Планеты земной группы

Определение плотности вещества внутри Земли. Основы способа расчета силы притяжения на различных глубинах. Моделирование распределения плотности массы внутри планет с учетом слоистой структуры. Атмосфера, физические поля, температура и рельеф поверхности.

Рубрика Астрономия и космонавтика
Вид дипломная работа
Язык русский
Дата добавления 30.10.2019
Размер файла 587,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Ключевые слова: планета, земная группа, распределение плотности, функция распределения, гипергеометрическая функция, функция Хэвисайда

Объект исследования: планеты земной группы

Предмет исследования: распределение массы внутри планет земной группы и его моделирование для случаев однослойной и слоистой структуры планеты

Цель дипломной работы: построение функций распределения массы для планет земной группы с различным типом математического поведения и на их основе расчет масс планет

Задачи дипломной работы:

ѕ изучение современной информации о характеристиках планет земной группы;

ѕ изучение современных модельных представлений о внутреннем строении планет земной группы;

ѕ моделирование функции распределения массы;

ѕ построение функций распределения массы для учета слоистой структуры;

ѕ сравнение полученных результатов с астрофизическими данными.

Вывод: в дипломной работе изучены теоретические основы описания внутреннего строения планет Солнечной системы, в частности, планет земной группы. На основе астрофизических данных определены граничные условия и проведено моделирование функции распределения массы. Произведено обобщение физически-приемлемых функций распределения в случае учета слоистой структуры планет.

Введение

Во всей теории, описывающей распределение плотности Земли, наиболее твердо установлены следующие соотношения

,

основанные только на законе всемирного тяготения и сферической симметрии. Здесь g - ускорение свободного падения, G - гравитационная постоянная, M - масса Земли, R - ее радиус и - ее плотность. Гидростатическое соотношение

также надежно в пределах довольно тщательно установленных ограничений, Р - давление.

Данные соотношения дают одно из первых основных уравнений, найденное Лапласом

которое связывает радиус планеты с плотностью и давлением в ее недрах. Именно эти уравнения с учетом дополнительных предположений о состоянии вещества и были положены впоследствии в основу исследований зависимости плотности вещества планеты (модели Эндема, Роша, Дарвина, Лежандра-Лапласа, Радо и всех последующих).

Данные о скоростях сейсмических волн, полученные в сейсмологии, не позволяют найти раздельно распределение плотности с, модуля сжатия К и модуля сдвига µ. По полученным выше формулам можно найти лишь отношения этих величин.

Для раздельного нахождения этих величин необходимы дополнительные условия.

В качестве таких данных используются в первую очередь значения массы М и C - момента инерции Земли или связанной с ними величины

где Н - постоянная прецессии. [1]

1. Определение плотности вещества внутри Земли

планета атмосфера температура рельеф

Любой закон изменения плотности с глубиной должен подчиняться, по крайней мере, трем, достаточно жестким условиям

4

Кроме того, Радо ввел еще очевидное условие

т.е. плотность не должна уменьшаться с увеличением глубины.

Эти два условия позволили Радо, не прибегая к каким-либо гипотезам или дополнительным данным, вычислить для каждой глубины допустимые пределы для плотности.

Пусть - истинный закон изменения плотности, а д - какой-либо другой закон, предполагаемый нами, но подчиняющийся условиям (1.1 - 1.3). Тогда имеем

4

Вычитая, находим

Так как знак не меняет, то каков бы ни был закон изменения д, существует, по крайней мере, одно значение = , при котором (с ? д) меняет знак.

Аналогично находим

(с?д) меняет знак при = , но в этой же точке меняет знак и , следовательно, подинтегральное выражение (1.8) не меняет знака при = . Таким образом, существует еще одно значение , при котором (с ? д) меняет знак. Наложим на д условие Радо (1.4) в виде везде, кроме точки , где д может меняться скачком.

Таким образом, принимаем закон плотности

, r

Значения и сразу определяются из условий (1.5 - 1.6).

Пределы Радо очень широки и потому не могут дать существенных сведений о плотности внутри Земли.

Для сужения пределов изменения плотности М.С. Молоденским было предложено вместо условия Радо (1.4) ввести условие

Условие (1.11) вытекает из следующего. С одной стороны, по закону Гука , с другой Вместе эти два уравнения для однородного вещества дают

Поскольку в Земле возможна дифференциация вещества с концентрацией более тяжелых компонент к центру, то равенство должно быть в общем случае заменено неравенством (1.11). Взяв в качестве предельного случая (1.12), можно, учитывая (1.5 - 1.6), методом численного интегрирования вычислить кривые, удовлетворяющие условию

Заменив прямые и , полученными кривыми, то найдем новые пределы плотности. Эти пределы дают и максимально возможный скачек плотности на границе земного ядра. Однако, пределы могут несколько расшириться, если допустить, что температура может отклоняться от адиабаты. [1]

1.1 Основы способа расчета силы притяжения на различных глубинах

Если бы скачек плотности на границе ядра равнялся предельному, то верхний и нижний пределы плотности по Молоденскому совпали бы, тогда был бы получен закон изменения плотности с глубиной.

