Классификация смазочных материалов

Рассмотрение назначения и классификации смазочных материалов. Пластичные смазки: ассортимент и применение. Изучение материалов, способствующих уменьшению силы трения и износу трущихся поверхностей. Механические свойства электропроводящей смазки.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 15.10.2015
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Назначение. Классификация

2. Консистентные (пластичные) смазки

3. Пластичные смазки: ассортимент и применение

4. Электропроводящая смазка

Список использованной литературы

Введение

Материалы, способствующие уменьшению силы трения и износу трущихся поверхностей, увеличению нагрузочной способности механизмов, называют смазочными материалами.

Смазочные материалы широко применяются в современной технике, с целью уменьшения трения в движущихся механизмах (двигатели, подшипники, редукторы, и.т д), и с целью уменьшения трения при механической обработке конструкционных и других материалов на станках (точение, фрезерование, шлифование и т. д.). В зависимости от назначения и условий работы смазочных материалов (смазок), они бывают твёрдыми (графит, дисульфид молибдена, иодид кадмия, диселенид вольфрама, нитрид бора гексагональный и т. д.), полутвёрдыми, полужидкими (расплавленные металлы, солидолы, консталины и др), жидкими (автомобильные и другие машинные масла), газообразными (углекислый газ, азот, инертные газы).

Еще несколько лет тому назад торговля смазочными материалами была распространена в сфере довольно узкого круга предприятий и организаций. Однако в настоящее время в силу своей практически 100-процентной ликвидности и высокой рентабельности данный вид предпринимательской деятельности превратился в один из самых популярных. Множество предприятий и организаций, никогда ранее не занимавшихся торговлей, оказались вовлеченными в этот процесс. Поэтому у многих организаций возникают вопросы, связанные с особенностями правового регулирования и налогообложения деятельности по производству и реализации смазочных материалов.

1. Назначение. Классификация

По происхождению или исходному сырью различают такие смазочные материалы:

- минеральные, или нефтяные, являются основной группой выпускаемых смазочных масел (более 90 %). Их получают при соответствующей переработке нефти. По способу получения такие материалы классифицируются на дистиллятные, остаточные, компаундированные или смешанные;

- растительные и животные, имеющие органическое происхождение. Растительные масла получают путем переработки семян определенных растений. Наиболее широко в технике применяются касторовое масло.

- животные масла вырабатывают из животных жиров (баранье и говяжье сало, технический рыбий жир, костное и спермацетовые масла и др.).

- органические, масла по сравнению с нефтяными обладают более высокими смазывающими свойствами и более низкой термической устойчивостью. В связи с этим их чаще используют в смеси с нефтяными;

- синтетические, получаемые из различного исходного сырья многими методами (каталитическая полимеризация жидких или газообразных углеводородов нефтяного и не нефтяного сырья; синтез кремнийорганических соединений - полисиликонов; получение фтороуглеродных масел). Синтетические масла обладают всеми необходимыми свойствами, однако, из-за высокой стоимости их производства применяются только в самых ответственных узлах трения.

По внешнему состоянию смазочные материалы делятся на:

- жидкие смазочные масла, которые в обычных условиях являются жидкостями, обладающими текучестью (нефтяные и растительные масла);

- пластичные, или консистентные, смазки, которые в обычных условиях находятся в мазеобразном состоянии (технический вазелин, солидолы, консталины, жиры и др.). Они подразделяются на антифрикционные, консервационные, уплотнительные и др.;

- твердые смазочные материалы, которые не изменяют своего состояния под действием температуры, давления и т. п. (графит, слюда, тальк и др.). Их обычно применяют в смеси с жидкими или пластичными смазочными материалами.

По назначению смазочные материалы делятся на масла:

- моторные, предназначенные для двигателей внутреннего сгорания (бензиновых, дизельных, авиационных);

- трансмиссионные, применяемые в трансмиссиях тракторов, автомобилей, комбайнов, самоходных и других машин;

Эти два типа масел иногда объединяют термином «транспортные масла».

- индустриальные, предназначенные главным образом для станков;

- гидравлические для гидравлических систем различных машин;

Также выделяют компрессорные, приборные, цилиндровые, электроизоляционные, вакуумные и др. масла.

Основные параметры.

Основными характеристиками общими для всех жидких смазочных материалов являются:

· вязкость;

· температура застывания;

· температура вспышки;

· кислотное число.

Вязкость -- одна из наиболее важных характеристик смазочного материала, во многом определяющая силу трения между перемещающимися поверхностями, на которые нанесен смазочный материал.

Значение вязкости смазочного материала всегда указывается при конкретном значении температуры, как правило, при 40 °С.

Температура застывания (точка утечки) -- самая низкая температура, при которой масло растекается под действием силы тяжести. Понятие температуры застывания используется для определения прокачиваемости масла по трубопроводам и возможности смазки узлов трения, работающих при пониженной температуре. Под температурой застывания масла подразумевается температура, при которой масло, помещенное в пробирку и наклоненное под углом 45°, не изменяет своего уровня в течение одной минуты. Температура застывания должна быть на 5... 7 °С ниже той температуры, при которой масло должно прокачиваться.

Температура вспышки -- самая низкая температура, при которой масло воспламеняется при воздействии на него пламени. Температуру вспышки паров масла необходимо знать при подаче масла к узлам трения, работающим при повышенной температуре. Температуру вспышки определяют в открытом или закрытом тигле. Обычно в справочниках указывается температура вспышки паров масла в открытом тигле.

Кислотное число -- мера содержания в масле свободных органических кислот. Кислотное число определяется количеством миллиграмм гидроксида калия (КОН), необходимым для нейтрализации всех кислых компонентов, содержащихся в 1 г масла. При старении масла кислотное число повышается. Во многих случаях это число является основным показателем для смены масла в циркуляционных смазочных системах.

При выборе жидких смазочных материалов для конкретных условий работы руководствуются следующими характеристиками:

· индекс вязкости -- оценка изменения вязкости смазочного материала в зависимости от изменения температуры;

· окисляемость -- оценка способности масла вступать в реакцию с кислородом. Стойкость к окислению -- показатель стабильности того или иного масла;

· экстремальное давление (ЕР) -- мера качества прочности масляной пленки, используется для характеристики смазочных материалов тяжело нагруженных поверхностей трения;

· заедание (Stick-slip) -- оценка способности смазочного материала предотвращать скачки или неустойчивое движения силового стола или каретки станка даже при крайне низких скоростях.

Срок службы смазочного масла зависит от скорости накопления в нем вредных примесей и его старения.

Классифицируются по агрегатному состоянию.

Основная функция смазочного материала - снижение трения до необходимого уровня, предотвращение заедания узлов трения, уменьшение интенсивности изнашивания трущихся тел, обеспечивают отвод теплоты из зоны фрикционного контакта удаление продуктов износа и коррозии, защиту трения по действием внешней среды, уплотнение элементов зазоров.

