Классификация смазочных материалов
Рассмотрение назначения и классификации смазочных материалов. Пластичные смазки: ассортимент и применение. Изучение материалов, способствующих уменьшению силы трения и износу трущихся поверхностей. Механические свойства электропроводящей смазки.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 15.10.2015 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Несущая способность граничной смазочной пленки дисульфида молибдена выше, чем у любых смазочных масел. При температурах выше 500 °С MоS2 окисляется с выделением SO2. Дисульфид молибдена обладает высокой радиационной стойкостью -- при дозе до 5 107 Гр не отмечено каких-либо изменений в его свойствах. К недостаткам M0S2 относится то, что он обладает высокой химической активностью и относительно легко вступает в реакцию с водой и кислородом. Вследствие этого при контакте M0S2 с воздухом максимально допустимую температуру ограничивают 450 °С. Водород восстанавливает M0S2 до металла.
Дисульфид вольфрама WS2 по сравнению с MоS2 обладает большей термостойкостью (580 °С), стойкостью к окислению и в 3 раза большей несущей способностью. Химически инертен (кроме фтора и его соединений), коррозионно неагрессивен, нетоксичен, его применение ограничено высокой стоимостью. Использование WS2 в качестве добавки к маслам осложнено его высокой плотностью (р - 7,4 * 103 кг/м3), что затрудняет получение однородной смеси с маслом; рекомендуется использовать при температурах свыше 450 °С.
Нитрид кремния имеет низкий коэффициент трения в парах со стальными деталями и некоторыми металлокерамическими материалами. Обладает хорошими механическими характеристиками и высокой термической и термоокислительной устойчивостью (до 1200 °С). Благодаря сочетанию этих качеств нитрид кремния рассматривают как перспективный материал при изготовлении деталей цилиндро-поршневой группы теплонапряженных двигателей.
Нитрид бора обладает высокой термической и термоокислительной устойчивостью (разлагается при температуре свыше 1000 °С).
Имеются сведения о перспективности использования в качестве твердых слоистых смазок других веществ -- селенидов и теллуридов вольфрама и ниобия и т.п.
К твердым слоистым смазкам относятся также фталоцианины.
Фталоцианины (меди C32H16N6C11, железа C32H16N8Fe и пр.) -- металлосодержащие полициклические органические соединения, обладающие крупными плоскими молекулами со слабыми межмолекулярными связями. Характерной особенностью этих веществ является то, что наряду с физической адсорбцией они образуют хемосорбированные пленки на поверхностях металлов. Фталоцианины обладают хорошей термической (650 °С) и радиационной стойкостью, стабильны при контакте с воздухом и водой. При температурах до 300 °С коэффициент трения у них выше, чем у графита и дисульфита молибдена, но понижается до 0,03 -- 0,05 с увеличением температуры до 500 °С.
Из фталоцианинов делают защитный слой на юбках поршней перспективных двигателей. Такие поршни повышают механический КПД и обладают повышенной стойкостью к заклиниванию. Ниже приведены средние величины коэффициентов трения для некоторых ТСС.
Дисульфид молибдена |
0,05 |
|
Йодистый кадмий |
0,06 |
|
Хлористый кадмий |
0,07 |
|
Сернокислый вольфрам |
0,08 |
|
Сернокислое серебро |
0,14 |
|
Йодистый свинец |
0,28 |
|
Графит (приработка во влажном воздухе) |
0,10 |
|
Хлористый кобальт |
0,10 |
|
Йодистая ртуть |
0,18 |
|
Бромистая ртуть |
0,06 |
|
Йодистое серебро |
0,25 |
На рис. приведен график, характеризующий зависимость коэффициента трения / от удельной нагрузки р для дисульфида молибдена, дисульфида вольфрама и графита.
Износостойкость твердых смазок оценивается по их истираемости. Истираемость определяется временем работы узла трения в заданных условиях до истирания покрытия из твердой смазки.