Для Земли однородного состава изменение плотности с глубиной можно записать в следующем виде

здесь - адиабатическое изменение плотности;- изменение плотности за счет того, что истинный температурный dr градиент в Земле отличается от адиабатического на величину .

Но из (1.12) имеем

Величины

полученные из сейсмических данных, соответствуют адиабатическим условиям.

Если б - коэффициент объемного расширения, то приращение плотности при температурном градиенте будет , .

Таким образом

Для большей части Земли, за исключением самых верхних ее частей, адиабатический градиент невелик. В жидком ядре = 0. Таким образом, в первом приближении выражение (1.1.4) можно заменить через (1.12). Если учесть возможность изменения химического состава по глубине, то вместо (1.12) следует взять (1.11). От неравенства (1.4) можно перейти к равенству

Здесь - функция, учитывающая уклонение от однородности, т.е. учитывающая возможное изменение химического состава вещества Земли с глубиной и возможное появление фазовых переходов под действием давления и температуры.

В настоящее время имеется много решений уравнения (1.1.5) при разных предположениях относительно . Рассмотрим только те решения, которые с учетом последних данных можно считать наиболее удовлетворительными. Самое простое предположение относительно ч(r) состоит в том, чтобы считать Землю однородной и = 1 везде, кроме границы земного ядра, где, как указывают данные сейсмологии, механические характеристики вещества Земли меняются скачком при переходе от мантии к ядру.

Обозначим через m массу части Земли, заключенной внутри радиуса . На расстоянии r от центра Земли имеем .

Теперь (1.1.5) примет вид

Вместе с тем

Уравнения (1.1.6) и (1.1.7) решаем методом численного интегрирования. В качестве начальных условий берем

Скачек на границе ядра при определим из уравнения

Полученное таким образом распределение с позволяет найти момент инерции ядра.

Так как момент инерции сферы с постоянной плотностью определяется соотношением , следует, что при сделанных выше предположениях не может быть меньше 3,7 г/см3. В противном случае ядра будет больше т.е. плотность в ядре должна убывать с глубиной, что с физической точки зрения невероятно, так как привело бы к неустойчивости ядра.

Однако значение 3,7 г/см3 кажется неправдоподобно большим, если учесть все данные, положенные в основу условий (1 - 3). Таким образом, приходится сделать вывод о невероятности предположения о том, что везде, кроме границы ядра. Приведенные выше данные показывают, что отклонения от однородности следует искать, в первую очередь, в мантии Земли, и именно в слое C. Действительно, как следует из данных, характеризующих отношение сжимаемости к плотности, как функции глубины (определяемые на основании данных о скоростях), слой не может быть однородным или должен содержать полиморфные переходы.

К аналогичному выводу приводит следующее рассуждение.

Имеем . Дифференцируем по давлению

Примем во внимание

Следовательно

Учитывая приведенные соотношения, получим

Так как g в мантии почти не меняется, то, опуская в (1.1.15) член с , можно вычислить по сейсмическим данным

Основываясь на привлеченных соображениях, разумно считать, что в слое C . К сожалению, вид функции в слое C неизвестен. В качестве приближения можно предположить скачек плотности на глубине 500 км, однако, это вводит еще одно неизвестное - величину скачка, для определения которого требуется новое условие. Но все условия уже использованы. Поэтому решение ведется методом подбора и результат может содержать известную долю неопределенности, особенно в отношении плотности центральных частей Земли.

Для плотности внутри Земли, кроме формул (1.1.6) и (1.1.7), можно получить прямую зависимость от скачка скоростей сейсмических волн, если предположить, что упругие модули зависят только от плотности

Для оценки близости к истине той или иной модели Земли необходимо привлечение нового экспериментального материала. Такими новыми материалами в последние годы оказались данные наблюдений за собственными колебаниями земного шара. Именно эти сведения позволили отклонить ряд неудачных моделей Земли. [2]

1.2 Основы способа расчета давления, его величины и характера изменения по радиусу Земли.

Если известен закон изменения плотности для Земли, то вычисление хода g и не представляет труда, так как

g

Новая модель геоизостазии Особенностью классических моделей изостазии является замена равновесного состояния Земли равновесным состоянием земной коры (литосферы). Эта замена отвечала уровню знаний о строении нашей планеты, когда земную кору представляли "плавающей" в субстрате (магме). В настоящее время накоплены данные, выводы из которых противоречат основным положениям классических моделей изостазии. Остановимся на некоторых из них.

Исходя из современных представлений о строении Земли, нельзя считать правомерной замену ее равновесного состояния равновесным состоянием земной коры. Такая замена представляет собой искусственное обособление одной части планеты от тесно связанной с ней остальной ее части. При изучении равновесного состояния Земли ее надо рассматривать как единую систему.

Принятие первого тезиса неизбежно влечет за собой принятие второго, сущность которого заключается в следующем. До тех пор, пока решались частные геодезические задачи на ограниченных территориях или изучались особенности геологического строения отдельных районов, пренебрежение изменением ротационного режима Земли в какой-то мере можно было считать оправданным. Но коль скоро ставится задача изучения равновесного состояния планеты в целом, определяемого ротационным режимом Земли (положением оси вращения, угловой скоростью), не учитывать его изменения, по-видимому, нельзя.