Для обеспечения долговечности и надежности смазывающих материалов необходимо, чтобы смазочный материал сохранял свои свойства во всем диапазоне работы и смазывающий материал не должен оказывать воздействия на контактирующий материал, должен быть пожаро- и взрывобезопасными, воздействие на окружающую среду должно быть сведено к минимуму. Это достигается путем оптимизации выбора состава смазывающего материала, конструкции узлов трения с помощью соответствующих организационно-технических мероприятий.

Классификация по агрегатным состояниям:

жидкие (масла)

пластичные (пластичные смазки)

твердые

газообразные

Жидкие смазывающие материалы представляют собой базовые масла, в которые добавлены присадки.

Присадки - вещества, введение которых обеспечивает те или иные свойства, а в некоторых случаях приобретение новых.

Твердый смазывающий материал - материал, нанесенный каким-либо методом на поверхность трения тонким слоем, обладающим значительно меньшим сопряжением сдвигу, чем сопряжение сдвигу материала из которого изготовлена деталь и поверхность трения.

Пластические смазки занимают промежуточное положение между маслами и твердыми смазочными материалами (пластические смазки характеризуются как твердообразные продукты).

Пластичные смазки являются многокомпонентными коллоидными системами, держащими дисперсионную среду и дисперсную среду.

Дисперсионная среда - жидкая основа, чаще всего масло.

Дисперсная среда - твердый загуститель, который вводится по составу 5-30%.

Пластические смазки содержат добавки для улучшения эксплуатационных свойств. Под действием твердого загустителя, жидкое масло становится малоподвижным, подобно твердому телу не меняет под действием собственного веса своей формы, течь начинает под действием нагрузок превышающих предел прочности.

Газообразные смазывающие материалы: воздух, некоторые инертные газы, газообразные вещества (водяной пар). Применение того или иного смазывающего материала диктуется работой узла трения.

В тех условиях, когда пластичные смазывающие материалы не обеспечивают эффект смазывания, температура ниже температуры застывания масел, либо температура выше предельной, в условиях глубокого вакуума, при ионизирующем излучении, экстремально низких скоростях скольжения.

В опорах при очень высоких частотах вращения 100 000 и более исключить скачки трения при перемещениях с минимальной скоростью скольжения (сотые мм в мин) широком диапазоне давления и температур, зонах с повышенной радиацией - применяют опоры с газовой смазкой.

Выбор смазывающего материала используют схему Лонсдаун

Твердые смазки входят между трущимися поверхностями с целью предотвращения их непосредственного контакта и локализации сдвиговой деформации в слое твердого смазывающего материала, что обеспечивает снижение энергетичных потерь в процессе трения.

Твердые смазывающие материалы применяют для условий, когда пластичные смазки неэффективны: при экстремально высоких нагрузках вплоть до нагрузок вызывающих контакт поверхности, при экстремально высоких и экстремально низких температурах вплоть до криогенных, при работе в глубоком вакууме, в т.ч. космическом, в условиях ядерной радиации, жидком кислороде, различных агрессивных средах.

Твердые смазывающие материалы эффективны смазывать неметаллические пары трения, не загрязняя окружающую среду. В качестве ТСМ применяют некоторые вещества или слоистую структуру: графиты, диселениды, дихалькогениды тугоплавких металлов, плоские пленки мягкого металла, солей или оксидов, химические соединения, образованные непосредственно на поверхности трения, полимеры.

2. Консистентные (пластичные) смазки

Консистентные (пластичные) смазки -- применяемые в тех узлах, в которых конструктивно невозможно применение жидких смазочных материалов.

Пластичные смазки, они же консистентные смазки - это смазочные материалы, проявляющие в зависимости от нагрузки свойства жидкости или твёрдого тела.

Пластичные смазки состоят из жидкого масла, твёрдого загустителя, присадок и добавок. Частицы загустителя в составе пластичных смазок, имеющие коллоидные размеры, образуют структурный каркас, в ячейках которого удерживается дисперсионная среда (масло).

При обычных температурах и малых нагрузках она проявляет свойства твердого тела, т. е. сохраняет первоначальную форму, а под нагрузкой начинает деформироваться и течь подобно жидкости. После снятия нагрузки пластичная смазка вновь застывает. Это позволяет упростить конструкцию и снизить вес узлов трения, предотвращает загрязнение окружающей среды. Сроки смены пластичных смазок больше, чем смазочных материалов. В современных механизмах пластичные смазки часто не меняют в течение всего срока их службы.

Пластичные смазки получают, вводя в нефтяные, реже синтетические, масла 5--30 (обычно 10--20) % твёрдого загустителя. Процесс производства периодический. В варочных котлах готовят расплав загустителя в масле. При охлаждении загуститель кристаллизуется в виде сетки мелких волокон. Загустители с температурой плавления выше 200--300 °С диспергируют в масле при помощи гомогенизаторов, например коллоидных мельниц. При изготовлении в состав некоторых пластичных смазок вводят присадки (антиокислительные, антикоррозионные, противозадирные и др.) или твёрдые добавки (антифрикционные, герметизирующие).

Пластичные смазки классифицируют по типу загустителя и по области применения. Наиболее распространены мыльные пластичные смазки, загущенные кальциевыми, литиевыми, натриевыми мылами высших жирных кислот. Гидратированные кальциевые пластичные смазки (солидолы) работоспособны до 60--80 °С, натриевые до 110 °С, литиевые и комплексные кальциевые до 120--140 °С. На долю углеводородных пластичные смазки, загущаемых парафином и церезином, приходится 10--15% всего выпуска пластичных смазок. Они имеют низкую температуру плавления (50--65 °С) и используются в основном для консервации металлоизделий.

В зависимости от назначения и области применения различают следующие типы пластичных смазок.

Антифрикционные, снижающие трение скольжения и уменьшающие износ. Их применяют в подшипниках качения и скольжения, шарнирах, зубчатых и цепных передачах индустриальных механизмов, приборов, транспортных, с.-х. и др. машин.

Консервационные, предотвращающие коррозию металлоизделий. В отличие от др. покрытий (окраска, хромирование) они легко удаляются с трущихся и др. поверхностей при расконсервировании механизма.

К уплотнительным пластичным смазкам относятся арматурные (для герметизации прямоточных задвижек, пробковых кранов), резьбовые (для предотвращения заедания тяжело нагруженных или высокотемпературных резьбовых пар), вакуумные (для герметизации подвижных вакуумных соединений).

3. Пластичные смазки: ассортимент и применение

Пластичные смазки - самостоятельный вид материалов, обеспечивающих надежность и долговечность техники (ранее их называли консистентными). Их мировое производство составляет около миллиона тонн в год, что значительно меньше выпуска смазочных масел (около 40 млн. т/год).