Твердые смазки могут быть использованы не только для обеспечения работы узлов сухого трения, но и как добавки, существенно повышающие эффективность масел. Большинство твердых смазок нерастворимы в углеводородах, поэтому их вводят в моторное масло в виде коллоидных дисперсий. При этом увеличивается ресурс узлов трения и снижается вероятность задира в условиях масляного голодания.
Совершенствование существующих и создание новых видов твердых смазок -- важный этап разработки адиабатного (керамического) двигателя.
Повышение теплонапряженности (уровня форсирования) современных ДВС увеличивает качественный и количественный объемы требований, предъявляемых к граничной пленке. Удовлетворение этих требований только путем изменения свойств моторного масла не всегда целесообразно (или возможно) как по техническим, так и по экономическим условиям, поэтому в ряде случаев в дополнение смазки моторными маслами (или без них) при изготовлении двигателя применяют покрытие поверхностей трения твердыми смазочными материалами
Хорошие смазочные свойства имеют покрытия на основе двусернистого молибдена. Такие покрытия обладают высокой термической и химической стабильностью, сочетаются со всеми видами смазок и топлив, не токсичны и выдерживают нагрузки до 30 МПа. В современном двигателестроении практикуют нанесение покрытий из M0S2 на нагруженные узлы трения механизма газораспределения, вкладыши коленчатого вала, втулки клапанов, юбки поршней и пр. При этом достигается увеличение ресурса свыше 30 %. Для поддержания сохранности покрытия рекомендуется в процеп С эксплуатации вводить в масло присадки на основе M0S2.
Примером покрытия такого рода может быть паста, состоящая из дисперсии MоS2 в органической смоле с растворителем. При нанесении пасты на металлические поверхности она образует прочно скрепленную с основой сухую пленку, обладающую длительным сроком службы в диапазоне температур 20 -- 380 °С при высоких механических нагрузках.
Толщина пленки должна быть равна 5 -- 15 мкм, более толстый слой подвержен растрескиванию и скалыванию.
Мягкие металлы (свинец, индий, олово, кадмий, медь, серебро, золото и др.) обладают низкой прочностью на срез и благодаря этому могут применяться в качестве смазок, наносимых в виде тонких слоев (пленок) на более прочные основы. Поведение пленок этих металлов во многом сходно с маслами. Кроме того, они обладают свойством облегчать и ускорять процесс приработки
Важным требованием, обусловливающим возможность применения для смазок мягких металлов, является высокая адгезия к материалу основы и низкая к материалу контртела. Например, пленка серебра толщиной 100...200 мкм, наносимая на основу гальваническими методами, обладает высокими антифрикционными свойствами и обеспечивает интенсивный отвод теплоты от поверхности трения.
Смазывающими свойствами обладают некоторые полимерные материалы -- фторопласт-4 (тефлон), капрон, нейлон, полиэтилен, политетрафторэтилен, полиамид и др. Их наносят на поверхности трения в виде пленок различной толщины или используют как прессованные проставки (вкладыши). Применение твердых смазок на основе полимерных материалов ограничивается низкой термической стойкостью этих материалов, а также свойственными им малым коэффициентам теплопроводности и большим коэффициентом теплового расширения (на порядок больше, чем у стали).
Полимерные твердые смазочные материалы обладают недостаточными механическими свойствами, поэтому для обеспечения прочности при средних и высоких нагрузках их армируют. Армирование может производиться либо путем введения в структуру полимера арматурных решеток, либо пропиткой полимером пористого материала. Используемый для армирования материал должен быть мягче, чем материал поверхности трения. В частности, имеются данные об успешном применении в тяжело нагруженных подшипниках скольжения армированного политетрафторэтилена.
Перспективной областью использования твердых смазок являются композиционные смазочные материалы (КСМ), представляющие собой комбинацию отдельных видов твердых смазок, обеспечивающую оптимальное сочетание их смазочных свойств, механической прочности и обрабатываемости. Основным преимуществом КСМ является обеспечение хороших антифрикционных и противоизносных свойств в течение длительного времени (в пределе -- соответствующего полному ресурсу механизма).
