Повышение достоверности результатов диагностирования газотурбинных двигателей сцинтилляционным методом с целью снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов

Создание диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации воздушных судов.

Рубрика Транспорт
Вид автореферат
Язык русский
Дата добавления 12.02.2018
Размер файла 531,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Научно-исследовательский институт прикладной физики

ГОУ ВПО «Иркутский государственный университет»,

ФГУП «Государственный научно-исследовательский институт гражданской авиации»

ПОВЫШЕНИЕ ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ ДИАГНОСТИРОВАНИЯ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ СЦИНТИЛЛЯЦИОННЫМ МЕТОДОМ С ЦЕЛЬЮ СНИЖЕНИЯ РИСКОВ ВОЗНИКНОВЕНИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИ ЭКСПЛУАТАЦИИ ВОЗДУШНЫХ СУДОВ

Специальности: 05.22.14 Ї Эксплуатация воздушного транспорта

05.26.02 Ї Безопасность в чрезвычайных ситуациях

АВТОРЕФЕРАТ диссертации на соискание ученой степени

доктора технических наук

ДРОКОВ ВИКТОР ГРИГОРЬЕВИЧ

Москва 2009

Работа выполнена в научно-исследовательском институте прикладной физики ГОУ ВПО «Иркутский государственный университет» и ФГУП «Государственный научно-исследовательский институт гражданской авиации»

Официальные оппоненты: Заместитель начальника отдела диагностики ЦИАМ им. П.И. Баранова доктор технических наук Егоров И.В.

Заведующий кафедрой АТО и ремонта ЛА МГТУ ГА доктор технических наук, профессор Коняев Е. А.

Профессор кафедры «Конструкция и прочность авиационных двигателей» ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина доктор технических наук, профессор Евдокимов А.И.

Ведущая организация: ОАО «Авиадвигатель»

Защита диссертации состоится ………. в ……… часов на заседании диссертационного совета Д 315.002.01 в Государственном научно-исследовательском институте гражданской авиации (ГосНИИГА).

Адрес: 141426, Московская обл., Химкинский район, аэропорт Шереметьево, а/я 26, ГосНИИГА.

С диссертацией можно ознакомиться в библиотеке ГосНИИГА.

Отзыв на автореферат в двух экземплярах с подписью составителя, заверенный печатью организации, просим направлять в адрес диссертационного совета.

Автореферат разослан _____________________ 2009г.

Ученый секретарь диссертационного совета,

кандидат технических наук А.Е. Байков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования

Несмотря на большие успехи в создании высоконадежных газотурбинных двигателей (ГТД), в эксплуатации продолжают возникать отказы двигателей, приводящие к авиационным происшествиям, снижению уровня безопасности полетов в гражданской авиации и боеготовности в военной авиации, а также к возникновению чрезвычайных ситуаций при эксплуатации воздушных судов и к снижению эффективности применения двигателей. Поэтому проблема обеспечения эффективной и безопасной эксплуатации ГТД в настоящее время является одной из приоритетных и актуальных и имеет важное народно-хозяйственное значение.

Решение данной проблемы затрудняет несовершенство применяемых методов контроля и диагностики технического состояния ГТД. Вследствие этого с эксплуатации снимаются исправные ГТД, имеющие запас ресурса; в то же время отдельные двигатели в пределах назначенных ресурсов отказывают в полете.

В настоящее время в гражданской авиации и Вооруженных силах РФ эксплуатируются ГТД выпущенные, в основном, 15-30 лет тому назад. Значительная часть парка этих двигателей близка к условиям полной выработки назначенных и межремонтных ресурсов и сроков службы. Возникла актуальная техническая задача обеспечения безопасной и эффективной эксплуатации таких ГТД путем увеличения (продления) назначенных ресурсов, сроков службы и снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.

С другой стороны, создание ГТД новых поколений требует современных подходов к проблеме контроля, диагностики и управления их техническим состоянием, учитывающих особенности их применения и большие ресурсы.

Комплекс указанных причин порождает общую проблему повышения безопасности полетов и эффективности применения ГТД на основе разработки новых и совершенствования известных методов технической диагностики. К ним, в частности, относится метод, основанный на анализе частиц в масле системы смазки двигателя.

Значительный вклад в разработку и внедрение инструментальных методов диагностики, основанных на измерении параметров частиц, отделяемых от повреждаемых деталей в системе смазки ГТД, внесли работы ЦИАМ им П.И. Баранова, Гос НИИ ГА, 13 ГНИИ Минобороны России, ОАО «Авиадвигатель», ОАО «НПО «Сатурн», ОАО «Аэрофлот», а также работы отечественных ученых, в том числе выполненные под руководством Биргера И.А., Крагельского И.В., Кузнецова Н.Д., Смирнова Н.Н., Буше Н.А., Калашникова С.И., Степанова В.А., Ребиндера П.А., Гаркунова Д.Н., Степаненко В.П. и др.

Вместе с тем, в опубликованных трудах недостаточное внимание уделено совершенствованию методов диагностики технического состояния элементов конструкции ГТД, обобщению и систематизации данных по закономерностям повреждаемости ГТД на основе анализа металлических частиц, отделяемых от повреждаемых деталей, формированию комплексной оценки технического состояния ГТД.

В итоге остается неустраненным ряд серьезных недостатков в разработке теоретических и методологических основ способов диагностирования газотурбинных двигателей с использованием комплексной информации о параметрах металлических частиц, отделяемых от повреждаемых деталей в системе смазки двигателя.

Используемые в настоящее время инструментальные методы диагностики (атомно-эмиссионный, рентгеноспектральный, феррографический) в подавляющем большинстве случаев не позволяют предсказать повреждение по появлению металлических частиц, отделяемых от повреждаемых деталей и локализовать поврежденный узел. На это указывают данные ОАО «НПО «Сатурн»; они свидетельствуют, что лишь 5% двигателей из исследованных с помощью оборудования типа БАРС, МФС отстраняются от эксплуатации с повреждениями по превышению контрольных значений количества металлической примеси в пробе масла.

Основными причинами низкой достоверности результатов диагностики традиционным методом являются:

- недостаточность количества информации о параметрах частиц повреждаемых деталей, определяемых традиционными способами;

- неучет параметров частиц, отделяющихся от повреждаемых деталей и накапливающихся на основном маслофильтре.

Поэтому оценка технического состояния авиационных двигателей по состоянию масла системы смазки с помощью оборудования типа БАРС, МФС и визуального контроля наличия металлических частиц на магнитных пробках, магнитных стружкосигнализаторах, фильтрах-сигнализаторах в недостаточной для эксплуатации степени обеспечивает безопасность полетов и эффективность применения ГТД.