Основное ее назначение - уменьшить износ поверхностей трения и продлить тем самым срок службы деталей машин и механизмов.

В отдельных случаях смазки не столько уменьшают износ, сколько упорядочивают его, предотвращают трение и заклинивание смежных поверхностей, препятствуют проникновению агрессивных жидкостей, абразивных частиц, газов и паров. Смазки, которые практически не изменяют своих показателей качества весь период работы в узле трения, относятся к «вечным» (т. е. закладываются одноразово на весь период работы техники) или долго работающим (с большим периодом замены).

Почти все смазки обладают антикоррозийными свойствами. Для защиты металлических поверхностей от коррозии при транспортировке и длительном хранении разработаны консервационные смазки. Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры созданы уплотнительные смазки с лучшими герметизирующими свойствами, чем у масел.

Некоторые смазки специального назначения увеличивают коэффициент трения, изолируют или, наоборот, проводят ток, обеспечивают работу узлов трения в условиях радиации, глубокого вакуума и т. п. По составу это сложные коллоидные системы, состоящие из жидкой основы, которая называется дисперсионной средой, и твердого загустителя - дисперсной фазы, а также наполнителей и присадок. В качестве дисперсионной среды используют различные масла и жидкости. Около 97% пластичных смазок готовят из нефтяных продуктов. Применяются и синтетические масла для смазок, работающих в специфичных и экстремальных условиях: сложные эфиры, фторуглероды и фторхлоруглероды, полиалкиленгликоли, полифениловые эфиры, кремнийорганические жидкости. Из-за высокой стоимости такие масла распространены не очень широко.

Область применения смазки во многом определяется температурой плавления и разложения дисперсной фазы, а также ее концентрацией и растворимостью в масле. От природы загустителя зависят антифрикционные и защитные свойства, водостойкость, коллоидная, механическая и антиокислительная стабильность смазки. Для придания этих свойств в состав вводят соли высших карбоновых кислот, высокодисперсные органические и неорганические вещества, тугоплавкие углеводороды.

В связи с ужесточением режимов эксплуатации узлов трения в большую часть современных пластичных смазок вводят добавки-присадки и наполнители.

Присадки могут быть:

Противоизносные,

Противозадирные,

Антифрикционные,

Защитные,

Вязкостные,

Адгезионные.

Многие из них многофункциональные, т.е. улучшают несколько свойств одновременно.

В качестве наполнителей используются высокодисперсные, нерастворимые в маслах вещества, улучшающие эксплуатационные характеристики смазки, но не образующие в ней коллоидной структуры. Чаще применяют наполнители с низким коэффициентом трения: графит, дисульфид молибдена, сульфиды некоторых металлов, полимеры, комплексные соединения металлов и др. Оксиды цинка, титана и одновалентной меди, алюминия, олова, бронзы и латуни широко используют в резьбовых, уплотнительных и антифрикционных смазках для тяжелонагруженных узлов трения скольжения. Обычно эти наполнители добавляют в объеме от 1 до 30% количества смазки.

За рубежом широко используется две классификации, разработанные Национальным институтом по пластичным смазкам (NLGI). Классификация по вязкости группирует все смазки на 9 классов по диапазону пенетрации. Величину пенетрации определяют методом погружения стандартного металлического конуса в пластичную смазку в течение определенного времени. Чем глубже погрузится конус, тем меньше класс NLGI, мягче смазка и, соответственно, тем легче она будет выдавливаться из зоны трения. Смазки с высоким номером NLGI, напротив, будут создавать дополнительное сопротивление и плохо возвращаться в зону трения. Другая, достаточно широко признанная классификация группирует пластичные смазки в 5 классов, основываясь на областях применения на автомобилях. В России используется несколько систем классификации - по консистенции, по составу и областям применения.

По консистенции смазки разделяют на:

Полужидкие,

Пластичные,

Твердые.

Пластичные и полужидкие представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, присадок и добавок. Твердые смазки до отвердения остаются суспензиями, состоящими из смолы или другого связующего и растворителя. В них в качестве загустителя используют дисульфид молибдена, графит, технический углерод и т. п. После отверждения (испарения растворителя) твердые смазки превращаются в золи с низким коэффициентом сухого трения.

По составу смазки разделяют на четыре группы:

Мыльные. В качестве загустителя используются соли высших карбоновых кислот (мыла). Наиболее распространены кальциевые, литиевые, бариевые, алюминиевые и натриевые смазки. Мыльные смазки в зависимости от жирового сырья называют условно синтетическими, на основе синтетических жирных кислот, или жировыми на основе природных жирных кислот, например синтетические или жировые солидолы.

Неорганические. В качестве загустителя использованы термостабильные высокодисперсные неорганические вещества. Это силикагелевые, бентонитовые, графитные смазки и др.

Органические. Для их получения используют термостабильные, высокодисперсные органические вещества. Это полимерные, пигментные, полимочевинные, сажевые смазки и др.

Углеводородные. В качестве загустителей используют тугоплавкие углеводороды: петролатум, церезин, парафин, различные природный и синтетический воск.

Немаловажная проблема - совместимость смазок разного состава.

При замене смазочного материала в узле трения не всегда полностью удаляется предыдущая закладка. Так, в шарнирах рулевого управления автомобилей после четырехкратного шприцевания остается до 40% «старой» смазки. При смешении «старой» и «новой» смазок ухудшаются эксплуатационные характеристики смеси по сравнению с исходным продуктом. Эта смесь вытекает из узла трения либо чрезмерно уплотняется, снижая надежность узла. Следовательно, при выборе новой смазки-заменителя потребителю полезно знать, можно ли смешивать смазки разных марок. Основным фактором, определяющим совместимость смазок, является природа загустителя. Жидкая основа, присадки и добавки существенного влияния на совместимость не оказывают. Со смазками всех марок совместимы консервационные материалы, загущенные тугоплавкими углеводородами (парафином, церезином). Совместимы почти все продукты, загущенные стеаратом натрия и оксистеаратом лития. Плохо совместимы смазки с силикагелем, стеаратом лития и полимочевиной.

Современные смазки на 12-гидроксистеарате лития, например типа Литол-24, хорошо работают в широком диапазоне температур - от -40 до +120 °С, имеют хорошие эксплуатационные свойства, заменяют многие устаревшие продукты, такие как консталин, 1-13, солидолы и др. Это перспективные и конкурентоспособные материалы.

Более перспективны смазки, приготовленные на комплексном литиевом мыле. Они работают в более широком диапазоне температур (от-50 до+160...200 °С), нагрузок и скоростей. Комплексная литиевая смазка ЛКС металлургическая в ряде случаев заменяет ИП-1, 1-13, ВНИИНП-242, Литол-24. Комплексные литиевые смазки также применяются в оборудовании текстильной, станкостроительной, автомобильной и других отраслей промышленности, в подшипниках ступиц колес автомобилей.