Введем понятие равновесного состояния Земли в целом, назвав его геоизостазией. Геоизостазии должно соответствовать такое состояние Земли, которое она приняла бы, если бы слагающий ее субстрат в пределах каждой оболочки стал жидким, не смешиваясь. В этом случае нашу планету можно было бы охарактеризовать совокупностью уровненных поверхностей, представляющих собой систему сфероидов со все уменьшающимися коэффициентами сжатия, в формировании которых участвуют массы всей Земли, включая гидросферу и атмосферу. Строго говоря, в достижении геоизостазии должны участвовать и все физические поля Земли.

Рассмотрим условия достижения геоизостазии. В качестве условия равновесия Земли эквивалентного закону Паскаля, использовавшемуся в классических моделях изостазии земной коры (литосферы), с учетом малости величины параметры сжатия , можно принять равенство веса секторов Земли, вырезанных одинаковыми центральными телесными углами ??. Количественно это условие соответствует интегральному выражению

??

где с(r) - изменения плотности в пределах изучаемого сектора Земли, например, задаваемого соотношениями (1.1 - 1.3) и (1.4), (1.1 - 1.3) и (1.12).

Выражение (1.2.3) можно представить также в виде трех интегралов

где

где , - внутренний и внешний радиусы мантии Земли.

Практически, исходя из представлений о квазижидком внешнем ядре, величину можно считать постоянной. Справедливость этого утверждения непосредственно вытекает из известной теоремы: в случае равновесия жидкости, уровненные поверхности являются в то же время и поверхностями равного давления. При решении вопроса о равновесном состоянии мантии Земли значениями интеграла , характеризующими атмосферное давление на земной поверхности, в связи с их малостью по сравнению с можно пренебречь. С учетом приведенных замечаний выражение (1.2.3) принимает вид

Вторым условием достижения геоизостазии примем равенство потенциала в каждой точке Земли его теоретическому значению, соответствующему введенному определению геоизостазии. Практически выполнение этого условия удобней проверять на поверхности Земли, а вместо значений потенциала воспользоваться отметками геоида и сфероида . Разность этих отметок можно принять в качестве критерия уравновешенности Земли. В частности, согласно введенному определению геоизостазии геоид можно признать находящимся в состоянии равновесия при условии выполнения равенства

В самом деле, если бы геоид стал жидким, т.е. ослабилась бы взаимосвязь между слагающими его твердыми частицами, то он принял бы фигуру равновесия - сфероид. Однако, поскольку существуют отклонения геоида от сфероида, обусловленные неоднородностями строения Земли, то должны существовать и напряжения, стремящиеся выровнять эти неоднородности, привести их в соответствие с фигурой ее равновесия. При этом, естественно, закон распределения напряжений будет определяться функцией отклонения геоида от соответствующего ему сфероида.

Приняв за критерий уравновешенности Земли величину отклонения геоида от сфероида , можно определить направленность геологического развития тектоносферы. Она должна быть такой, чтобы "утяжелять" области с отрицательными значениями и "облегчать" области с положительными значениями . Назовем возможные физико-геологические процессы, участие которых в достижении геоизостазии наиболее вероятно.

Утяжеление отдельных областей Земли может быть осуществлено в результате различных физико-геологических процессов. Подъема блоков тектоносферы, приводящих к увеличению отметок геоида, заполнения опущенных участков геоида водой. Оледенения участков земной поверхности. "Пропитывания" гранитной оболочки более тяжелыми базальтоидами и гипербазитами (дайкообразование). Образования траппов (платобазальтов). Возможного перемещения глубинных границ вверх вследствие фазовых переходов вещества в мантии типа базальт - эклогит.

Разгрузка отдельных областей Земли может быть осуществлена в результате протекания различных процессов. Опускания блоков тектоносферы, приводящего к уменьшению отметок геоида. Денудация выступающих блоков тектоносферы или таяния на них льда, возникшего в предыдущую эпоху оледенения. Заполнения верхних частей блоков тектоносферы легкими магматическими образованиями кислого состава (гранитизация). Возможного перемещения глубинных границ вниз вследствие фазовых переходов вещества в мантии типа базальт - эклогит.

Перечисленные выше процессы реализуются в рамках законов, установленных на основании принципа наименьшего действия. В частности, в этой работе показано, что в пределах достаточно крупных секторов Земли местные изменения их радиусов должны обязательно сопровождаться вертикальным перераспределением плотности. Физическим законом, регулирующим перераспределение плотности в пределах секторов Земли, вырезанных телесными углами ??, является закон сохранения момента количества движения. В его интегральное выражение входит расстояние участвующих масс от центра планеты r в четвертой степени. Следовательно, наиболее существенным значением момента количества движения обладают массы геосфер, удаленных от центра больше, чем на 0,8 радиуса Земли. В частности, момент количества движения Земли почти наполовину определяется массами, сосредоточенными в интервале глубин от 0 до 800 км, соответствующем тектоносфере. [3]

2. Гидростатическое равновесие

Гидростатическое равновесие -- устанавливающееся в жидкости при отсутствии дополнительных внешних сил. В число учтенных сил включены капиллярные силы, действующие на свободной поверхности жидкости, и статическая подъемная сила, действующая на тела, погруженные в жидкость.