Актуальность разработки и внедрения инструментальных методов технической диагностики нового поколения диктуется объективной необходимостью в обеспечении предприятий, эксплуатирующих авиационную технику, оперативной и высокодостоверной информацией о фактическом состоянии авиадвигателей. Эта информация позволяет повысить эффективность эксплуатации по техническому состоянию авиационных ГТД и уровень безопасности полетов.

Настоящая диссертационная работа посвящена решению проблемы повышения достоверности результатов диагностирования газотурбинных двигателей сцинтилляционным методом с целью снижения рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов.

Цель и задачи исследования

Целью диссертационной работы является разработка новых научно-обоснованных технических и технологических решений, создание диагностической аппаратуры нового поколения на основе спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей, разработка сцинтилляционного метода диагностики, обеспечивающего повышение уровня безопасности эксплуатации газотурбинных двигателей и снижение рисков возникновения чрезвычайных ситуаций при эксплуатации воздушных судов. диагностический аппаратура сцинтилляционный воздушный

Для достижения поставленной цели решены следующие взаимосвязанные научные и практические задачи:

- разработана математическая модель газодинамического течения газа в цилиндрических разрядных камерах СВЧ плазмотронов и движения одиночных металлических частиц, учитывающая движение, нагрев, испарение этих частиц и различные способы стабилизации разряда;

- исследованы физические процессы в разрядной камере источника возбуждения спектров (СВЧ плазмотрона) сцинтилляционного спектрометра и определены условия оптимального выделения сцинтилляционного сигнала;

- разработаны теоретические и практические положения создания диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации;

-разработан атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частицы в пробах смазочных масел, способ его градуирования по равновесной и импульсной составляющим сигнала;

- систематизированы и обобщены закономерности изменения технического состояния элементов конструкции ГТД, омываемых смазочным маслом, в зависимости от параметров частиц, отделяемых от повреждаемых деталей;

- установлены новые диагностические признаки, связывающие параметры частиц, отделяемых от повреждаемых деталей и накапливаемые на основном маслофильтре, с техническим состоянием двигателя;

- разработана новая технология диагностирования по результатам сцинтилляционных измерений параметров частиц повреждаемых деталей, выявляемых в пробах масел и смывах с основного маслофильтра.

Экспериментальные исследования проводились:

- на ЛА в условиях эксплуатации;

- на стендах заводов авиационной промышленности;

- в лабораторных условиях на образцах;

- на аварийных ГТД, поступивших на исследование для установления причины отказа.

Научная новизна

Научная новизна диссертационного исследования определяется следующими результатами, полученными лично автором:

1. Разработаны теоретические и практические положения создания диагностической аппаратуры нового поколения, реализующие сцинтилляционный способ регистрации, измерения и анализа параметров частиц повреждаемых деталей, выявляемых в пробах смазочных масел.

2. Создана математическая модель газодинамического течения газа в цилиндрических разрядных камерах СВЧ плазмотронов и движения одиночных металлических частиц, учитывающая движение, нагрев, испарение этих частиц и различные способы стабилизации разряда.

3. Исследованы газодинамические условия в разрядной камере с закрученным потоком газа, при которых:

- введенные в разряд металлические частицы размером от единиц до 100 мкм не выбрасываются на стенку камеры;

- каждой введенной в разряд металлической частице соответствует один сцинтилляционный импульс.

4. Проанализированы закономерности влияния передаточной функции источника возбуждения спектров и распределения частиц по размерам на распределения сигналов.

5. Разработан способ динамической дискриминационной фильтрации сцинтилляционного аналитического сигнала.

6. Разработан атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частиц в пробах смазочных масел.

7. Получен новый способ одновременного получения информации о примеси, находящейся в виде отдельных частиц и о фоновой составляющей сигнала, несущей информацию о содержании растворенной примеси и (либо) примеси, находящейся в субмикронных частицах.

8. Предложен сцинтилляционный метод диагностики, позволяющий значительно повысить достоверность и качество диагноза за счет увеличения объема диагностической информации и снижения влияния видов повреждения на правильность принятия диагностического решения, повысить уровень безопасности эксплуатации газотурбинных двигателей.

9. Созданы статистические модели исправных двигателей по параметрам частиц повреждаемых деталей с учетом типа и наработки двигателей.

Практическая значимость

Практическая значимость работы заключается в следующем:

1. Разработана новая технология сцинтилляционного диагностирования, обеспечивающая как оценку технического состояния узлов и двигателя в целом, так и локализацию поврежденных узлов. Новая технология диагностирования внедрена в гражданской авиации (бюллетени №№ 1756-БД-Г, 1772-БД-Г, 1786-БД-Г, 1807-БЭ-Г, 1827-БЭ-Г, 1840-БЭ-Г, 94348-БЭ-Г) и обеспечила экономический эффект более 16 млн. рублей.

Технология сцинтилляционного диагностирования является основой для создания новых технологий для диагностики топливной аппаратуры, гидрокомплексов, проточной части двигателей и т.д.

2. Разработаны оригинальные конструкции СВЧ-плазмотронов, обеспечивающие работу с жидкими, либо порошкообразными пробами с эффективностью вхождения подаваемого вещества в струю плазмы близкой к 100%. Созданный СВЧ-плазмотрон циклонного типа с высоким к.п.д. нагрева газа и надежностью пригоден для плазмохимического получения нитридов титана, бора и других веществ.

3. Сконструирована аналитическая аппаратура нового поколения (класса) Ї атомно-эмиссионный сцинтилляционный спектрометр, позволившего повысить достоверность диагноза технического состояния двигателей в условиях эксплуатации благодаря комплексному измерению параметров по каждому из измеренных элементов микропримесей металлов.

Спектрометр может использоваться для трибологических исследований, контроля качества горюче-смазочных материалов, оценки технического состояния узлов, омываемых спецжидкостями и т.д., а также в геологии, геохимии и промышленности для поиска и изучения генетических особенностей месторождений благородных металлов, решения технологических задач.

4. Разработаны методики непрерывного отслеживания фазовых превращений частиц металлов.

5. Накоплен и систематизирован набор эталонов проб масел и смывов с основного маслофильтра с дефектных двигателей, исследованных на заводе. Данный набор является исходной информацией для разработки системы диагностики вновь создаваемых двигателей, методик измерения параметров частиц, отделяемых от повреждаемых деталей и совершенствования технологий диагностирования.

На защиту выносятся:

1. Теоретические и практические принципы создания диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации.

2. Математическая модель и результаты исследований течения плазменного газа, движения в нем одиночных металлических частиц, способы эффективного введения металлических частиц в разряд потоком газа, влияние типа передаточной функции источника света на функцию распределения сцинтилляционных сигналов и способ оценки размеров частиц при сцинтилляционных измерениях.