Физически КСМ представляет собой механическую смесь двух или более различных по свойствам твердых веществ, при этом одно из них, являющееся основой, может образовывать структурный каркас -- матрицу, обусловливающую заданные механические свойства. Матрица может изготавливаться из полимерных, металлических или керамических материалов. В структурном каркасе матрицы зафиксированы материалы, являющиеся наполнителем КСМ. Наполнитель обеспечивает смазочные свойства КСМ. К достоинствам КСМ с полимерной матрицей (полимерных КСМ) относятся хорошие смазочные свойства, химическая инертность, более высокая, чем у металлов, усталостная прочность, малая масса, низкая чувствительность к локальным нарушениям структуры (трещинам, надрезам). Наиболее термостойкие КСМ на основе ароматических полиамидов могут длительно эксплуатироваться при температуре до 450 °С
Основные недостатки -- большой коэффициент термического расширения, низкие теплопроводность, термическая стойкость и стабильность.
В полимерных КСМ наиболее часто используют полиамиды с наполнителями -- дисульфидом молибдена, графитом, нитридом бора. Хорошие результаты дает использование в качестве наполнителей порошков мягких металлов, алюминия, меди, никеля, молибдена и др.
КСМ на основе металлических материалов получают путем прессования и спекания из порошков металлов (железа, меди и пр.) с последующей пропиткой полученной пористой основы твердыми слоистыми смазками, мягкими металлами или полимерами. Для получения КСМ, работающих в особо тяжелых температурных условиях, в качестве основы используют никель, кобальт и их сплавы, в качестве наполнителя -- материалы на основе молибдена или вольфрама.
Хорошие характеристики имеют КСМ на основе пористых материалов, изготовленных спеканием пакета спрессованных металлических сеток. Для увеличения антифрикционных свойств сетки можно изготовлять из мягких металлов. Механические свойства таких композиций широко регулируют выбором материала сетки и давления прессования. Получили распространение (например, для направляющих втулок клапанов ДВС) КСМ на металлической основе, поры которых заполнены фторопластом-4 с добавками сульфидов, селенидов и теллуридов молибдена, вольфрама, ниобия и других металлов. В таких композициях твердая смазка кроме смазочного действия обеспечивает высокую несущую способность и износостойкость. Соответствующие характеристики приведены в табл. 2.
смазка пластичный трение износ
Состав материала |
Удельная нагрузка, МПа |
||||||||
Износ, мкм/км 0,13 |
Коэффициент трения |
Износ, мкм/км |
Коэффициент трения |
Износ, мкм/км |
|||||
0,13 |
0,46 |
0,13 |
0,30 |
0,16 |
0,30 |
0,11 |
0,30 |
||
60%% Ag ,30%тефлона, 10% WSe2 |
0,22 |
0,51 |
0,19 |
0,32 |
0,9 |
0,32 |
0,18 |
0,33 |
Рациональный подбор веществ, входящих в КСМ, обеспечивает их достаточно высокую несущую способность при хороших антифрикционных характеристиках и минимальном износе узла трения (рис.). Рабочая температура таких смазок ограничивается температурой течения материала металлической основы.
Для получения керамических матриц КСМ используют окислы бериллия, циркония и других металлов. КСМ на керамической основе обладают высокой термической и химической стойкостью. Основные недостатки этих материалов -- хрупкость и низкая прочность при растяжении.
На основе КСМ разрабатывают узлы трения (вплоть до коренных вкладышей и поршневых колец), не требующие замены в течение всего моторесурса двигателя. При условии достаточно эффективного отвода теплоты узлы трения на основе КСМ могут длительно работать без дополнительного подвода смазки. Большинство КСМ хорошо работает совместно с жидкими и консистентными смазками, что открывает возможность их использования для подшипников скольжения в конструкциях ДВС. Это обеспечивает существенное повышение надежности двигателя, особенно в режиме масляного голодания. Для вкладышей коренных и шатунных подшипников можно использовать, например, композиции из медно-молибденового (CuO + MоS2) материала.