Основу отечественного ассортимента - 44,4% - составляют устаревшие гидратированные кальциевые смазки (солидолы), доля которых в развитых странах уже невелика. Производство натриевых и натриевокальциевых смазок в России составляет 31% общего объема, или до 12,5 тыс. т/год. Эти материалы имеют хорошие характеристики и применяются при температурах от -30 до +100 °С. Доля прочих мыльных смазок в России невелика - 0,3%, или 89 т/год. Это продукты на алюминиевых, цинковых, смешанных мылах (литиевокальциевых, литиево-цинковых, литиевоцинковосвинцовые, бариевосвинцовые и др.), а также получаемые путем смешения готовой смазки с металлическим порошком.

Доля немыльных смазок, приготовленных на неорганических загустителях (аэросилы, силикагели, сажа, бентонит), в России всего 0,2%, или менее 10 т/год. Главным образом это узкоспециализированные термостойкие (до 200...250 °С) и химически стойкие смазки. Немыльные смазки готовят на органических загустителях - полиуреатах, пигментах. Полиуреатные продукты нового поколения, приготовленные на нефтяных и синтетических углеводородных маслах, работают при температурах до 220 °С и по этому показателю близки к термостойким тефлоновым смазкам на основе перфторполиэфиров, выгодно отличаясь от последних значительно меньшей ценой.

Экономический рост, особенно в автомобильной, металлургической, нефтегазодобывающей отраслях промышленности, стимулирует рост потребления пластичных материалов, в том числе высококачественных автомобильных смазок, смазок для металлургического оборудования, работающего при максимальной температуре до 150 °С, а также арматурных и резьбовых.

Общие сведения о пластичных смазках

Пластичные смазки (ПС) представляют собой жидкие масла, специальным образом загущенные для того, чтобы придать им ряд эксплуатационных свойств, не обеспечиваемых ни жидкими, ни твердыми смазочными материалами. По физической структуре ПС представляют собой дисперсные (коллоидные) микронеоднородные системы, состоящие из дисперсионной среды и дисперсной фазы. Дисперсионной средой служат жидкие вещества, обладающие хорошими смазочными и антикоррозионными свойствами; дисперсной фазой -- твердые вещества, основным назначением которых является поддержание стабильности системы и ограничение подвижности дисперсионной среды -- ее загущение. Вещество, образующее дисперсную фазу, называют загустителем. Действие загустителя основано на том, что он создает в объеме смазки структурный каркас, во внутренних ячейках которого жидкость удерживается силами взаимодействия между молекулами дисперсной фазы и дисперсионной среды.

Структурный каркас (структура) ПС оказывает определяющее влияние на ее основные свойства. Структура зависит от природы загустителя. Частицы загустителя обычно имеют ните- или лентовидную форму (рис.) с большим отношением длины (доходящей до десятых долей миллиметра) к диаметру, измеряемому десятыми долями микрометра. Такая геометрия частиц загустителя обеспечивает большие поверхности его контакта с маслом (до тысяч квадратных метров в грамме вещества) и, как следствие этого, большую величину адсорбционных сил, связывающих загуститель с маслом. Эти силы обеспечивают устойчивость, неразделенность смазки, которую принято определять как ее коллоидную стабильность.

В зависимости от назначения различают антифрикционные (предназначенные для снижения трения и износа в механизмах), консервационные (предохранительные, защитные), предназначенные для защиты металлов от коррозионного воздействия, и уплотнительные ПС, предназначенные для герметизации зазоров в механизмах. Большинство современных ПС, удовлетворяя требованиям по своему прямому назначению, одновременно обладают определенными свойствами, допускающими их использование и по другим назначениям, например антифрикционные ПС в некоторых случаях можно использовать как консервационные или уплотнительные. Существуют также ПС, обладающие специальными свойствами. Например, электропроводящие ПС, предназначенные для обеспечения эффективного электрического контакта между поверхностями, фрикционные -- для предотвращения проскальзывания поверхностей путем увеличения трения между ними, приработочные -- для улучшения приработки поверхностей и т.д.

В зависимости от характера и прочности образуемого загустителем каркаса различают консистентные, полужидкие (сметанообразные) и жидкие ПС.

В консистентных смазках сросшиеся элементы загустителя образуют непрерывный структурный каркас, в ячейках которого находится жидкое масло. Структурный каркас обладает определенными механическими свойствами -- он может упруго деформироваться под действием относительно небольших нагрузок, что придает смазкам пластичность.

Полужидкие смазки отличаются от консистентных тем, что в них связи между элементами каркаса (а следовательно, и его прочность) сравнительно малы -- они легко нарушаются под действием небольших сил и затем восстанавливаются вновь.

В жидких смазках частицы загустителя практически не связаны друг с другом. Они взвешены в масле и, тормозя движение жидкой фазы, придают ему густую консистенцию.

Наибольшее распространение в технике (свыше 90% по объему производства) получили консистентные смазки, поэтому дальнейшее изложение будет в основном посвящено этому типу смазок. Полужидкие и жидкие смазки можно рассматривать как консистентные с уменьшенной прочностью структурного каркаса.

Дисперсионная среда и дисперсная фаза. Свойства дисперсной фазы -- загустителя определяют основные физические свойства пластичной смазки -- коллоидную стабильность, температурную стойкость, влагостойкость, стойкость к воздействию механических нагрузок и ряд других. ПС классифицируют в зависимости от вида загустителя, в качестве которого наиболее распространены соли высокомолекулярных жидких кислот (литиевые, алюминиевые, натриевые, кальциевые и др.), которые принято называть мыльными загустителями, а также твердые углеводороды (парафин и церезин).

В последнее время расширяется использование ПС, в которых роль загустителя выполняют пигменты, кристаллические полимеры, а также неорганические гидрофобизированные вещества -- силикагель, бентонитовые глины, технический углерод (сажа) и некоторые другие порошкообразные материалы (сущность гидрофобизации заключена в придании этим материалам повышенных адгезионных свойств по отношению к маслу, что обеспечивается путем их обра­ботки поверхностно-активными веществами).

Дисперсионная среда (масло) определяет антифрикционные, противоизносные, противозадирные и ряд других свойств ПС. Загуститель может дополнять и усиливать функции масла. Жидкости, применяемые в качестве дисперсионной среды для ПС, должны обладать пологой вязкостно-температурной характеристикой, низкой испаряемостью, хорошей термической и химической стабильностью. В настоящее время для этой цели широко используют нефтяные масла. Повышающийся уровень требований к эксплуатационным свойствам ПС обусловливает целесообразность использования синтетических жидкостей -- полисилоксанов, диэфиров, полигликолей, фторуглеродов и др. Например, созданы и успешно применяются в некоторых областях техники ПС на основе силоксановых жидкостей, работоспособные в диапазоне температур от --80 до +300 °С. В ПС вводят различные присадки и наполнители, предназначенные для регулирования их структур и улучшения эксплуатационных показателей (повышения стабильности, смазочных и защитных свойств и пр.).