Приведем, для сравнения, особенности гравитационных полей планет и Луны. Возможно, это поможет нам разобраться в том, действует ли принцип минимизации энергии при самогравитации других планет и спутников.

Рассмотрим подробнее гравитационные поля Луны, Венеры, Марса и Меркурия. Эти объекты Солнечной системы, по нашей модели, находятся на различных этапах эволюции. Луна и Марс "выработали" доставшееся при образовании вещество внутреннего ядра. В пользу этого говорит то, что магнитное поле на них было, но генерация его уже прекратилась. Это означает, что на этих объектах закончился этап тектонической активности, связанной с функционированием фазового перехода "испарение-конденсация".

Несмотря на то, что Меркурий меньше Марса, на нем продолжается генерация дипольного магнитного поля и, как следует из нашей модели, фазовый переход еще продолжает "работать". Это означает, что на Меркурии могут происходить процессы релаксации вещества внутреннего ядра и, как их следствие, циклы сжатия и расширения. (По видимому, именно наличию сравнительно большого внутреннего ядра Меркурий "обязан" столь большой величиной средней плотности). Естественно, что и на Луне, и на Марсе внутреннего ядра уже нет, не могут происходить и эволюционные циклы. На Венере, несмотря на то, что там магнитное поле не обнаружено, внутреннее ядро должно было бы ещё сохраниться. (Хотя это вопрос дискуссионный). Если это так, то там, возможно, должны происходить циклы, аналогичные земным. Таким образом, на Луне и Марсе могут наблюдаться эффекты не компенсации гравитационных аномалий и большие ундуляции высот геоида.

На Меркурии и Венере, как и на Земле, должен работать механизм гидростатического выравнивания. [4]

3. Планеты земной группы

Среди многочисленных небесных светил, изучаемых современной астрономией, особое место занимают планеты. Ведь все мы хорошо знаем, что Земля, на которой мы живем, является планетой, так что планеты - тела, в основном подобные нашей Земле.

Но в мире планет мы не встретим даже двух, совершенно похожих друг на друга. Разнообразие физических условий на планетах очень велико. Расстояние планеты от Солнца (а значит, и количество солнечного тепла, и температура поверхности), её размеры, напряжение силы тяжести на поверхности, ориентировка оси вращения, определяющая смену времён года, наличие и состав атмосферы, внутреннее строение и многие другие свойства различны у всех девяти планет Солнечной системы.

Говоря о разнообразии условий на планетах, мы можем глубже познать законы их развития и выяснить их взаимосвязь между теми или иными свойствами планет. Так, например, от размеров, массы и температуры планеты зависит её способность удерживать атмосферу того или иного состава, а наличие атмосферы в свою очередь влияет на тепловой режим планеты.

Как показывает изучение условий, при которых возможно зарождение и дальнейшее развитие живой материи, только на планетах мы можем искать признаки существования органической жизни. Вот почему изучение планет, помимо общего интереса, имеет большое значение с точки зрения космической биологии. Изучение планет имеет большое значение, кроме астрономии, и для других областей науки, в первую очередь наук о Земле - геологии и геофизики, а также для космогонии-науки о происхождении и развитии небесных тел, в том числе и нашей Земли. К планетам земной группы относятся планеты: Меркурий, Венера, Земля и Марс.

Планеты земной группы (Меркурий, Венера, Земля, Марс) близки по размерам и химическому составу. Средняя плотность их вещества от 5,52 до 3,97 г/см3. Характерная черта всех планет земной группы - наличие твердой литосферы. Рельеф их поверхности сформировался в результате действия внешних (удары тел, падающих на планеты с огромными скоростями) и внутренних (тектонические движения и вулканические явления) факторов. Также у всех планет земной группы кроме Меркурия имеется атмосфера. Отличительной особенностью Земли от других планет земной группы является наличие атмосферы.

Атмосферы Марса и Венеры весьма близки по своему составу между собой, но в то же время значительно отличаются от земной. Для объяснения причин такого различия приходится обратиться к рассмотрению эволюционных изменений, происходящих на протяжении длительных промежутков лет. Считается, что атмосфера Марса и Венеры в основном сохранили тот состав, который когда-то имела Земля. За миллионы лет земная атмосфера в значительной степени уменьшила содержание углекислого газа и обогатилась кислородом за счет растворения углекислого газа в водах Мирового океана, который, по-видимому, никогда не замерзал, и за счет выделения кислорода появившейся на Земле растительностью. На Венере и Марсе эти процессы не могли происходить по простым причинам - отсутствие гидросферы и растительности. Современные исследования круговорота углекислого газа на нашей планете показывают, что только наличие гидросферы способно обеспечить сохранение температурного режима в пределах, необходимых для существования живых организмов.

