крупные примеси и вода. Далее топливо, поднимаясь, проходит сетчатый фильтрующий элемент 4, где очищается и по центральному топливоотводящему штуцеру поступает в топливоподкачивающий насос.
В двигателе ЯМЗ-236 фильтр грубой очистки топлива (рис. 13, б) состоит из корпуса 14 с крышкой 16. Внутри корпуса установлен фильтрующий элемент 13, представляющий собой дырчатый металлический каркас с навитым на него ворсистым хлопчатобумажным шнуром. Топливо подводится в корпус через штуцер 18 и, проходя между витками шнура, очищается и по топливоотводящему штуцеру 15 отводится в насос низкого давления. Открутив пробку 17, удаляют воздух при смене фильтрующего элемента, а открутив пробку 12 - отстой из корпуса фильтра. [1, c. 143-144]
Фильтр тонкой очистки топлива. Фильтр тонкой очистки топлива служит для окончательной очистки топлива перед поступлением его в топливный насос высокого давления. Так как фильтр установлен выше всех других приборов, то в нем скапливается воздух, попавший в топливо. Поэтому в фильтре предусмотрен клапан-жиклер, через который воздух отводится вместе с топливом в топливный бак.
Состоит фильтр тонкой очистки топлива двигателя автомобиля КамАЗ-5320 (рис. 14, а) из двух сменных бумажных фильтрующих элементов 7, изготовленных из специальной пористой бумаги и работающих параллельно. Каждый элемент устанавливается в корпусе 1 на пустотелом стержне 11, ввернутом в стакан 8, и поджимается пружиной 9. Корпус со стаканом соединяется болтом 2 с уплотнительной шайбой 3 через прокладки 5 и 6. В стержне 11 имеется сливная пробка 10, а в корпусе - клапан-жиклер 12 (рис. 14, б) с пружиной 13 и пробкой 15 с уплотнительной шайбой 14. Клапан-жиклер открывается и пропускает топливо вместе со скопившимся воздухом в топливный бак, когда давление в полости А достигнет 0,025-0,045 МПа, а начинает перепускаться топливо из полости А в полость Б при давлении в полости А 0,22 МПа.
Топливо от топливоподкачивающего насоса подводится в корпус через штуцер 4 и направляется в стакан, проходит сквозь поры бумаги и очищается. Очищенное топливо поступает в центральный стержень, а из него - в корпус и снова в стакан второго фильтра, где также очищается и топливоотводящим топливопроводом направляется в насос высокого давления.
Такой фильтр более полно очищает топливо, поэтому его устанавливают и на последних моделях двигателей ЯМЗ-236. Бумажные фильтрующие элементы заменяют через 7200-12000 км пробега в зависимости от условий эксплуатации и степени запыленности воздуха. Фильтрующий элемент фильтра грубой очистки промывают в чистом дизельном топливе и продувают сжатым воздухом, сливают отстой с отстойника и промывают его, устанавливают на место и удаляют воздух из системы питания. [1, c. 144-145]
Топливоподкачивающий насос. Для подачи топлива из топливного бака через фильтры к насосам высокого давления в настоящее время применяют подкачивающие насосы поршневого типа (дизели ЯМЗ-23б и КамАЗ-740). Насос (рис. 15), расположенный между фильтрами грубой и тонкой очистки топлива, состоит из следующих деталей: корпуса 21; поршня 20 с пружиной 22, удерживаемой пробкой 23; толкателя 4 с осью 5 и роликом б; пружины 3 толкателя; штока 2; впускного 19 и выпускного 7 клапанов с пружинами соответственно 18 и 8. В корпус насоса ввернут цилиндр 12 насоса ручной подачи топлива, размещенный над впускным клапаном.
Втулка 1 штока 2 ввернута в корпус насоса. Эти детали, изготовленные с очень большой точностью, составляют прецизионную пару, раскомплектование которой недопустимо.
Топливоподкачивающий насос имеет два привода: ручной и механический. Ручным приводом пользуются для заполнения топливом фильтров, топливопроводов и удаления из топливной системы воздуха. Если возникают трудности с пуском дизеля (например, в систему попал воздух), то необходимо также воспользоваться ручным приводом. При перемещении поршня 13 рукояткой 15 вверх в цилиндре 12 создается разрежение, открывается впускной клапан 19, и топливо поступает внутрь цилиндра. При перемещении поршня 13 вниз он давит на топливо, впускной клапан закрывается, а выпускной клапан 7 открывается, и топливо подается к фильтру тонкой очистки. После прокачки системы ручным насосом поршень 13 опускают вниз и навертывают рукоятку 15 на резьбовой хвостовик цилиндра; поршень плотно прижимается к прокладке 16.