3. Атомно-эмиссионный сцинтилляционный спектрометр нового поколения, обеспечивающий регистрацию, измерение до шести параметров частиц в пробах смазочных масел, а также комплексное, экспрессное и «прямое» определение содержания элементов, находящихся в пробе в растворенной форме и в виде частиц повреждаемых деталей.

4. Сцинтилляционный метод диагностики, позволяющий значительно повысить достоверность и качество диагноза за счет увеличения объема диагностической информации и снижения влияния видов повреждения на правильность принятия диагностического решения, повысить уровень безопасности эксплуатации газотурбинных двигателей.

5. Закономерности поступления частиц повреждаемых деталей в смазочное масло двигателя при возникновении и развитии повреждения, а также модель развития повреждения по результатам измерения параметров частиц повреждаемых деталей.

6. Результаты микрорентгеноспектральных и сцинтилляционных исследований по структурной однородности сплавов подшипников, используемых в конструкции двигателя, элементному составу частиц, отделяемых от повреждаемых деталей.

7. Критерии технического состояния авиационных двигателей (количественные параметры) по параметрам частиц повреждаемых деталей в пробах с основного маслофильтра и новые диагностические признаки повреждений на ранней стадии их развития.

8. Статистические модели исправных двигателей типа Д-30КП/КУ/КУ-154.

Достоверность и обоснованность результатов

Достоверность и обоснованность результатов исследования обеспечена корректным применением современного математического аппарата, постановкой дополнительных специальных экспериментов, реализующих сцинтилляционный способ регистрации, измерения и анализа параметров частиц и корректной статистической обработкой полученных данных. Правильность измеренных сцинтилляционным способом параметров частиц повреждаемых деталей контролировалась с помощью независимых методов оценки используемого параметра. Достоверность разработанной технологии диагностирования оценивалась путем сравнения результатов сцинтилляционного диагностирования двигателей с результатами их заводской разборки.

Все полученные результаты теоретически и экспериментально обоснованы, а их достоверность подтверждена:

- сходимостью аналитических решений поставленных научных задач с результатами полунатурных и натурных экспериментов;

- внедрением полученных автором решений в конкретные разработки и образцы техники;

- метрологическими возможностями оборудования, его аккредитацией в Госстандарте;

- соблюдением правил составления и тестирования вычислительных программ и алгоритмов.

Апробация работы и публикации

По материалам диссертации опубликована одна монография, одна научно-техническая книга в соавторстве, 44 печатные работы, из них 12 работ в журналах, рекомендованных ВАК («Контроль. Диагностика», «Химия высоких энергий», «Журнал аналитической химии», «Журнал прикладной спектроскопии»), получено 7 авторских свидетельств СССР, 14 патентов РФ и один европатент.

Результаты диссертационной работы реализованы в плановых НИР Иркутского государственного университета, двигателестроительных КБ и заводов РФ (ОАО «Сатурн», «Авиадвигатель»), в ВУЗах РФ и зарубежных стран.

Материалы, изложенные в диссертации, докладывались и обсуждались на Всесоюзных и международных научных семинарах, конференциях:

Вторая Всесоюзная конференция по новым методам спектрального анализа и их применениям (Иркутск, 1981г.); IX Всесоюзная конференция по генераторам низкотемпературной плазмы (Фрунзе, 1983г.); ХIX Всесоюзный съезд по спектроскопии (Томск, 1983г.); III Региональная конференция. Аналитика Сибири Ї 90 (Иркутск, 1990г.); XIV Всесоюзное Черняевское совещание по химии, анализу и технологии платиновых металлов (Новосибирск, 1989г.); II Всесоюзное совещание «Высокочастотный разряд в волновых полях» (Куйбышев, 1989г.); V Конференция «Аналитика Сибири и Дальнего Востока» (Новосибирск, 1996г.); III Сессия научно-технического совещания «Получение, исследование и применение плазмы в СВЧ полях». (Иркутск, 1989г.); Международная научно-практическая конференция «САКС-2001» (Красноярск, 2001г.); XXIV Российская школа по проблемам науки и технологий (Миасс, 2004г.); JOAP international condition monitoring Conference. Mobile (Alabama, 1998г.); Материалы международной научно-практической конференции «Славянтрибо-7а», (Рыбинск Ї Санкт-Петербург, 2006г.); I Всероссийская конференция «Аналитические приборы». (С-Петербург, 2002г.); COMADEM-97. X International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management. 1997г.; Первая международная конференция «Энергодиагностика». (Москва, 1995г.); Энергодиагностика и Condition Monitoring (Нижний Новгород, 2001г.); Международная научно-техническая конференция «Проблемы и перспективы развития двигателестроения» (Самара, 2006г.).

Структура и объем работы

Диссертация состоит из введения, шести глав, заключения, списка литературы, изложена на 326 страницах машинописного текста, в том числе: таблиц 62, рисунков 64. Библиография включает 156 наименований работ отечественных и зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении сформулирована актуальность повышения уровня безопасности эксплуатации газотурбинных двигателей воздушных судов и эффективности их применения на основе предупреждения отказов ГТД; дана краткая характеристика работы, ее научная новизна и практическая значимость.

В первой главе на основании анализа и обобщения данных по аппаратурно-методическому обеспечению контроля и диагностике технического состояния элементов конструкции ГТД, омываемых смазочным маслом, по параметрам частиц повреждаемых деталей установлены причины низкой достоверности диагностических результатов.

На достоверность диагностических результатов влияют:

1. Систематические погрешности при атомно-эмиссионных и рентгенофлуоресцентных измерениях. Это связано с тем, что величина аналитического сигнала зависит от вида распределения частиц по размерам в анализируемой пробе. Поэтому градуирование спектрометров любыми однотипными стандартными образцами (СО) (Conostan, СО на частицах окислов металлов, СО на ионной основе и т.д.) может приводить к значительным погрешностям при измерении содержания металлической примеси.

2. Изменение вида функции распределения частиц повреждаемых деталей по размерам при интенсификации процессов повреждения. Для обоих спектральных способов характерно резкое снижение чувствительности (наклона) градуировочного графика при увеличении размеров частиц повреждаемых деталей. Для атомно-эмиссионного способа эти влияния существенны при размерах частиц в несколько микрометров, для рентгенофлуоресцентного Ї 15-20 мкм.

3. Недостаточные пределы обнаружения. Значение пределов обнаружения при «прямых» атомно-эмиссионных измерениях содержания железа и меди в пробах масел при использовании спектрометров МФС-7, МОА, Spectoil и т.д. составляет порядка 1 г/т и является предельным. Резервы по снижению пределов обнаружения при подаче пробы вращающимся электродом в угольную дугу исчерпаны. Необходимо дальнейшее снижение пределов обнаружения, которое возможно лишь при замене угольной дуги безэлектродным источником возбуждения спектров и изменением схемы выделения и регистрации сигнала.