Меркурий - планета, среднее расстояние от Солнца 0,387 астрономических единиц (58 млн. км), период обращения 88 суток, период вращения 58,6 суток, средний диаметр 4878 км, масса 3,3·1023 кг, в состав крайне разряженной атмосферы входят: Ar, Ne, He. Поверхность Меркурия по внешнему виду подобна лунной.

Венера - планета, среднее расстояние от Солнца 0,72 астрономических единиц, период обращения 224,7 суток, вращения 243 суток, средний радиус 6050 км, масса 4,9·1024 кг. Атмосфера: CO2 (97%), N2 (около 3%), H2O (0,05%), примеси CO, SO2, HCl. Температура у поверхности около 750 К, давление около 107 Па. На поверхности Венеры обнаружены горы, кратеры, камни. Поверхностные породы Венеры близки по составу к земным осадочным породам.

Земля - третья от Солнца большая планета Солнечной системы. Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям, стала местом, где возникла и получила развитие органическая жизнь.

Марс - планета, среднее расстояние от Солнца 228 млн. км, период обращения 687 суток, период вращения 24,5 ч, средний диаметр 6780 км, масса 6,4·1023 кг; 2 естественных спутника: Фобос и Деймос. Состав атмосферы: СО2 (95%), N2 (2,5%), Ar(1,5-2%), СО(0,06%), Н2О (до 0,1%); давление на поверхности 5 - 7 гПа. Участки поверхности Марса, покрытые кратерами, похожи на лунный материк. Значительный научный материал о Марсе получен с помощью космических аппаратов «Маринер», «Марс», «Спирит», «Оппортьюнити». [5]

3.1 Меркурий

3.1.1 Общие сведения

Меркурий - самая близкая к Солнцу планета солнечной системы. Среднее расстояние от Меркурия до Солнца всего лишь 58 млн. км. Среди больших планет имеет наименьшие размеры: ее диаметр 4865 км (0,38 диаметра Земли), масса 3,304·1023 кг (0,055 массы Земли или 1:6025000 массы Солнца); средняя плотность 5,52 г/см3. Меркурий - яркое светило, но увидеть его на небе не так просто. Дело в том, что, находясь вблизи Солнца, Меркурий всегда виден для нас недалеко от солнечного диска, отход от него то влево (к востоку), то вправо (к западу) только на небольшое расстояние, которое не превосходит 280. Поэтому его можно увидеть только в те дни года, когда он отходит от Солнца на самое большое расстояние. Пусть, например, Меркурий отодвинулся от Солнца влево. Солнце и все светила в своем суточном движении плывут по небу слева направо. Поэтому сначала заходит Солнце, а через час с небольшим заходит Меркурий, и надо искать эту планету низко над Западным горизонтом. [6]

3.1.2 Особенности движения

Меркурий движется вокруг Солнца по сильно вытянутой эллиптической орбите, плоскость которой наклонена к плоскости эклиптики под углом 7°00'15. Расстояние Меркурия от Солнца меняется от 46,08 млн. км до 68,86 млн. км. Период обращения вокруг Солнца (меркурианский год) составляет 87,97 земных суток, а средний интервал между одинаковыми фазами (синодический период) 115,9 земных суток. Продолжительность солнечных суток на Меркурии равна 176 земным суткам. Расстояние Меркурия от Земли меняется от 82 до 217 млн. км. Максимальный угловой размер планеты при наблюдении с Земли составляет 13, минимальный - 5. Средняя скорость движения Меркурия по орбите вокруг Солнца - 47,89 км/с.

Период обращения Меркурия вокруг своей оси равен 58,6461 ± 0,0005 суток, что составляет 2/3 от периода обращения вокруг Солнца. Это обстоятельство является результатом действия приливного трения и крутящего момента гравитационных сил со стороны Солнца, обусловленного тем, что на Меркурии распределение масс не является строго концентрическим (центр масс смещен по отношению к геометрическому центру планеты). Обращение Меркурия вокруг Солнца и его собственное вращение приводят к тому, что длительность солнечных суток на планете равна трем звездным меркурианским суткам или двум меркурианским годам и составляет около 175,92 земных суток.

Ось вращения Меркурия наклонена к плоскости его орбиты не более чем на 3°, благодаря чему заметных сезонных изменений на этой планете не должно существовать. Для наблюдений с Земли Меркурий - трудный объект, так как он видимым образом никогда не удаляется от Солнца больше чем на 28°, вследствие чего его приходится наблюдать всегда на фоне вечерней или утренней зари низко над горизонтом. Кроме того, в эту пору фаза планеты (то есть угол при планете между направлениями на Солнце и на Землю) близка к 90°, и наблюдатель видит освещенной лишь половину ее диска. [6]

3.1.3 Размеры, форма и масса

По форме Меркурий близок к шару с экваториальным радиусом 2440 ± 2 км, что примерно в 2,6 раза меньше, чем у Земли. Разность полуосей экваториального эллипса планеты составляет около 1 км; экваториальное и полярное сжатия незначительны. Отклонения геометрического центра планеты (шара) от центра масс - порядка полутора километров. Площадь поверхности Меркурия в 6,8 раз, а объем - в 17,8 раз меньше, чем у Земли.