В качестве присадок к ПС обычно используют те же присадки, что и в маслах. Особое значение для улучшения свойств ПС при высоких нагрузках, температурах и скоростях относительного движения поверхностей трения имеют наполнители, в качестве которых наиболее эффективны твердые слоистые смазки--дисульфид молибдена и графит. Используют также некоторые сульфиды и иодиды, оксиды металлов. При введении и ПС высокодисперсных порошков мягких металлов происходит плакирование стальных поверхностей, обеспечивающее снижение коэффициента трения и повышение допускаемой нагрузки.

В некоторых видах ПС содержание наполнителей превышает 20 %. При рациональном подборе сочетания присадки и наполнителя можно значительно улучшить смазочные свойства ПС. Это объясняется их совместным действием: химическим модифицированием поверхности трения присадкой и упрочнением граничного слоя частицами наполнителя. Наряду с этим при адсорбции присадки на частицах наполнителя уменьшается сопротивление сдвигу (уменьшаются потери на трение).

Требования к пластичным смазкам. ПС должны удовлетворять ряду эксплуатационных требований, основными из которых являются: сохранение однородности и стабильности, обеспечение заданных механических свойств, минимальное воздействие на конструкционные материалы, соприкасающиеся со смазкой, обеспечение заданных смазочных противоизносных и противозадирных свойств. По сравнению с моторными маслами новыми требованиями к ПС являются сохранение однородности и обеспечение заданных механических свойств.

К ПС большинство типов предъявляют повышенные требования по антикоррозионным свойствам. Эти свойства зависят от влагостойкости и влагонепроницаемости смазки, наличия в ней нейтрализующих веществ и ингибиторов коррозии. ПС при правильном их подборе и применении обеспечивают эффективную антикоррозионную защиту большинства конструкционных материалов.

Свойства пластичных смазок

К основным эксплуатационным свойствам ПС относятся: стабильность, механические свойства, вязкостно-скоростные и вязкостно-температурные свойства (характеристики), смазочные, защитные и герметизирующие свойства. Уровень требований к этим свойствам определяется назначением и конкретными условиями применения ПС.

Стабильность ПС определяет способность смазок сохранять заданные физико-химические свойства в течение определенного промежутка времени при воздействии внешних факторов -- длительного хранения, измерений температуры, механических воздействий радиационного облучения и пр. Различают физическую, химическую и радиационную стабильность ПС.

Физическая стабильность определяется способностью ПС сохранять заданную консистенцию. При нарушении консистенции понижается пластичность, ухудшаются антифрикционные и консервационные свойства ПС. Нарушение консистенции обусловлено уменьшением содержания в ПС жидкой фазы -- масла. Это происходит из-за испарения наиболее низкокипящих нешестн, входящих в ее СОСЛШ, и при недостаточной стабильности дисперсной системы "загуститель -- масло".

Повышенная испаряемость ПС приводит к увеличению концентрации загустителя, вызывающему в предельном случае потерю пластичности ПС, и образованию корки на ее наружной поверхности. Способность ПС сохранять свои свойства при испарении входящих в нее компонентов оценивается антииспарительными свойствами

Способность ПС сохранять исходную дисперсионную систему оценивается коллоидной стабильностью. Коллоидная стабильность определяется способностью ПС сохранять дисперсную структуру под действием механических нагрузок. Коллоидная стабильность зависит от температуры. Нарушение коллоидной стабильности определяется величиной синерезиса -- явления, заключающегося в отделении жидкости от коллоидной системы. С физической точки зрения явление синерезиса можно объяснить следующим. Между волокнами загустителя действуют силы взаимного притяжения, стремящегося их сблизить, сократить объем элементарной структурной ячейки, занимаемой маслом, а следовательно, вытеснить масло в окружающую среду. Когда ПС не нагружена внешними силами, указанный эффект обусловливает "потение" -- самопроизвольное выделение масла из ПС. При нагружении ПС внешними силами они интенсифицируют сжатие элементарных ячеек -- выделение масла усиливается. В предельном случае из-за нарушения коллоидной стабильности ПС могут превратиться в комки загустители, плавающие в масле.

Под влиянием синерезиса ухудшаются свойства и уменьшается эксплуатационный ресурс ПС. Наряду с этим определенная величина синерезиса полезна и необходима -- благодаря синерезису происходит постоянная подпитка поверхностей трения свежим маслом, поступающим из "масляного резервуара", которым служит слой смазки, нанесенной на поверхность.

Испаряемость и коллоидную стабильность ПС определяют в стандартных условиях и оценивают количеством испарившегося (при оценке испаряемости) или выделившегося (при оценке коллоидной стабильности) масла. С увеличением температуры ухудшаются механические свойства смазок. При достижении определенной, характерной для каждого типа ПС температуры нарушается структура каркаса и уменьшаются адгезионные силы, связывающие масло с загустителем. Этот процесс сопровождается нарушением коллоидной стабильности и выделением жидкой фазы -- плавлением ПС.

Способность ПС сохранять свои свойства при увеличении температуры определяется ее температурной стабильностью. Температурную стабильность ПС характеризует температура начала плавления, внешне определяемая по выделению первой капли жидкости из нагреваемой ПС -- температуре каплепадении

Сползание ПС с поверхностей, на которые она нанесена, может наступить под действием объемных (инерционных, гравитационных) сил до достижения температуры каплепадения. Это явление называют пристанным синерезисом; оно объясняется повышением концентрации жидкого масла в пристанном слое. Вследствие пристенного синерезиса эксплуатационная температура ПС, длительно находящихся под действием объемных сил, должна быть ниже, чем температура каплепадения (примерно на 20 °С)

Соответствующую температуру называют температурой сползания. Эта температура зависит от толщины наносимого на стенку слоя ПС, она понижается с его увеличением, поэтому ПС не следует наносить избыточно толстым слоем.

Химическая стабильность ПС определяется ее способностью сохранять свойства под действием химически активных веществ. Наиболее распространенной при­чиной нарушения химической стабильности является окисление ПС. При окислении происходит изменение механических свойств (предела прочности, вязкости и пр.) ПС и накопление в ней коррозионно-агрессивных продуктов. Склонность ПС к окислению возрастает при уменьшении толщины слоя смазки, повышении температуры и в контакте с цветными металлами (медь, олово, свинец и др.). Высокая химическая стабильность ГТС важна в узлах трения при длительном (10-- 15 лет) использовании. Наиболее эффективный способ повышения химической стабильности ПС -- введение антиокислительных присадок, в качестве которых используют, например, амино- и фенолсодержащие соединения, фосфор- и серосодержащие органические продукты.