Использование предварительного концентрирования пробы масла в рентгенофлуоресцентном анализе позволяет получать пределы обнаружения, достаточные для определения легирующих компонент. Однако влияния, связанные с видом распределения частиц по размерам, не устраняются. В методике измерения обязательно должны учитываться все факторы, от которых зависит величина осадка на фильтре и, соответственно, правильность измерения содержания металлической примеси: тип двигателя, вид повреждения, марка используемого масла и пористость фильтра.

4. Недостаточный объем диагностической информации. Измеряется только величина содержания металлической примеси. Параметр «содержание» является, возможно, необходимым, но недостаточным признаком при оценке технического состояния элементов конструкции ГТД, омываемых смазочным маслом. Определение величины содержания металлов в пробе масла даже с высокой точностью не гарантирует достоверной оценки технического состояния двигателя.

5. Отсутствие информации о параметрах частиц износа, накапливаемых на основном маслофильтре. Достоверность диагноза технического состояния двигателя существенно повышается, если одновременно учитываются параметры частиц в пробе масла и параметры частиц, накапливаемых на основном маслофильтре.

Анализ и обобщение результатов исследований в области разработки диагностической аппаратуры показал, что наиболее перспективным направлением в разработке новой диагностической аппаратуры, обеспечивающей повышение достоверности диагноза и, соответственно, повышение уровня безопасности эксплуатации газотурбинных двигателей воздушных судов и эффективности их применения, является атомно-эмиссионный спектрометр с использованием сцинтилляционного принципа выделения аналитического сигнала.

Во второй главе приведены результаты исследований по разработке основных теоретических положений создания диагностической аппаратуры нового поколения с использованием спектрального атомно-эмиссионного сцинтилляционного способа оценки параметров металлических частиц, отделяемых от повреждаемых деталей в процессе эксплуатации.

Установлено, что источник возбуждения спектров при анализе проб масел должен обеспечивать:

- отсутствие в собственном спектре источника линий анализируемых элементов, т.е. источник должен быть безэлектродным;

- 100 % вхождение частиц износа в плазму;

- возможность использования в качестве плазмообразующего газа сжатого воздуха.

Для подтверждения разработанных теоретических положений проводились экспериментальные исследования по установлению закономерностей течения плазменного газа и траекторий движения частиц с цилиндрическими разрядными камерами с аксиальным и тангенциальным способами стабилизации разряда.

Плазма в разрядных камерах зажигалась и поддерживалась с помощью СВЧ-генератора с частотой 2375 мГц мощностью 2,5 кВт.

На основании известных фундаментальных положений разработана математическая модель газодинамического течения при условии, что газ является вязкой сжимаемой жидкостью, обладающей тепло- и электропроводностью. Распределение температуры в области ядра плазмы задавалось по результатам экспериментальных измерений, в результате чего из уравнений теплового баланса исключался источниковый член, описывающий поглощение СВЧ-мощности.

В цилиндрической системе координат математическая модель имеет вид

(1)

где , Ї аксиальная и радиальная компоненты газовой скорости; P, H Ї давление и энтальпия плазмообразующего газа; z и r-текущие координаты; л Ї теплопроводность; Сс Ї теплоемкость; Ї плотность; м Ї вязкость.

Система уравнений замыкалась соотношениями

л = л(Т), Сс = Сс(Т), с = с(Т), м = м(Т), (2)

определяющими зависимость теплопроводности Ї л, теплоемкости Ї Сс, плотности Ї и вязкости Ї м газа от температуры.

Распределение температуры в области ядра плазмы задавалось по результатам экспериментальных измерений, полученных методом Орнштейна.

Решение уравнений проводилось численным методом в независимых переменных напряженности вихря и функции тока ш

, (3)

.

Граничные условия устанавливались в зависти от конструкции плазмотрона и особенностей ввода газа:

1. Исходя из условий непротекания, функция тока на стенках разрядной камеры принимает постоянное значение, равное соответствующему расходу газа. Энтальпия H на стенках принимает постоянное значение, соответствующее температуре стенок.

2. Во входных сечениях газовых вводов граничные условия задавались из решения одномерных уравнений движения и энергии, которые при постоянной по сечению температуре переходят в закон Пуазейля.

3. На оси симметрии (r = 0) все величины достигают экстремальных значений

, , .

4. В выходном сечении задавались условия свободного развития потока, т.н. «мягкие» граничные условия

.

Решение дифференциальных уравнений второго порядка в частных производных проводилось методом сеток. На область интегрирования набрасывалась произвольная сетка, и решение искалось в ее узлах. В этом случае дифференциальные уравнения заменялись соответствующими им алгебраическими уравнениями. Такие замены происходят с определенной погрешностью. Но при уменьшении шага сетки погрешность стремится к нулю, а решение приближается к точному.

Задача взаимодействия мелкодисперсного порошка с СВЧ-плазмой решалась в приближении одиночных сфер. Частицы представлялись сферами, которые испытывали силу вязкого трения о газ и нагревались за счет потока тепла через поверхность.

Уравнения в форме законов сохранения количества движения, внутренней энергии частицы и ее массы определялись в виде системы уравнений

(4)

здесь Ї время; , Ї координаты частицы; , Ї проекции скорости частицы на ось и ; , , , Ї проекции импульса; Ї полная энергия частицы; Ї масса; сs Ї плотность частицы; Ї площадь поверхности частицы; Ї компоненты газовых скоростей в точке, где находится частица; Ї модуль относительной скорости; Ї коэффициент лобового сопротивления, Ї поток тепла через поверхность частицы, , - поток тепла за счет разности температур газа и частицы; ; D Ї коэффициент диффузии, C Ї концентрация пара на бесконечности, Ps Ї давление насыщенных паров, , Ї наивероятнейшая скорость движения молекул, .

В выражениях, приведённых выше, величины и константы имеют значения: Ї диаметр частицы, , - число Рейнольдса, , Ї степень черноты вещества частицы, определенное по энтальпии , Ї температура газа в точке, где находится частица, Ї коэффициент теплоотдачи, , Ї число Нуссельта, характеризующее среднюю интенсивность теплообмена между частицей и газом, , где Ї число Прандталя .

Зависимость энтальпии от температуры, температуры от энтальпии определялась из соотношения

(5)

где LП Ї скрытая теплота плавления.

Разработанная система уравнений позволила построить эффективный численный алгоритм расчета траектории движения частицы в плазмотроне при изменении ее массы.