При работе двигателя действует механический привод топливоподкачивающего насоса. Вращающийся эксцентрик 24 набегает на ролик 6 толкателя 4, вследствие чего сжимается пружина 3 и перемещается шток 2 (рис. 15,6) с поршнем 20, сжимая пружину 22. Под действием давления топлива в полости А над поршнем впускной клапан 19 прижимается к седлу, а выпускной клапан 7 открывается; топливо перетекает по перепускному каналу 26 в полость Б под поршень 20.
Когда эксцентрик сходит с ролика толкателя, пружина 3 возвращает толкатель в исходное положение. Одновременно пружина 22, разжимаясь, перемещает поршень 20 в обратную сторону. Над поршнем в полости А создается разрежение, а под поршнем в полости Б повышенное давление. Выпускной клапан 7 садится на седло, и топливо из полости Б по каналам насоса и трубопроводу поступает к фильтру тонкой очистки (рис. 15, в). Вследствие наличия разрежения над поршнем открывается впускной клапан 19, и топливо заполняет полость А. При следующем набегании эксцентрика на ролик толкателя рассмотренные процессы повторяются.
Топливоподкачивающий насос подает топлива больше, чем необходимо для работы двигателя. Если ход поршня насоса будет все время постоянным, то давление в топливопроводе сильно возрастет. При уменьшении расхода топлива двигателем давление в полости Б повышается, и сжатая пружина не может преодолевать противодавление топлива. Вследствие этого ход поршня уменьшается и соответственно снижается подача топлива насосом. Толкатель 4 при этом свободно перемещается в обе стороны. По мере увеличения расхода топлива двигателем давление в полости Б уменьшается, ход поршня увеличивается, и подача топлива насосом возрастает. [1, c. 146-147]
Топливный насос высокого давления. Насос подает через форсунки в камеру сгорания необходимые порции топлива в строго определенные моменты. По принципу действия топливные насосы, применяемые на дизелях, относятся к золотниковому типу с постоянным ходом плунжера и регулированием конца подачи топлива. Число секций топливного насоса соответствует числу цилиндров двигателя. Каждая секция обслуживает один цилиндр. Топливный насос дизеля ЯМЗ-236 имеет 'шесть секций, а топливный насос дизеля КамАЗ-740 - восемь секций, объединенных в общем корпусе.
Топливные насосы высокого давления дизелей ЯМЗ-236 и КамАЗ-740 расположены между рядами цилиндров и приводятся в действие от зубчатых колес распределительного. На одном конце вала привода топливного насоса установлено зубчатое колесо, а другой конец вала соединен.
За два оборота коленчатого вала кулачковый вал насоса делает один оборот, и топливо подается во все цилиндры.
На корпусе 8 (рис. 16) топливного насоса высокого давления дизеля ЯМЗ-236 укреплен топливоподкачивающий насос 18. Автоматическая муфта 1 опережения впрыскивания топлива и регулятор частоты вращения коленчатого валобъединены с насосом в один агрегат. Кулачковый вал 15 насоса вращается на конических роликоподшипниках 17, выходные концы вала уплотнены самоподжимными сальниками 16. Горизонтальная перегородка делит корпус на две части: верхнюю и нижнюю. В нижней части расположены кулачковый вал 15 и толкатели 43, а в верхней - плунжерные пары. В горизонтальной перегородке есть шесть отверстий и пазы для установки и направления движения толкателей. Кулачковый вал приводит в движение плунжеры 10 через ролики 44 толкателей 43 с регулировочными болтами 41. В нижнюю часть корпуса насоса наливают масло через отверстие, закрытое сапуном 13, уровень которого контролируют указателем 22.
Плунжер 10 и втулка 9 являются основными деталями отдельной секции насоса. Соединенные вместе, они' образуют плунжерную пару. Плунжер имеет диаметр 9 мм и ход 10 мм. Для создания высокого давления зазор между плунжером и втулкой не должен превышать 0,0015-0,0020 мм. Положение втулки в насосе фиксируется стопорным винтом 27. В верхней части втулки 2 (рис. 94) имеются впускное 1 и перепускное 13 отверстия. Плунжер может перемещаться внутри втулки в вертикальном направлении и повертываться при помощи двух направляющих выступов, входящих в пазы поворотной втулки 38 (см. рис. 93). Последняя, в свою очередь, поворачивается закрепленным на ней зубчатым венцом 26, находящимся в зацеплении с рейкой 6. В продольный паз рейки входит стопорный винт 37, определяющий ее положение.
На головке плунжера 3 профрезерованы две спиральные канавки 11 (см. рис. 17, а). При наличии спиральных канавок давление топлива с обеих сторон плунжера одинаковое (во время подачи топлива), и долговечность секций насоса увеличивается.