Физическая структура и особенности строения ПС обусловливают их низкую радиационную стабильность (стойкость). Под действием относительно небольших доз радиационного облучения 106 2 * 105 Гр происходит разрушение каркаса, приводящее к разжижению ПС. При увеличении суммарной дозы до 107 -- 108 Гр интенсифицируется окисление и полимеризация жидкой фазы, в результате чет в предельном случае ПС превращается в твердую хрупкую массу. Металлы, содержащиеся в ПС, приобретают наведенную радиоактивность и способствуют увеличению дозы облучения, получаемой жидкой фазой после прекращения внешнего облучения.

Механические свойства ПС, Особенности агрегатного состояния ПС обусловливают наличие у них специфических механических свойств, отличных от свойств твердых и жидких веществ. К характерным особенностям механических свойств ПС относятся: большая зависимость прочности от температуры, способность восстанавливать прочность после разрушения и зависимость прочности от интервала времени между последующими нагружениями -- "времени отдыха". Эти свойства объясняются главным образом характером нарушения связей между частицами загустителя и последующим восстановлением структуры.

Способность ПС, как и всякой другой дисперсной системы, самопроизвольно восстанавливать разрушенную структуру носит название тиксотропии. Тиксотропные свойства ПС имеют большое эксплуатационное значение. Положительным качеством, обусловливаемым тиксотропией, является то, что при выбрасывании частиц разжиженной ПС из зоны трения и отложения их на не­подвижных поверхностях они увеличивают вязкость и автоматически герметизируют узел трения от вытекания ПС.

Механические свойства ПС характеризуются пределом прочности. При воздействии нагрузок относительно жесткий структурный каркас ПС обладает способностью до определенного предела обратимо деформироваться подобно твердому веществу. Сначала эти деформации находятся в пределах упругих деформаций структурного каркаса и не вызывают его разрушения. При дальнейшем увеличении деформации начинается разрушение каркаса, при этом свойства ПС начинают все сильнее приближаться к свойствам вязкой жидкости.

Минимальное напряжение, при котором начинается разрушение каркаса, называют проделом прочности ПС. Величина предела прочности определяет способность ПС удерживаться в заданном месте под действием внешних сил, а также величину начального усилия сдвига в узле трения (например, усилия, которое необходимо приложить к подшипнику в начале СТО вращения). Предел прочности в определяющей степени зависит от вида и количества загустителя.

При повторных нагружениях с уменьшением промежутка между ними величина последовательно замеряемого предела прочности уменьшается. При повышении температуры величина предела прочности большинства ПС снижается. Температура, при которой предел прочности приближается к нулю, соответствует переходу ПС из пластического состояния в жидкое. Эта температура определяет верхний температурный предел работоспособности ПС. Упругие свойства ПС зависят не только от значения прилагаемой нагрузки, но и от длительности ее воздействия. Период времени, в течение которого ПС под действием нагрузки сохраняет упругие свойства, называют периодом релаксации.

Вязкость и предел прочности ПС определяют на приборе, называемом пластовискозиметром. Метод основан на определении сопротивления, оказываемого смазкой, заключенной между неподвижным корпусом прибора и вращающимся сердечником.

Вязкостно-скоростные и вязкостно-температурные свойства ПС. Вязкостные свойства ПС определяют потери на трение на рабочих режимах, условия начала движения в узлах трения при низких температурах и усилия (затраты энергии) на подачу смазки по мазепроводам к узлам трения. При работе в узлах трения нагрузки, действующие на ПС, превышают предел прочности. При переходе за предел прочности начинается течение ПС. В этом диапазоне ее свойства можно охарактеризовать вязкостью. Однако понятие вязкости здесь имеет специфический характер. Для однородных жидкостей вязкость не зависит от градиента скорости сдвига и определяется только физико-химическими параметрами этих жидкостей. В отличие от них во внутреннем объеме ПС наряду с жидкостью (маслом) имеются твердые остатки разрушенного каркаса, между которыми постоянно возникают и разрушаются силовые связи. Условия динамического равновесия между возникновением и разрушением этих связей зависят от скорости деформации -- с ее увеличением процессы разрушения связей начинают превалировать над их возникновением и обратно. Разрушение связей соответствует снижению вязкости, а возникновение связей -- увеличению вязкости. Снижению вязкости при увеличении скорости деформации способствует также ориентация осколков структурного каркаса загустителя в направлении движения. При достаточно большой скорости течения связи между частицами загустителя прекращаются пра­ктически полностью и дальнейшее понижение вязкости с увеличением скорости прекращается. Вязкость становится независимой от скорости деформации, а ПС ведет себя как ньютоновская жидкость. Скорость деформации оценивается градиентом скорости сдвига dv/dA, где v -- скорость относительного перемещения слоев смазки; h -- расстояние между ними. Зависимость изменения вязкости от градиента скорости деформации называют вязкостно-скоростной характеристикой (рис.). Чем круче вязкостно-скоростная характеристика (больше отношение вязкости при различных скоростях сдвига), тем выше качество ПС.

Вязкость ПС зависит не только от градиента скорости дефор­мации, но и от температуры -- при одной и той же скорости де­формации вязкость тем ниже, чем выше температура. Соответствующая зависимость определяется вязкостно-температурной характеристикой ПС (рис). Эта характеристика снимается при определенной постоянной скорости деформации. ПС обладают лучшими по сравнению с входящими в них маслами вязкостно-температурными характеристиками -- вязкость ПС с понижением температуры увеличивается в сотни раз меньше, чем вязкость входящих в них масел.

Способность ПС сопротивляться выдавливанию из узла трения, а также "легкость" подачи КС к трущимся поверхностям характеризуется ее консистенцией.

4. Электропроводящая смазка

Электропроводящая смазка -- смазка, либо паста, предназначенная для снижения величины переходного контактного сопротивления в электрических контактах.

Обычно электропроводящая смазка представляет собой органическую матрицу со включениями металлических мелкодисперсных порошков, графита, диоксида кремния, дисульфида молибдена и др.

Классификация.