Для подшипников распределительного вала применяют вкладыши, изготовленные из металлокерамических (или пористых) композиций на основе мягких металлов, насыщенных фталоцианиновой твердой смазкой. Изготовляют материал, состоящий из стальной ленты, на которую спеканием нанесен тонкий слой сферических частиц пористой оловянистой бронзы, пропитанных смесью фторопласта со свинцом. Здесь стальная основа обеспечивает необходимую прочность подшипника, бронза -- теплопроводность, смесь тефлона со свинцом -- смазочные свойства.
Список использованной литературы
1. Богданович П.Н., Прушак В.Я. Трение и износ в машинах: Учеб. для техн. вузов. Минск: Высш. шк. 1999.
2. Буше Н.А. Трение, износ и усталость в машинах. М.: Транспорт, 1987.
3. Гаркунов Д.Н. Триботехника. М.: Машиностроение, 1989.
4. Колосюк Д.С., Кузнецов А.В. Автотракторное топливо и смазочные материалы. М.: Высшая школа, 1987.
5. Кузнецов А.В. Рудобашта С.П. Симоненко А.В. Теплотехника, топливо и смазочные материалы. М.: Колос, 2001.
6. Кузнецов А.В.Кульчев М.А. Практикум по топливу и смазочным материалам. М.: Агропромиздат, 1987.
7. Когаев В.П., Дроздов Ю.Н. Прочность и износостойкость деталей машин. М.: Высш. шк., 1991.
8. Лышко Г.П. Топливо и смазочные материалы. М.: Агропромиздат, 1985.
9. Основы трибологии (трение, износ, смазка): Учеб. для техн. вузов / Под ред. А.В. Чичинадзе. 2-е изд. М.: Машиностроение, 2001.
10. Справочник по триботехнике / Под общ. ред. М. Хебды, А.В. Чичинадзе. М.: Машиностроение; Варшава. Т.1: 1989; Т.2: 1990; Т.3: 1992.
11. Топливо, смазочные материалы и технические жидкости (Под ред. В.М. Школьникова). М.: Техинформ, 1999
12. Фукс И.Г., Буяновский И.А. Введение в трибологию. М.: Нефть и газ, 1995.
Размещено на Allbest.ru
...Подобные документы
Физико-химические и эксплуатационные свойства автомобильных смазок на примере ЛИТОЛ 24. Классификация пластичных смазок по NLGI, DIN 51 502, ISO 6743/9. Группы и подгруппы смазочных материалов в соответствии с ГОСТом 23258-78, анализ их совместимости.
реферат [520,9 K], добавлен 16.11.2012Характеристика паспортных данных дизельного топлива, моторных, трансмиссионных масел, а также низкозамерзающих охлаждающих жидкостей. Выбор сорта и марки смазочных материалов. Выбор смазок для узлов трения органов управления, трансмиссии и ходовой части.
курсовая работа [45,4 K], добавлен 07.08.2013Выбор смазочных материалов. Требования к горюче-смазочным материалам. Классификация трансмиссионных масел и их обозначение. Схема смазки автомобиля ЗИЛ - 4334. Рекомендации по применению масел в зависимости от их назначения и температуры окружающей среды.
курсовая работа [23,7 K], добавлен 15.11.2014Производственные технологии получения бензина. Стабильность дизельного топлива и показатели его раскрывающие. Система классификации, маркировки тормозных жидкостей. Характеристика эксплуатационных материалов. Проблема экономии горюче-смазочных материалов.
реферат [26,5 K], добавлен 20.11.2012Понятие фрикций как процесса трения деталей. Фрикци в двигателях внутреннего сгорания как причина износа деталей и уменьшение коэффициента полезного действия двигателя. Применение системы смазки трущихся деталей для уменьшения фрикционного износа.
реферат [3,3 M], добавлен 01.04.2018Классификация смазочных материалов: минеральные, растительные, животные и синтетические. Способы очистки дистиллятов и их последующая обработка. Динамическая, кинематическая и условная вязкость. Виды смазочных масел, используемых для горных машин.