На нижнем конце плунжера сделана кольцевая проточка для опорной тарелки 40 (см. рис. 16) пружины 39. Другой конец пружины упирается в верхнюю тарелку 25, установленную в кольцевой выточке корпуса. В верхней части каждой секции насоса 1 шернут. штуцер 30 с седлом 35 нагнетательного клапана 34, пружиной 33 и упором 31 клапана. От штуцера 30 через ниппель 11 топливо поступает в топливопровод, ведущий к форсунке. Плунжер, втулка, нагнетательный клапан и его седло из гот 00 вленыс высокой точностью из высококачественной стали, т.е. являются прецизионными парами, и раскомплектовывать их нельзя. Для выпуска воздуха из насоса служит отверстие, закрываемое пробкой 29. [1, c. 147-149]
Работа насоса высокого давления. Все секции топливного насоса высокого давления работают одинаково, поэтому рассмотрим работу только одной из них. При вращении кулачкового вала 15 (см. рис. 16) насоса кулачок 19 набегает на ролик 44 толкателя 43, который, поднимаясь, сжимает пружину 39 и перемещает плунжер 10 вверх во втулке 9. Во время дальнейшего поворота вала кулачок выходит из-под ролика толкателя, и пружина опускает плунжер вниз. При движении плунжера вверх секция подает топливо; при движении плунжера вниз происходит наполнение надплунжерного пространства топливом. Перемещение рейки 6 вызывает поворачивание плунжера на некоторый угол. Таким образом, плунжер совершает сложное движение - возвратно-поступательное и вращательное одновременно.
Топливо поступает из фильтра тонкой очистки в канал 36 насоса высокого давления и при нижнем положении плунжера через впускное отверстие 1 (см. рис. 17, а, схема 1) подается внутрь втулки 2, заполняет надплунжерное пространство 4 и проходит через осевое 14 и диаметральное 15 отверстия к спиральным канавкам 11. При подъеме плунжера 3 (схема 11) топливо вначале вытесняется из надплунжерного пространства через впускное отверстие обратно в топливоподводящий канал. Затем, когда это отверстие перекроет плунжер, топливо сжимается в надплунжерном пространстве. При достижении давления 1-1,8 МПа нагнетательный клапан 6 поднимается вверх, сжимает пружину 9 и пропускает топливо из надплунжерного пространства в штуцер 8, откуда оно поступает к форсунке. Дальнейшее движение плунжера вверх сопровождается повышением давления до 16,5 МПа, при котором игла форсунки, приподнимаясь, открывает проход топливу, впрыскиваемому в камеру сгорания.
Впрыскивание топлива из форсунки в камеру сгорания продолжается до тех пор, пока отсечная кромка спиральной канавки 11 движущегося вверх плунжера не начнет открывать перепускное отверстие 13 (схема III), соединяющее надплунжерное пространство с топливоотводящим каналом. Давление в надплунжерном пространстве резко снижается, топливо перетекает в указанный канал, и нагнетательный клапан 6 под действием пружины садится в седло 7.
Для устранения подтекания топлива в камеру сгорания между распушителем и иглой форсунки необходима быстрая посадка иглы в седло, т.е. четкая отсечка подачи топлива. Это обеспечивается нагнетательным клапаном, имеющим разгрузочный поясок 5, который при посадке клапана на седло способствует увеличению объема пространства за ним, что приводит К резкому снижению давления в трубке между штуцером и форсункой. Поясок клапана и седло (при опускании клапана) работают как поршневая пара.
Режим работы дизеля зависит от количества топлива, подаваемого в цилиндры секциями насоса за один ход плунжера. При повороте плунжеров во втулках на некоторый угол изменяетс5, l количество подаваемого топлива.
...Подобные документы
История создания дизельного двигателя. Характеристики дизельного топлива. Расчет эффективности конструкции и работы двигателя внутреннего сгорания. Разработка набора "Система питания дизельного двигателя". Применение набора при изучении курса "Трактор".
дипломная работа [316,3 K], добавлен 05.12.2008Устройство и назначение системы питания двигателя КамАЗ–740. Основные механизмы, узлы и неисправности системы питания двигателя, ее техническое обслуживание и текущий ремонт. Система выпуска отработанных газов. Фильтры грубой и тонкой очистки топлива.
реферат [963,8 K], добавлен 31.05.2015Изучение топлива и химических реакций при его сгорании. Рассмотрение конструкции системы питания дизельного двигателя. Предложение мероприятий, способных повысить эффективность диагностики системы питания дизельных двигателей и снизить их себестоимость.
дипломная работа [1,2 M], добавлен 16.06.2015Назначение системы питания дизельного двигателя, схема его работы. Основные причины неисправностей и нарушений в работе насосов низкого давления. Перебои и неравномерность в работе цилиндров двигателя. Проверка герметичности системы питания воздухом.
реферат [2,8 M], добавлен 15.11.2014Устройство системы питания дизельного двигателя. Фильтр тонкой очистки топлива и питание дизеля КамАЗ-740 воздухом. Основные возможные неисправности в системе, способы их устранения. Перечень работ при техническом обслуживании, технологическая карта.