Различают две группы электропроводящих смазок по способу их воздействия на контактирующие поверхности:

1) ПАССИВНЫЕ (нейтральные) -- предохраняющие контакты только от дальнейшего окисления при взаимодействии контактирующих поверхностей с кислородом воздуха. Представителями данной группы могут служить смазки ЭПС-90, ЭПС-98, ЭПС-250 и подобные, КВТ, для применения с электрических соединениях с температурой до 120 гр. С В указанных смазках в качестве связующего используется стеарат лития (литол-24), предельно допустимой температурой нагревания которого, по ГОСТ 21150-87, указывается 130 гр. С (кратковременно). 2) АКТИВНЫЕ -- воздействующие на окисные пленки рабочей поверхности контактов, не затрагивая при этом металл контакта. Представителем данной группы может служить смазка Суперконт, патент РФ № 2046412 (Новиков В.К.), а также её модификации с 2005 г. - Суперконт СКМ, Суперконт СКЛ (Экстраконт), Суперконт СКП (Примаконт). Указанные смазки обеспечивают полное соответствие электрических контактов требованиям ГОСТ 10434-84, в том числе по надежности, что подтверждают испытания по полной программе ГОСТ 17441-82, а именно, выдерживают нагревание до 400-450 гр. С для Fe - Fe, Cu-Fe; до 350 гр. С для Cu-Cu; до 250-300 гр. С Al - Al, что значительно выше требований ГОСТ 10434-82. Все смазки серии Суперконт разработаны НПФ "Суперконт" (г. Красноярск) в период с 1989 г - 2006 г. Всего было разработано около 200 вариантов смазок. После промышленных испытаний на электролизерах алюминия на Красноярском алюминиевом заводе, для патентования под торговым названием СУПЕРКОНТ, серийного производства был выбран образец П 158. Смазки Суперконт СКМ, Суперконт СКЛ (Экстраконт), Суперконт СКП (Примаконт)относятся к смазкам нового поколения, -отличаются, от ранее выпускавшихся до 2005 года - Суперконт, Экстраконт, Примаконт, и других, более высокой технологичностью, удобством применения, сохраняют высокую адгезию до минус 50 гр. С (ранее выпускавшиеся затвердевают при температуре минус 5 гр. С, что делает их непригодными для работы на открытых промышленных площадках в зимнее время года), не расслаиваются и не засыхают при хранении. Расход, например смазки Суперконт СКМ, на единицу поверхности в 2-3 раза меньше, чем ранее выпускавшихся смазок Суперконт за счет большей пластичности и применения современных сырьевых компонентов и материалов. Более подробно на сайте предприятия www.supercont.net В 2001 году по Соглашению (г. Тель-Авив) состав и технология смазки Суперконт (патент РФ 2046412, автор Новиков В.К.) были переданы для производства на ООО БЕРС (г. Екатеринбург) под торговым название УВС Суперконт и др. В 2004 году была проведена коррекция вязкости, уменьшения количества металлических порошков. Другие изменения не проводилось, электрические характеристики соответствуют характеристикам состава по патента РФ 2046412. В Интернете часто встречается информация о контактных смазках с рабочей температурой до 1100 гр. С. Назначение таких смазок - сохранение антизадирных механических свойств болтовых соединений, для удобства демонтажа после эксплуатации. Такие смазки изначально имеют электрическое сопротивление контактного перехода в десятки раз больше, чем у контактов без смазки. Для применения в электрических контактах не рекомендуются.

Использование электропроводящих смазок.

Перед нанесением смазки, рабочую поверхность контакт-деталей необходимо зачистить наждачной бумагой со средней зернистостью абразивных частиц. Абразивную пыль удалить сухой ветошью. Протирка органическими растворителями не рекомендуется. На одну из контакт-деталей шпателем нанести возможно тонкий слой смазки. Сборку выполнить по действующим инструкциям. Проверить затяжку болтовых соединений. Излишки смазки, вытесненные на периферию контакта, удалить. После запуска контактного соединения в работу, выхода его на стандартный температурный режим, рекомендуется провести отключение сети, до затяжку болтового соединения.

Применение смазок Суперконт дает возможность без изменения конструкции контактных соединений, замены силовой ошиновки, увеличить величину рабочего тока на 25-30%, сохранив электрические характеристики контактов в пределах, установленных ГОСТ 10434-82.

Электропроводящие смазки рекомендованы для повышения стабильности, надежности электросистем, антикоррозийной защиты, уменьшения потерь электроэнергии в разборных электрических соединениях, трудозатрат на обслуживание.

Твердые слоистые смазки.

Характерная особенность твердых и пластичных смазочных материалов состоит в том, что эти материалы находятся в агрегатном состоянии, исключающем, при соблюдении заданных условий эксплуатации, их вытекание из узла трения. Благодаря этому возможно смазывание негерметизированных узлов трения, отсутствует необходимость в непрерывном подводе смазочного материала, а следовательно, и в наличии предназначенных для этого систем и агрегатов. Это обеспечивает получение следующих в сравнении с маслами преимуществ:

--уменьшение расхода смазочных материалов;

--упрощение конструкции, а следовательно, повышение надежности и снижение металлоемкости механизма;

--уменьшение эксплуатационных расходов.

К основным (в сравнении с маслами) недостаткам, характерным в различной степени для большинства смазок, относят: отсутствие отвода теплоты от поверхностей трения, худшую физическую и химическую стабильность, а также большую разницу в величинах коэффициентов трения покоя и движения.

Твердые слоистые смазки (ТСС) -- кристаллические вещества, обладающие смазочными свойствами: графит, дисульфиды молибдена и вольфрама, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, фталоцианин, селениды и теллуриды вольфрама, титана и пр.

Все ТСС обладают слоистой структурой, характеризующейся тем, что атомы, лежащие в одной плоскости (одном слое), находятся друг к другу ближе, чем в различных слоях. Например, в решетке графита расстояние между атомами углерода в слое равно 1,42 х 10 м-10, между слоями -- 3,44 * 10-10 м. Это обусловливает различную прочность связей между атомами в различных направ­лениях, в результате чего под воздействием внешних сил происходит скольжение (сдвиг) одних слоев кристаллов относительно других (уменьшению сопротивления сдвига способствует накопление на поверхностях кристаллов адсорбированных продуктов). Это свойство является необходимым, но недостаточным. Нужна также хорошая адгезия ТСС к материалу поверхности трения, поэтому дисульфид титана и многие алюмосиликаты (слюда, тальк и др.), обладая ярко выраженной слоистой структурой, не отличаются смазочными свойствами, так как имеют плохие адгезионныг свойства с металлами. На качество и свойства ТСС влияют неоднородности связей между атомами кристаллической решетки, величина работы, затрачиваемой на расщепление кристалла по поверхностям скольжения, степень адгезии к металлическим поверхностям и т.п.

Свойства ТСС

Рассмотрим свойства некоторых наиболее распространенных ТСС.

Графит обладает антифрикционными свойствами в паре трения со сталью, чугуном и хромом (несколько хуже эти свойства с медью и алюминием). В присутствии воздуха и воды графитная смазка улучшает свои показатели

Графиту присуща способность адсорбироваться на поверхностях трения с образованием прочной пленки, ориентированной в направлении скольжения. Наличие на поверхности металла пленки оксидов облегчает адсорбцию графита, поэтому использование графита особенно эффективно для металлов, образующих прочную оксидную пленку (хром, титан, в меньшей степени сталь).

Температурный предел работоспособности графитной смазки равен 600 С. Свойственная этому материалу вследствие наличия свободных электронов высокая электротеплопроводность способствует отводу электростатических зарядов и сохранению прочности смазочного слоя. Коэффициент трения графита по стали составляет 0,04 -- -- 0,08. С увеличением нагрузки и повышением температуры коэффициент трения возрастает.