Размещено на http://www.allbest.ru/

Известно, что получение безэлектродной СВЧ-плазмы возможно при тангенциальном, вихревом способе стабилизации разряда. Однако при введении частиц в плазму, стабилизированную вихревым потоком, существует явление выбрасывания их инерционными силами из разряда на стенки разрядной камеры, что приводит к налипанию частиц на стенки камеры, нестабильности разряда и его тушению.

Решение системы уравнений (1) с учетом закрутки показало, что при тангенциальной подаче плазмообразующего газа в СВЧ-разрядной камере циклонного типа (рис.1) формируется возвратное закрученное течение. В начальном сечении, где осуществляется подача анализируемых частиц, распределение окружной скорости подчиняется закону вынужденного вихря , т.е. газ вращается как целое. При движении вверх против потока воздуха за счет торможения о стенки разрядной камеры вынужденный вихрь постепенно переходит в свободный, с распределением скорости . В промежуточных сечениях распределение окружной скорости имеет комбинированный вид: возле стенки разрядной камеры преобладает свободный вихрь, а возле оси Ї вынужденный вихрь.

На основании математического моделирования установлено:

Использование разрядной камеры циклонного типа позволяет получить стабильную СВЧ-плазму, не загрязненную посторонними элементами, а выбором подходящей степени крутки можно добиться полного вхождения исследуемых частиц металла в высокотемпературную область плазмы.

Для оценки влияния температуры СВЧ-плазмы и траекторий движения частиц на характеристики нагрева проведены тщательные экспериментальные исследования по регистрации сцинтилляционных сигналов от частиц металла известной массы.

При экспериментальных исследованиях использовались приготовленные по специально разработанной технологии частицы размером от 100 мкм до 40 мкм, измеренные с точностью ±2 мкм, а также частицы от 40 мкм до 5 мкм, отобранные с точностью ±1 мкм.

Каждой введенной в СВЧ-плазмотрон частице соответствовал один сцинтилляционный импульс во всем интервале размеров используемых частиц. Не регистрировалось ни «множественности» для крупных частиц, означающей превышение числа зарегистрированных импульсов над числом частиц, введенных в спектральный источник, ни «потерь» импульсов для мелких, отмечаемых ранее в работах по спектральному анализу.

Разброс значений импульсов, получаемых от частиц одного класса крупности, был значительным (рис.2). Форма распределений указывает на отсутствие строго детерминированной связи между входным и выходным сигналами. При этом наиболее правильными являются результаты, полученные при использовании источника с передаточной функцией, по форме наиболее близкой (в идеале) к дельта-функции, а реально Ї к нормальному распределению с наименьшей дисперсией.

Размещено на http://www.allbest.ru/

Рис. 2 Гистограммы распределения сцинтилляционных сигналов в зависимости от площади импульсов (S) и искусственных частиц различных размеров: (1) dэфф. = 6 мкм, (2) dэфф. = 10 мкм, (3) dэфф. = 32 мкм, (4) dэфф. = 45 мкм

Полученные экспериментальные зависимости величины параметров сцинтилляционных импульсов от массы частиц показали, что абсолютный предел сцинтилляционного обнаружения соответствует частицам с размером dэфф.? 2-3 мкм, а пропорциональная зависимость между сцинтилляционным сигналом и испарившейся массой частицы сохраняется до размеров dэфф.? 55_60 мкм.

Таким образом, теоретические исследования, результаты численного анализа и экспериментальные исследования позволили установить новые положения для сцинтилляционного способа анализа:

- возможность получения безэлектродной СВЧ-плазмы, обеспечивающей 100% вхождения частиц в плазму при тангенциальном способе стабилизации разряда с использованием разрядной камеры циклонного типа;

- отсутствие эффекта «потери» и «множественности» частиц;

- распределение сцинтилляционных сигналов не повторяет форму распределения масс частиц вследствие пространственной неоднородности плазмы;

- условия пропорциональной зависимости между сцинтилляционным сигналом и испарившейся массой частиц в воздушной СВЧ-плазме атмосферного давления наблюдаются до dэф ? 55-60 мкм.

В третьей главе представлены теоретические и экспериментальные результаты исследований по способам раздельной регистрации фоновой и импульсной составляющих аналитического сигнала при сцинтилляционных измерениях и влиянию передаточной функции источника возбуждения спектров на сцинтилляционный сигнал.

В общем виде выражение для сцинтилляционного сигнала определялось как

. (6)

Первое слагаемое описывает часть сигнала, формируемого равномерно распределенной примесью, второе Ї сигнал от дискретной примеси, третье Ї шумовую составляющую. Шумовая составляющая формируется шумами аппаратуры и представляет гауссовский процесс, который приводит к общему поднятию фона и характеризуется своим средним значением и дисперсией.

В реальной ситуации сигналы от частиц примеси часто перекрываются. В этом случае для них не выполняется принцип сцинтилляции, поэтому они также формируют гауссовский случайный процесс. Задача регистрации сцинтилляционного сигнала заключается в выделении заметных импульсов на общем шумовом фоне.

С учетом вышесказанного второе слагаемое в выражении (7) можно представить в виде

, (7)

где Ї представляет совокупность мелких перекрывающихся импульсов,

Ї отдельные не перекрывающиеся импульсы.

Второе слагаемое в (7) описывает импульсный случайный процесс, выделение которого и составляет основную задачу сцинтилляционной регистрации.

Исследования показали, что сцинтилляционный сигнал представляет сумму двух случайных сигналов:

- фонового сигнала, характеризующегося малыми шумовыми амплитудами, медленным и плавным изменением фонового значения со временем, который может нести информацию о растворенном в пробе металле или (и) о металле, находящемся в субмикронных частицах;

- импульсного сигнала Ї отдельные неперекрывающиеся импульсы с большой амплитудой (больше амплитуды фонового сигнала, несущие информацию о достаточно крупных частицах металла).

Для одновременной регистрации фонового и импульсного сигналов разработана система с использованием динамической дискриминационной фильтрации (рис.3).

Рис. 3 Функциональная схема одновременной регистрации фонового и импульсного сигналов с использованием динамической дискриминационной фильтрации: Ї средняя за экспозицию амплитуда фонового сигнала

В систему введен фильтр сверхвысоких частот для подавления шумовой составляющей сцинтилляционного сигнала (ФСВЧ). Это обеспечило более устойчивую работу системы динамической дискриминации и выделения одиночных импульсов из импульсного сигнала.

Уровень дискриминации D и уровень регистрации Ur настраиваются таким образом, чтобы от пробы, не содержащей дискретной примеси, не регистрировалось ни одного импульса. В качестве пробы, не содержащей дискретную примесь, могут использоваться образцы, где элемент введен в пробу, (например, масло) в виде растворенного металлорганического комплекса (стандартный образец, типа Conostan).