реферат [22,9 K], добавлен 21.09.2011Выбор электродвигателя и кинематический расчет привода. Вычисление закрытой цилиндрической передачи. Определение основных параметров зубчатого колеса и шпоночного соединения. Выбор способа смазки, контроля и смазочных материалов для подшипников.
курсовая работа [566,6 K], добавлен 04.08.2021Установка сорта и марки масел, низкозамерзающих и охлаждающих жидкостей для применения на автомобиле Москвич 214122. Оценка эксплуатационных свойств трансмиссионных масел и тормозной жидкости. Выбор сорта и марки смазочных материалов для автомобиля.
курсовая работа [39,8 K], добавлен 07.08.2013Эксплуатационные свойства пластичных смазок: температура каплепадения, эффективная вязкость, коллоидная стабильность и водостойкость. Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости при ремонтных работах.
курсовая работа [30,4 K], добавлен 06.03.2015Общая схема и принцип действия системы смазки двигателя, ее составные части и их взаимодействие. Отличительные признаки и особенности эксплуатации смазочных систем с мокрым и сухим кратером. Неполадки и ремонт сборочных единиц смазочной системы.
презентация [845,8 K], добавлен 10.04.2010Изучение состава и классификации автомобильных эксплуатационных материалов. Характеристика эксплуатационных требований к автомобильным бензинам и дизельному топливу. Назначение и характеристика смазочных масел. Назначение и виды технических жидкостей.
учебное пособие [407,0 K], добавлен 20.10.2011Описание конструкции и теории эксплуатации оборудования, применяемого для ремонта автомобилей. Сборки и разборки агрегатов с целью их ремонта и восстановления, замены деталей. Оборудование кузовного участка. Ассортимент топливо-смазочных материалов.
отчет по практике [986,5 K], добавлен 05.04.2015Принципы строения композиционных материалов, их изготовление и применение в авиационной промышленности. Преимущества и недостатки композиционных материалов. Примеры применения композиционного материала в мировом и отечественном самолетостроении.
курсовая работа [1,5 M], добавлен 06.11.2014Влияние переменных режимов на изменение состояния в условиях эксплуатации лесозаготовительных машин. Основные виды топлива и их применение. Восстановление деталей сваркой и наплавкой. Определение расхода нефтепродуктов и горюче-смазочных материалов.
курсовая работа [259,4 K], добавлен 08.04.2012Классификация складов по виду хранимых материалов, типу здания, месту расположения. Назначение и роль в транспортном грузопотоке. Временное складирование (накапливание) продукции. Склады материалов (сырья, вспомогательного и производственного назначения).
презентация [8,1 M], добавлен 31.01.2017Виды габаритов. Размеры габаритов приближения строений. Надежность подвижного состава. Оценка на долговечность по износу трущихся элементов конструкций вагона. Назначения и классификация вагонов. Их основные элементы. Парк пассажирских и грузовых вагонов.
контрольная работа [1,4 M], добавлен 26.04.2016Особенности эксплуатации систем смазки. Допустимая рабочая температура масла. Размещение агрегатов на двигателе. Уплотнение и суфлирование масляных полостей. Обрыв шпильки крепления. Характерные неисправности систем смазки, причины и методы их устранения.
презентация [3,4 M], добавлен 08.12.2014Характеристика смазочных работ, основанных на химмотологической карте, в которой указываются точки смазки, периодичность, марка масел и заправочные объемы. Оборудование для смазочно-заправочных работ, подразделяющееся на стационарное и передвижное.
реферат [19,0 K], добавлен 03.01.2011Создание автотранспортных предприятий для повышения эффективности использования транспорта в сельском хозяйстве. Обоснование марочного состава грузовых автомобилей. Определение требуемого количества запасных частей и расхода горюче-смазочных материалов.
курсовая работа [58,8 K], добавлен 04.05.2011Определение списочного состава автомобилей автотранспортного предприятия. Условия эксплуатации подвижного состава. Расчет необходимых площадей под склад шин, горюче-смазочных материалов, производственных подразделений. Генеральный план предприятия.
контрольная работа [817,5 K], добавлен 18.10.2010