контрольная работа [243,3 K], добавлен 09.12.2012История развития грузового автомобиля MAN TGA. Назначение, классификация, устройство и принцип работы агрегатов, механизмов, узлов системы питания дизельного двигателя грузового автомобиля. Схема системы питания дизеля. Контрольно-осмотровые работы.
курсовая работа [55,6 K], добавлен 19.11.2013Назначение системы питания дизельного двигателя. Методы, средства и оборудование для диагностирования системы питания дизельного двигателя грузовых автомобилей. Принцип работы турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей.
курсовая работа [812,2 K], добавлен 11.04.2015Характеристики дизельного топлива: маркировка, свойства и показатели. Эксплуатационные требования к качеству дизельного топлива, влияющие на работу двигателя. Низкотемпературные свойства дизельного топлива. Физическая и химическая стабильность топлива.
курс лекций [103,5 K], добавлен 29.11.2010Технико-экономические показатели дизелей. Использование дизелей на всех грузовых автомобилях, автобусах и на значительной части легковых автомобилей. Дизельное топливо. Схема и приборы системы питания. Смесеобразование. Система подачи и очистки воздуха.
контрольная работа [3,0 M], добавлен 26.01.2009История создания дизельного двигателя. Характеристики дизельного топлива. Типы смазочных систем двигателя А-41: разбрызгивание, смазывание под давлением и комбинированные. Эксплуатационные свойства моторных масел. Техническое обслуживание двигателя.
дипломная работа [3,1 M], добавлен 20.05.2014Выбор главных двигателей и параметров, определение суммарной мощности. Теплота сгорания топлива. Процесс наполнения, сжатия, сгорания, расширения и выпуска. Динамический расчёт двигателя, коленчатого вала и шатунной шейки. Расчет системы охлаждения.
курсовая работа [609,3 K], добавлен 18.06.2014Принцип работы двигателей на рабочей смеси бензина и воздуха. Конструкция и работа системы питания карбюраторного двигателя, устройство топливного бака, воздушных и топливных фильтров, бензинового насоса, карбюратора. Система питания с впрыском топлива.
реферат [588,5 K], добавлен 29.01.2010Сравнение систем питания дизельных двигателей. Смешанные системы питания. Малотоксичные и нетоксичные двигатели. Зависимость топливной экономичности от конструкций систем. Наличие примесей в дизельном топливе. Нормы расхода топлива для автомобиля ЗИЛ-133.
дипломная работа [1,2 M], добавлен 16.06.2015Расчет четырехтактного дизельного двигателя ЯМЗ-238, предназначенного для грузовых автомобилей. Параметры окружающей среды и остаточные газы. Определение количества компонентов продуктов сгорания. Описания процесса впуска, сжатия, расширения и выпуска.
курсовая работа [827,8 K], добавлен 17.06.2013Принцип работы приборов системы питания двигателя сжиженным газом. Система питания автомобиля ГАЗ-2417. Работа карбюратора К-126 Г на средних и полных нагрузках. Восьмицилиндровый четырехтактный двигатель, чередование тактов на примере двигателя ЗИЛ-130.
контрольная работа [2,6 M], добавлен 31.05.2010Устройство и работа системы питания карбюраторного двигателя, возможные неисправности. Режимы работы двигателя. Дозирующая система и вспомогательные устройства карбюраторов. Привод управления карбюратором. Ограничитель максимальной частоты вращения.
реферат [1,7 M], добавлен 29.01.2012Расчет четырехтактного дизельного двигателя. Внешняя скоростная характеристика дизельного двигателя. Построение диаграммы суммарного вращающего момента многоцилиндрового двигателя. Компоновка и расчет кривошипно-шатунного механизма (КШМ) двигателя.
курсовая работа [1,9 M], добавлен 19.01.2011Компоновка кривошипно-шатунного механизма. Система охлаждения двигателя. Температурный режим двигателя внутреннего сгорания. Схема системы холостого хода карбюратора. Работа и устройство топливоподкачивающего насоса. Типы фильтров очистки топлива.
контрольная работа [3,8 M], добавлен 20.06.2013Основные неисправности механизмов двигателя. Работы, выполняемые при ТО систем питания. Установка уровня топлива в поплавковой камере. Регулировки пусковых зазоров и холостого хода. Основные неисправности системы питания дизеля, обслуживание форсунки.
лабораторная работа [1,4 M], добавлен 31.10.2013Контактно-транзисторная система зажигания. Маркировка отечественных автомобилей и прицепного состава. Техническая характеристика и эксплуатационные свойства автомобиля. Схема устройства питания дизельного двигателя. Прерыватель-распределитель типа Р4-Д.
контрольная работа [3,0 M], добавлен 22.03.2012