Масса Меркурия равна 3,31·1023 кг, что примерно в 18 раз меньше массы Земли. Средняя плотность близка к земной и составляет 5,44 г/см3. Ускорение свободного падения вблизи поверхности 3,7 м/с2. [6]

3.1.4 Температура и рельеф поверхности

Как ближайшая к Солнцу планета, Меркурий получает от центрального светила значительно большую энергию, чем, например, Земля (в среднем в 10 раз). Из-за вытянутости орбиты поток энергии от Солнца варьируется примерно в два раза. Большая продолжительность дня и ночи приводит к тому, что яркостные температуры (измеряемые по инфракрасному излучению в соответствии с законом теплового излучения Планка) на «дневной» и на «ночной» сторонах поверхности Меркурия при среднем расстоянии от Солнца могут изменяться примерно от 600 К до 100 К. Но уже на глубине нескольких десятков сантиметров значительных колебаний температуры нет, что является следствием весьма низкой теплопроводности пород.

Поверхность Меркурия, покрытая раздробленным веществом базальтового типа, довольно темная. Судя по наблюдениям с Земли и фотографиям с космических аппаратов, она в целом похожа на поверхность Луны, хотя контраст между темными и светлыми участками выражен слабее. Наряду с кратерами (как правило, менее глубокими, чем на Луне) есть холмы и долины.

С пролетной траектории космического аппарата “Маринер-10” в 1974 г. было сфотографировано свыше 40% поверхности Меркурия с разрешением от 4 мм до 100 м, что позволило увидеть Меркурий примерно так же, как Луну в темноте с Земли. Обилие кратеров - наиболее очевидная черта его поверхности, которую по первому впечатлению можно уподобить Луне.
Действительно, морфология кратеров близка к лунной, их ударное происхождение не вызывает сомнений: у большинства виден очерченный вал следы выбросов раздробленного при ударе материала с образованием в ряде случаев характерных ярких лучей и поле вторичных кратеров. У многих кратеров различима центральная горка и террасная структура внутреннего склона. Интересно, что такими особенностями обладают не только практически все крупные кратеры диаметром свыше 40 - 70 км, но и значительно большее число кратеров меньших размеров, в пределах 5 - 70 км (конечно, речь здесь идет о хорошо сохранившихся кратерах). Эти особенности можно отвести как на счет большей кинетической энергии тел, выпадавших на поверхность, так и на счет самого материала поверхности.
Степень эрозии и сглаживание кратеров различна. В целом меркурианские кратеры по сравнению с лунными менее глубокие, что также можно объяснить большей кинетической энергией метеоритов из-за большего, чем на Луне ускорения силы тяжести на Меркурии. Поэтому образующий при ударе кратер эффективнее заполняется выбрасываемым материалом. По этой же причине вторичные кратеры расположены ближе к центральному, чем на Луне, и отложения раздробленного материала в меньшей степени маскируют первичные формы рельефа. Сами вторичные кратеры глубже лунных, что опять же объясняется тем, что выпадающие на поверхность осколки испытывают большее ускорение силы тяжести.

Так же, как и на Луне, можно в зависимости от рельефа выделить преобладающие неровные “материковые” и значительно более гладкие “морские” районы. Последние преимущественно представляют собой котловины, которых, однако, существенно меньше, чем на Луне, их размеры обычно не превышают 400 - 600 км. К тому же, некоторые котловины слабо различимы на фоне окружающего рельефа. Исключение составляет упоминавшаяся обширная котловина Канорис (Море Жары) протяженностью около 1300 км, напоминающая известное Море Дождей на Луне.

В преобладающей материковой части поверхности Меркурия можно выделить как сильно кратеризированные районы, с наибольшей степенью деградации кратеров, так и занимающие обширные территории старые межкратерные плоскогорья, свидетельствующие о широко развитом древнем вулканизме. Это наиболее древние сохранившиеся формы рельефа планеты. Выровненные поверхности котловин, очевидно, покрыты наиболее толстым слоем раздробленных пород - реголита. Наряду с небольшим числом кратеров здесь встречаются складчатые гребки, напоминающие лунные. Некоторые из примыкающих к котловинам равнинных участков, вероятно, образовались при отложений выброшенного из них материала. Вместе с тем для большинства равнин найдены вполне определенные свидетельства их вулканического происхождения, однако это вулканизм более позднего времени, чем на межкратерных плоскогорьях. Внимательное изучение обнаруживает еще одну интереснейшую особенность, проливающую свет на историю формирования планеты. Речь идет о характерных следах тектонической активности в глобальном масштабе в виде специфических крутых уступов, или откосов-эскарпов. Эскарпы имеют протяженность от 20 500 км и высоту склонов от нескольких сотен метров до 1 - 2 км. По своей морфологии и геометрии расположения на поверхности они отличаются от обычны тектонических разрывов и сбросов, наблюдаемых на Луне и Марсе, и скорее образовались за счет надвигов, наслоений вследствие напряжения в поверхностном слое, возникших при сжатии Меркурия. Об этом свидетельствует горизонтальное смещение валов некоторых кратеров.
Некоторые из эскарпов подверглись ударной бомбардировке и частично разрушены. Это означает, что они образовались раньше, чем кратеры на их поверхности. По сужению эрозии этих кратеров можно прийти к заключению, что сжатие коры происходило в период образования “морей” около 4 млрд. лет назад. Наиболее вероятной причиной сжатия нужно, видимо, считать начало остывания Меркурия. Согласно другому интересному предположению, выдвинутому рядом специалистов, альтернативным механизмом мощной тектонической активности планеты в этот период могло быть приливное замедление вращения планеты примерно в 175 раз: от первоначально предполагаемого значения около 8 часов до 58,6 суток. [6]