Исключить влияние дискретной компоненты примеси на фоновый сигнал в общем случае нельзя, т.к. если частицы имеют субмикронный размер и их содержание велико, то для них нарушается принцип сцинтилляции (перекрываются облака атомного пара), что также приводит к увеличению фоновой составляющей.

В результате исследований установлено:

- динамическая дискриминационная фильтрация позволяет более корректно, по сравнению с традиционными методиками, разделять сцинтилляционный сигнал на фоновую и импульсную составляющие;

- одновременная регистрация фоновой и импульсной составляющих сцинтилляционного сигнала позволяет производить анализ проб, в которых примесь находится как в растворенном, так и дискретном виде;

- разделение выходного сигнала на две составляющие приводит к необходимости производить градуирование сцинтилляционного способа для получения правильных результатов измерения содержания по двум типам стандартных образцов (СО): СО, где примесь находится в растворенной или (и) субмикронной форме, и СО, содержащему примесь только в виде отдельных дискретных частиц, сигнал от которых превышает фоновое значение.

Такой подход разделения выходного сигнала позволяет получать раздельную информацию о содержании металлической примеси, находящейся в виде присадки, либо субмикронных частиц и, соответственно, в виде частиц повреждаемых деталей.

Исследования влияния передаточной функции источника возбуждения спектров на распределение сцинтилляционных сигналов производились с использованием метода Монте-Карло. В качестве функции распределения частиц по диаметрам принималось логнормальное распределение.

Результаты моделирования показали, что форма гистограммы распределения сигналов сложным образом зависит от формы функции распределения частиц по размерам. В зависимости от типа передаточной функции гистограммы сигналов ведут себя по-разному при изменении распределения частиц по размерам. В большинстве случаев при увеличении размеров частиц гистограмма сигналов уширяется, а максимум распределения остается в младших классах (рис.4).

а) б)

Рис. 4 Вид сигналов в зависимости от размеров частиц при передаточной функции, имеющей положительную асимметрию: а Ї входной; б Ї выходной

Исследования показали, что по величине единичного сцинтилляционного импульса невозможно оценить испарившуюся массу частицы (соответственно и ее размер). Возможно отследить лишь изменение среднего размера частиц от пробы к пробе, например, по уширению гистограммы сцинтилляционных сигналов.

В четвертой главе приведены разработанные новые технические решения при создании сцинтилляционного спектрометра, его аналитические и метрологические возможности, а также особенности разработки сцинтилляционного анализатора масла САМ-ДТ-01.

В основу технических решений сцинтилляционного спектрометра положено следующее (рис.5).

Проба масла с помощью ультразвукового распылителя (1) превращается в мелкодисперсный золь и подается в СВЧ-плазменную горелку (2) циклонного типа с температурой ~ 5200 К. Капли масла в воздушной плазме выгорают, а последовательно поступающие в плазму металлические частицы испаряются и атомный пар возбуждается, т.е. происходит вспышка (сцинтилляция) частицы.

Излучение атомного пара с помощью конденсора (3) поступает в полихроматор (4). Разложенное в спектр излучение регистрируется фотоумножителями (5-7).

В случае одновременного присутствия в пробе растворенного металла и металла в виде износных частиц на выходе ФЭУ присутствует непрерывный фоновый сигнал, соответствующий растворенному металлу и импульсный Ї соответствующий частицам повреждаемых деталей.

По специальным градуировочным характеристикам импульсный сигнал пересчитывается в элементное содержание частиц повреждаемых деталей, непрерывный Ї в содержание растворенного элемента. Число вспышек (зарегистрированных импульсов) равно числу частиц повреждаемых деталей.

При попадании в плазму частиц, состоящих, например, только из железа, последовательность импульсов излучения регистрируется на канале (5) (см. рис.5а). На каналах 6, 7 наблюдается непрерывное, слабое фоновое излучение плазмы.

Рис. 5 Блок-схема сцинтилляционного спектрометра на три канала:а) Ї последовательность импульсов излучения при присутствии в пробе только одного элемента; б) Ї последовательность импульсов излучения при одновременном присутствии трех элементов

Если в пробе присутствуют частицы, состоящие из нескольких элементов, ПЭВМ сортирует импульсы излучения по одновременности их появления. Совпадение по времени двух и более импульсов излучения указывает на наличие сложной частицы, характеризующей ее элементный состав.

Для проведения измерений параметров частиц повреждаемых деталей используется объем разовой аналитической навески Ї 1 мл. За время экспозиции 10 мин определяются следующие параметры одновременно для восьми элементов (Al, Cr, Ni, Mg, Fe, Cu, Ag, V):

- содержание элемента, находящегося в пробе в виде частиц поврежденной детали (размер частиц более 2 мкм);

- содержание элемента, растворенного в пробе и (либо) содержащегося в виде субмикронных частиц (размер частиц менее 2 мкм);

- общее число частиц поврежденной детали;

- число «простых» частиц, состоящих только из одного элемента;

- число «сложных» частиц, состоящих из двух и более элементов;

- средний размер частиц данного элемента;

- элементный состав каждой частицы изнашивания.

Ранее существенным ограничением сцинтилляционного способа являлось измерение только импульсной составляющей сигнала, растворенный металл и частицы размером менее 2 мкм не учитывались в общем балансе содержания. Чтобы устранить ограничение, автором разработан способ измерения содержания растворенной металлической примеси, разработана и запатентована специальная методика градуирования сцинтилляционного спектрометра.

Для градуирования сцинтилляционного анализатора масла используется два типа образцов сравнения:

- образец сравнения, в котором элемент содержится в виде металлоорганической примеси распределенной равномерно, например, стандартный образец фирмы Conostan;

- образец сравнения, в котором металлическая примесь распределена дискретно в виде отдельных частиц.

В качестве стандартного образца предприятия (СОП) с дискретно распределенной примесью был разработан и аттестован образец (аббревиатура СОЧПИ) на основе натуральных частиц поврежденной детали, выделенных из большего объема отработанного масла.

Оценка погрешности измерения содержания проводилась для двух форм нахождения металлической примеси в пробах масел Ї в форме раствора и частиц поврежденной детали, в соответствии с ГОСТ Р8.563-96ГСИ.

Погрешность на нижней границе измерения содержания для растворенных форм металлов ( 0,2г/т) определялась превышением шумов плазмы и аппаратуры над полученным сигналом и составила . В диапазоне изменения содержаний 1,0-5,0 г/т в зависимости от определяемого элемента погрешность не превышала 20-25%.