Дисульфид молибдена MоS2 -- синевато-серый порошок с металлическим блеском, обладает хорошими адсорбционными способностями по отношению к большинству черных и цветных металлов. Смазочная способность MоS2 обусловлена выраженным слоистым строением кристаллов (расстояние между атомами серы, находящимися в различных слоях кристалла, почти в 4 раза больше, чем внутри слоев) и сильной поляризацией атомов серы в процессе трения. В отличие от графита при увеличении нагрузки и температуры коэффициент трения MоS2 уменьшается (средняя величина 0,05 -- 0,095).

...

Подобные документы

  • Физико-химические и эксплуатационные свойства автомобильных смазок на примере ЛИТОЛ 24. Классификация пластичных смазок по NLGI, DIN 51 502, ISO 6743/9. Группы и подгруппы смазочных материалов в соответствии с ГОСТом 23258-78, анализ их совместимости.

    реферат [520,9 K], добавлен 16.11.2012

  • Характеристика паспортных данных дизельного топлива, моторных, трансмиссионных масел, а также низкозамерзающих охлаждающих жидкостей. Выбор сорта и марки смазочных материалов. Выбор смазок для узлов трения органов управления, трансмиссии и ходовой части.

    курсовая работа [45,4 K], добавлен 07.08.2013

  • Выбор смазочных материалов. Требования к горюче-смазочным материалам. Классификация трансмиссионных масел и их обозначение. Схема смазки автомобиля ЗИЛ - 4334. Рекомендации по применению масел в зависимости от их назначения и температуры окружающей среды.

    курсовая работа [23,7 K], добавлен 15.11.2014

  • Производственные технологии получения бензина. Стабильность дизельного топлива и показатели его раскрывающие. Система классификации, маркировки тормозных жидкостей. Характеристика эксплуатационных материалов. Проблема экономии горюче-смазочных материалов.

    реферат [26,5 K], добавлен 20.11.2012

  • Понятие фрикций как процесса трения деталей. Фрикци в двигателях внутреннего сгорания как причина износа деталей и уменьшение коэффициента полезного действия двигателя. Применение системы смазки трущихся деталей для уменьшения фрикционного износа.

    реферат [3,3 M], добавлен 01.04.2018

  • Классификация смазочных материалов: минеральные, растительные, животные и синтетические. Способы очистки дистиллятов и их последующая обработка. Динамическая, кинематическая и условная вязкость. Виды смазочных масел, используемых для горных машин.

    реферат [22,9 K], добавлен 21.09.2011

  • Выбор электродвигателя и кинематический расчет привода. Вычисление закрытой цилиндрической передачи. Определение основных параметров зубчатого колеса и шпоночного соединения. Выбор способа смазки, контроля и смазочных материалов для подшипников.

    курсовая работа [566,6 K], добавлен 04.08.2021

  • Установка сорта и марки масел, низкозамерзающих и охлаждающих жидкостей для применения на автомобиле Москвич 214122. Оценка эксплуатационных свойств трансмиссионных масел и тормозной жидкости. Выбор сорта и марки смазочных материалов для автомобиля.

    курсовая работа [39,8 K], добавлен 07.08.2013

  • Эксплуатационные свойства пластичных смазок: температура каплепадения, эффективная вязкость, коллоидная стабильность и водостойкость. Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости при ремонтных работах.

    курсовая работа [30,4 K], добавлен 06.03.2015

  • Общая схема и принцип действия системы смазки двигателя, ее составные части и их взаимодействие. Отличительные признаки и особенности эксплуатации смазочных систем с мокрым и сухим кратером. Неполадки и ремонт сборочных единиц смазочной системы.

    презентация [845,8 K], добавлен 10.04.2010

  • Изучение состава и классификации автомобильных эксплуатационных материалов. Характеристика эксплуатационных требований к автомобильным бензинам и дизельному топливу. Назначение и характеристика смазочных масел. Назначение и виды технических жидкостей.

    учебное пособие [407,0 K], добавлен 20.10.2011

  • Описание конструкции и теории эксплуатации оборудования, применяемого для ремонта автомобилей. Сборки и разборки агрегатов с целью их ремонта и восстановления, замены деталей. Оборудование кузовного участка. Ассортимент топливо-смазочных материалов.

    отчет по практике [986,5 K], добавлен 05.04.2015

  • Принципы строения композиционных материалов, их изготовление и применение в авиационной промышленности. Преимущества и недостатки композиционных материалов. Примеры применения композиционного материала в мировом и отечественном самолетостроении.

    курсовая работа [1,5 M], добавлен 06.11.2014

  • Влияние переменных режимов на изменение состояния в условиях эксплуатации лесозаготовительных машин. Основные виды топлива и их применение. Восстановление деталей сваркой и наплавкой. Определение расхода нефтепродуктов и горюче-смазочных материалов.

    курсовая работа [259,4 K], добавлен 08.04.2012

  • Классификация складов по виду хранимых материалов, типу здания, месту расположения. Назначение и роль в транспортном грузопотоке. Временное складирование (накапливание) продукции. Склады материалов (сырья, вспомогательного и производственного назначения).

    презентация [8,1 M], добавлен 31.01.2017

  • Виды габаритов. Размеры габаритов приближения строений. Надежность подвижного состава. Оценка на долговечность по износу трущихся элементов конструкций вагона. Назначения и классификация вагонов. Их основные элементы. Парк пассажирских и грузовых вагонов.

    контрольная работа [1,4 M], добавлен 26.04.2016

  • Особенности эксплуатации систем смазки. Допустимая рабочая температура масла. Размещение агрегатов на двигателе. Уплотнение и суфлирование масляных полостей. Обрыв шпильки крепления. Характерные неисправности систем смазки, причины и методы их устранения.

    презентация [3,4 M], добавлен 08.12.2014

  • Характеристика смазочных работ, основанных на химмотологической карте, в которой указываются точки смазки, периодичность, марка масел и заправочные объемы. Оборудование для смазочно-заправочных работ, подразделяющееся на стационарное и передвижное.

    реферат [19,0 K], добавлен 03.01.2011

  • Создание автотранспортных предприятий для повышения эффективности использования транспорта в сельском хозяйстве. Обоснование марочного состава грузовых автомобилей. Определение требуемого количества запасных частей и расхода горюче-смазочных материалов.

    курсовая работа [58,8 K], добавлен 04.05.2011

  • Определение списочного состава автомобилей автотранспортного предприятия. Условия эксплуатации подвижного состава. Расчет необходимых площадей под склад шин, горюче-смазочных материалов, производственных подразделений. Генеральный план предприятия.

    контрольная работа [817,5 K], добавлен 18.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.