3.1.5 Атмосфера и физические поля

Над поверхностью Меркурия имеются следы весьма разреженной атмосферы, содержащей, кроме гелия, также водород, углекислый газ, углерод, кислород и благородные газы (аргон, неон). Близость Солнца обусловливает ощутимое влияние на Меркурий солнечного ветра. Благодаря этой близости значительно и приливное воздействие Солнца на Меркурий, что должно приводить к возникновению над поверхностью планеты электрического поля, напряженность которого может быть примерно вдвое больше, чем у «поля ясной погоды» над поверхностью Земли, и отличается от последнего сравнительной стабильностью.

На Меркурии имеется и магнитное поле. Магнитный дипольный момент Меркурия равен 4,9·1022 Гс·см3, что примерно на четыре порядка меньше, чем у Земли; однако, поскольку напряженности поля обратно пропорциональны кубу радиуса планет, то на Меркурии и на Земле они близкие по порядку величины. [6]

3.1.6 Модель внутреннего строения

Предложено несколько моделей внутреннего строения Меркурия. Согласно наиболее распространенному (хотя и предварительному) мнению планета состоит из горячего, постепенно остывающего железоникелевого ядра и силикатной оболочки, на границе между которыми температура может приближаться к 103 К. На долю ядра приходится больше половины массы планеты. [6]

3.2 Венера

Венера - вторая по близости к Солнцу планета, почти такого же размера, как Земля, а её масса более 80 % земной массы. По этим причинам Венеру иногда называют близнецом или сестрой Земли. Однако поверхность и атмосфера этих двух планет совершенно различны. На Земле есть реки, озера, океаны и атмосфера, которой мы дышим. Венера - обжигающе горячая планета с плотной атмосферой, которая была бы губительной для человека. Среднее расстояние от Венеры до Солнца 108,2 млн. км; оно практически постоянно, поскольку орбита Венеры ближе к окружности, чем наша планета. Венера получает от Солнца в два с лишним раза больше света и тепла, чем Земля. Тем не менее, с теневой стороны на Венере господствует мороз более 200 ниже нуля, так как сюда не попадают солнечные лучи в течение очень долгого времени. Планета имеет очень плотную, глубокую и очень облачную атмосферу, не позволяющую нам увидеть поверхность планеты. Атмосферу (газовую оболочку) открыл М. В. Ломоносов в 1761 году, что так же показало сходство Венеры с Землёй. Спутников планета не имеет. [6]

3.2.1 Особенности движения

Венера движется вокруг Солнца по орбите, располагающейся между орбитами Меркурия и Земли, с сидерическим периодом, равным 224,7 земных суток. Орбита Венеры близка к круговой - она имеет самый малый эксцентриситет (0,0068) среди планет Солнечной системы. Среднее расстояние от Венеры до Солнца равно 108,21 млн. км, что составляет 0,72333 астрономических единиц. Средняя скорость движения по орбите 34,99 км/с. Орбита наклонена к плоскости эклиптики под углом 35°23'39''.

Венера - единственная планета Солнечной системы, собственное вращение которой противоположно направлению ее обращения вокруг Солнца. Период собственного вращения близок к 243 земным суткам, что соответствует угловой скорости вращения 2,99·10-7 рад/с (у Земли 7,292·10-5 рад/с). Из-за «обратного» направления вращения Венеры длительность солнечных суток на ней в 116,8 раз больше, чем на Земле, так что за один венерианский год восход и заход Солнца на Венере происходит всего дважды.

Расстояние от Венеры до Земли изменяется от 38 млн. км до 258 млн. км. Наклон плоскости экватора Венеры к плоскости ее орбиты не превышает 3°, из-за чего сезонные изменения на ней незначительны.