Погрешность на нижней границе измерения содержания примесей, находящихся в форме частиц (г/т), определялась только вероятностью попадания частиц в отдельные аналитические навески, т.е. погрешностью пробоотбора. В этом случае погрешность могла доходить до %. Снижение величины погрешности на низких содержаниях получали стандартным путем Ї увеличением аналитической навески или увеличением числа параллельных измерений. В этом случае, погрешность при измерении примеси, находящейся в форме частиц для диапазона содержаний 2,0-5,0 г/т составляла не более 25%.

Пределы допускаемой относительной погрешности при измерении концентрации (количества частиц в аналитической навеске) оказались не хуже 40% в диапазоне измерений от 200 до 4000 см3.

Выше отмечалось, что одновременность появления сцинтилляционных сигналов на двух и более каналах являлась критерием «сложной» частицы.

При среднем размере частиц 5 мкм и содержании 10 г/т количество ложно идентифицируемых частиц не превышало 6,4% от их общего числа. При содержаниях до 2 г/т погрешность идентификации снижалась до 1,2%.

На сцинтилляционный анализатор масла САМ-ДТ-01 получен сертификат Госстандарта РФ об утверждении типа средств измерений №13832, который зарегистрирован в Госреестре №24095_02.

Методика выполнения измерений содержания внесена в Федеральный реестр. Регистрационный код МВИ по Федеральному реестру ФР.1.31.2001.00475.

На методику измерений концентрации и размеров частиц Восточно-Сибирским филиалом ФГУП «ВНИИФТРИ» выдано свидетельство об аттестации №01-2002.

В пятой главе приводятся результаты исследований по влиянию неоднородности структуры сплава на формирование диагноза и элементного состава частиц повреждаемых деталей, а также результаты по измерению параметров частиц износа микрорентгеноспектральным способом в диапазоне размеров от единиц до 100 мкм. Микрорентгеноспектральные измерения проводились на Camebax-SX-50.

Предметом исследования являлись снятые с эксплуатации поврежденные подшипники, изготовленные из стали ЭИ-347Ш. Основа сплава Fe, W Ї 9,5%, Cr Ї 4,6%, V Ї 1,7%, Ni Ї 0,35%.

Обобщение результатов микрорентгеноспектральных исследований позволило уточнить закономерности повреждений подшипников в процессе эксплуатации, особенности структуры поверхностных повреждений колец подшипников и установить следующее.

1. Характер распределения частиц вольфрама во многом определяет повреждение рабочих поверхностей подшипников: чем более равномерно (в мелкой и крупной фазе) распределен вольфрам в матрице сплава, тем менее подвержен сплав повреждению.

2. В структуре металла колец подшипников встречаются участки «чистого» Fe, а также локальные включения других, практически «чистых» элементов: Ti, Al, Cr, V. В этих локальных, аномальных включениях просматриваются мелкие частицы W.

3. В результате повреждения регистрируются как отдельные мелкие и протяженные трещины, так и целые разветвленные системы трещин. Трещины уходят как в глубину тела кольца подшипника, так и располагаются под поверхностью беговой дорожки. Отслоившиеся частицы металла оставляют на поверхности беговой дорожки видимые раковины, каверны различных размеров.

4. Образовавшиеся раковины и каверны иногда оказываются заполненными частицами других металлов (Zn, Cu, Cr), принесенными маслом, иногда твердыми минеральными частицами (SiO2 Ї кремний).

5. Трещины на поверхностях качения подшипников и роликах подшипника возникают и развиваются между вольфрамовых зерен в местах, где металл обеднен легирующими компонентами и по составу не соответствует марке стали.

6. Сравнение результатов микрорентгено-спектрального анализа по локальным точкам показало значительную неоднородность распределения элементов. Так, например, при обработке ролика смесью соляной и азотной кислот был выявлен выступ в виде зуба (рис. 6), где содержание V и W от точки к точке могло изменяться в 5-6 раз, а Ni в пяти точках выступа вообще не обнаружен.

7. В масле системы смазки двигателя (табл. 1) находится ~ 30% собственно металлических частиц повреждаемой детали, остальное приходится на соединения кремния, кальция и алюминия. В исправном двигателе состав частиц может не соответствовать составу материала, от которого они отделились (рис.7).

Таблица 1

Элементный состав частиц, наиболее часто встречающихся в маслосистеме исправного авиационного двигателя

№ п/п

1

2

3

4

5

6

7

8

9

Элементный состав частиц

Fe

Cu

Fe-Cu

Fe-Zn

Fe-Cu-Zn

Fe-Cr-Ni

Fe-Cr

Ti

Al

Частота встречаемости частиц в масле, %

19

5

1

2

0.4

0.1

1

0.3

0.3

Частота встречаемости частиц на фильтре, %

16

1

1

2

6

-

1

1

1

10

11

12

13

14

15

16

17

18

W

Ca

Si

Si-Al

Si-Al-Fe

Si-Al-K

Si-Al-Ca

Si-K

Si-Ca

-

60

4

3

1

0.7

0.5

-

-

0.5

7

19

10

5

2

3

2

2

19

20

21

22

23

24

25

Si-Al-Fe

Si-Al-K-Fe

Si-Al-Ca-Fe

Si-Ca-Fe

Si- Fe

Ca-Fe

Si-Mg-Ca

0.3

0.9

-

-

-

-

0.3

-

-

4

9

4

2

-

8. В масле системы смазки регистрируются частицы «чистого» железа и меди, 16-19% и 1_5% соответственно. Достаточно редко (частота встречаемости 0,1%) обнаруживаются частицы состава типа Fe-Cr-Ni, не зарегистрированы даже единичные частицы ванадия, а также частицы сплава типа Fe-W-Cr-V-Ni, из которого изготовлены некоторые подшипники двигателей Д-30КП/КУ/КУ-154.

Размещено на http://www.allbest.ru/

В шестой главе приведены результаты исследований по разработке новой технологии диагностирования узлов и агрегатов, омываемых смазочным маслом, двигателей типа Д-30КП/КУ/КУ-154 на основе спектрального атомно-эмиссионного сцинтилляционного способа.

Технология диагностирования включает несколько этапов, среди которых основными являются:

- специальная обработка результатов измерений, полученных на сцинтилляционном спектрометре;

- формирование предварительного диагноза по результатам измерений;

- составление отчета о результатах измерений параметров частиц повреждаемых деталей с выдачей основных результатов на экран монитора в виде протокола;

- анализ результатов сцинтилляционных измерений, оценка технического состояния двигателя, локализация повреждения, отработка окончательного диагноза и рекомендаций по дальнейшей эксплуатации исследованного двигателя.

Диагностические решения принимались исходя из установленных граничных значений параметров частиц поврежденной детали, по превышению которых определялась стратегия дальнейшего использования двигателя.

В качестве граничных значений принималась односторонняя оценка (в сторону превышения) 2 у и 3 у.

Если результат сцинтилляционных измерений брался как среднее из двух параллельных измерений, то полученной точности было достаточно для достижения цели, т.е. всегда . Из этого следует, что в диапазон результатов измерений от нуля до верхней границы () входят ()% всех исправных двигателей. В диапазон до верхней границы () входят ()% исправных двигателей, а за диапазоном () - ()% Ї исправные двигатели практически отсутствуют.

Так как вид распределений результатов измерений определяет значения в доверительном интервале, то были проведены исследования законов распределений в случаях отличии их от нормального проводилась коррекция.

...

Подобные документы

  • Документация для проведения инспекционного контроля на воздушных судах. Основные принципы инспекторских проверок гражданских воздушных судов в аэропортах Российской Федерации. Инспекторская проверка на перроне и определение категорий несоответствия.

    дипломная работа [129,2 K], добавлен 22.11.2015

  • Сравнительный анализ основных технико-экономических характеристик воздушных судов с указанием факторов, определяющих их уровень. Определение себестоимости летного часа, тонно-километра и экономической эффективности введения в эксплуатацию указанных судов.

    курсовая работа [205,4 K], добавлен 07.06.2013

  • Знакомство с аэропортовой деятельностью по авиатопливному обеспечению. Рассмотрение видов топливных масел и специальных жидкостей. Особенности маслозаправщика М3-66А. Общая характеристика средств заправки воздушных судов маслами и специальными жидкостями.

    реферат [3,0 M], добавлен 21.11.2014

  • Категории воздушных судов гражданской авиации в соответствии с правилами ИКАО. Разновидности и значение предупреждений. Органы управления, контроля положения и сигнализации необходимости выпуска шасси. Действия пилота при отказе управления закрылками.

    курсовая работа [89,0 K], добавлен 28.05.2015

  • Взлётно-посадочная полоса, рулёжные дорожки, перрон. Светосигнальные огни, их виды. Места стоянки и обслуживания воздушных судов. Системы обеспечивающие безопасность полетов. Работа диспетчерских служб. Система раннего предупреждения близости земли.

    реферат [808,5 K], добавлен 09.04.2015

  • Сведения о самолете Ил-76ТД. Система источников давления гидросистем. Возможные неисправности, их признаки и действия экипажа. Безопасность и охрана труда при технической эксплуатации и ремонте воздушных судов. Требования к технологическим процессам.

    дипломная работа [130,2 K], добавлен 22.04.2014

  • Составление схемы движения судов и определение оптимальных показателней работы судов на этих линиях. Коэффициент использования грузоподъемности и производительность 1 тонны грузоподъемности в валовые сутки эксплуатации. Достижение оптимальных значений.

    курсовая работа [98,4 K], добавлен 11.06.2008

  • Рассмотрение общих характеристик воздушных судов. Изучение ставок сборов за аэронавигационное обслуживание на воздушных трассах. Определение полетной дальности. Расчет временных характеристик рейса самолета, общих затрат на обслуживание пассажиров.

    контрольная работа [395,7 K], добавлен 28.10.2014

  • Краткая характеристика внешних условий эксплуатации судна. Построение оптимальных схем движения судов. Составление плана и закрепление за схемой движения графика работы судов. Расчет плановых показателей флота в соответствии с календарным графиком.

    дипломная работа [923,6 K], добавлен 21.03.2013

  • Субъективные и инструментальные методы диагностирования двигателей. Описание внешних проявлений неисправностей деталей цилиндропоршневой группы. Выявление скрытых дефектов путем применения физико-химического и спектрального анализов картерного масла.

    курсовая работа [813,0 K], добавлен 17.03.2011

  • Нормативы пропускной способности зоны взлета и посадки. Расчет минимальных временных интервалов занятости ВПП при выполнении взлетно-посадочных операций. Определение позиций и методика управления потоками взлетающих и поступающих в ЗВП воздушных суден.

    курсовая работа [627,9 K], добавлен 15.12.2013

  • Описание технологии укладки глубоководных трубопроводов и характеристика основных средств ее обеспечения. Изучение типов и устройства трубоукладочных судов и барж. Технические особенности судов-трубоукладчиков нового поколения с применением барабана.

    реферат [1,6 M], добавлен 30.09.2014

  • Классификация воздушных судов. Специфика чрезвычайных происшествий на авиационном транспорте, перечень поражающих факторов. Предупреждение обледенения самолёта. Системы бортового оборудования летательных аппаратов и обеспечение безопасности полётов.

    реферат [33,7 K], добавлен 02.04.2014

  • Условия эксплуатации судов на заданном направлении: район плавания судов; характеристика заданных портов; транспортная характеристика грузов, заданных к перевозке; основные требования к проектному типу судна. Расчёт параметров направления перевозки.

    контрольная работа [139,0 K], добавлен 20.12.2009

  • Затраты на полёт каждого из самолётов в каждый город. Расчет назначения воздушных судов на рейсы таким образом, чтобы суммарные затраты на транспортировку грузов были минимальными. Определение рационального маршрута с целью минимизации затрат на поездку.

    контрольная работа [61,8 K], добавлен 15.05.2013

  • Технологии производства двигателей и повышение требований к качеству двигателей при возрастающем объеме их производства. Разработка опытных конструкций и повышение мощностных и экономических показателей стали. Эксплуатации транспортных двигателей.

    курсовая работа [710,5 K], добавлен 25.11.2014

  • Характеристика условий эксплуатации судов на заданных направлениях. Характеристика порта. Транспортная характеристика грузов. Отбор судов по технико-эксплуатационным признакам. Определение тоннаже-потоков. Выбор оптимальных схем движения тоннажа.

    курсовая работа [46,2 K], добавлен 21.11.2013

  • Применение передовых методов технической эксплуатации, комплексно осуществляемых по системе планово-предупредительного ремонта. Текущий и средний ремонты серийных судов. Подготовка речного транспорта к зимовке. Обеспечение безопасности отстоя судов.

    реферат [24,1 K], добавлен 13.12.2010

  • Определение максимально допустимой массы для взлета и посадки вертолета Ми-8, созданного конструкторским бюро М.Л. Миля, предназначенного для перевозки пассажиров и грузов на местных воздушных линиях. Подготовка двигателей к запуску и совершение полета.

    реферат [255,9 K], добавлен 08.04.2011

  • Сравнительный анализ экономической эффективности внедрения самолёта Ty-214 и Ил-62М. Определение расходов на техническое обслуживание, оплату труда летного состава и бортпроводников, наземного персонала. Амортизация воздушных судов и авиадвигателей.

    курсовая работа [41,9 K], добавлен 17.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.