Для земного наблюдателя угловое расстояние Венеры от Солнца не превышает 48°, вследствие чего она видна только в течение некоторого времени после захода Солнца (вечерняя звезда) или незадолго до его восхода (утренняя звезда). Венера - наиболее яркое (после Солнца и Луны) светило земного неба. В максимуме блеска она достигает -4,4 звездной величины. [6]

3.2.2 Самая «таинственная» планета

Венеру иногда называют одной из самых таинственных планет Солнечной системы: плотный облачный покров окутывает ее поверхность. Атмосфера на Венере была открыта М. В. Ломоносовым. Наблюдая 6 июня 1761 прохождение Венеры по диску Солнца (событие довольно редкое, происходящее примерно дважды в столетие), он заметил, что в начале прохождения, когда Венера только небольшой частью нашла на солнечный диск, возникло «тонкое как волос сияние», окружившее часть диска планеты, еще не вступившей на солнечный диск. Подобным же образом, при схождении Венеры с диска, «появился на краю Солнца пупырь, который тем явственнее учинялся, чем ближе Венера к выхождению приходила». Эти наблюдения послужили доказательством наличия атмосферы у Венеры. [6]

3.2.3 Форма и размеры. Рельеф поверхности

До тех пор пока для исследований Венеры использовались только оптические телескопы, удавалось измерить лишь верхнюю границу радиуса плотного облачного покрова, закрывающего поверхность Венеры. Появление радиоинтерференционных методов позволило (поскольку облака прозрачны для электромагнитных волн радиодиапазона) перейти к исследованию ее твердой поверхности. Еще более точные данные были получены, когда Венера оказалась в пределах досягаемости космических аппаратов (советских, серий «Венера», и американских, серий «Маринер» и «Пионер-Венера»). Наиболее точное значение среднего радиуса твердой поверхности, найденное к настоящему времени при помощи радиовысотометрических и траекторных измерений, составляет 6051,5 ± 0,1 км. Радиус верхней границы облаков - около 6120 км.

Фигура планеты близка к сферической. Более точно она может быть представлена трехосным эллипсоидом, у которого полярное сжатие на два порядка меньше, чем у Земли. В экваториальной плоскости полуоси эллипсоида равны 6052,02 ± 0,1 км и 6050,99 ± 0,14 км; полярная полуось равна 6051, 54 ± 0,1 км.

Центр масс планеты смещен по отношению к ее геометрическому центру на 430 ± 120 м. Объем твердой части Венеры составляет 0,859 объема Земли. Ускорение свободного падения вблизи твердой поверхности на экваторе Венеры достигает 8,6 м/с2.

Поверхность Венеры преимущественно (на 90%) равнинная, хотя обнаружены три возвышенных области. Одна из них представляет собой огромное вулканическое плато, сравнимое по размерам с Австралией. Высочайшая вершина - гора Максвелл - вздымается здесь на высоту 12 км. Перепад высот вдоль экватора примерно 5 км. Низшая точка на поверхности находится на глубине 2,5 км от среднего уровня.

На поверхности Венеры обнаружены кратеры, разломы и другие признаки протекавших на ней интенсивных тектонических процессов. Отчетливо просматриваются и следы ударной бомбардировки. Поверхность покрыта камнями и плитами различных размеров; поверхностные породы близки по составу к земным осадочным породам.

Поверхность Венеры покрыта сотнями тысяч вулканов. Есть несколько очень больших: высотой 3 км и шириной 500 км. Но большая часть вулканов имеет 2 - 3 км в поперечнике и около 100 м в высоту. Излияние лавы на Венере происходит значительно дольше, чем на Земле. Венера слишком горяча для того, чтобы там были лед, дожди или бури, поэтому там не происходит существенных атмосферных воздействий (выветривания). А значит, вулканы и кратеры почти не изменились с тех пор, как они образовались миллионы лет назад.

Венера покрыта твердыми породами. Под ними циркулирует раскаленная лава, вызывающая напряжение тонкого поверхностного слоя. Лава постоянно извергается из отверстий и разрывов в твердых породах. Кроме того, вулканы все время выбрасывают струи мелких капелек серной кислоты. В некоторых местах густая лава, постепенно сочась, скапливается в виде огромных луж шириной до 25 км. В других местах громадные пузыри лавы образуют на поверхности купола, которые затем опадают.
На поверхности Венеры обнаружена порода, богатая калием, ураном и торием, что в земных условиях соответствует составу не первичных вулканических пород, а вторичных, прошедших экзогенную переработку. В других местах на поверхности залегает крупно щебёнчатый и глыбовый материал темных пород с плотностью 2,7 - 2,9 г/см и другие элементы, характерные для базальтов. Таким образом, поверхностные породы Венеры оказались такими же, как на Луне, Меркурии и Марсе, излившимися магматическими породами основного состава.

О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения. Венера отнюдь не гостеприимный мир, как это когда - то предполагалось. Со своей атмосферой из углекислого газа, облаков из серной кислоты и страшной жарой она совершенно не пригодна для человека. Под тяжестью этой информации рухнули некоторые надежды: ведь менее чем 20 лет назад многие учёные считали Венеру более обещающим объектом для космических исследований , чем Марс. [6]

3.2.4 Некоторые физические и химические параметры

Масса Венеры, наиболее точное значение которой получается из анализа траекторий искусственных спутников, равна 0,8136 от массы Земли, или 4,86·1024 кг. Средняя плотность составляет 0,951 от средней плотности Земли (~ 5,5 г/см3).

Масса атмосферы Венеры примерно в 100 раз превышает массу атмосферы Земли. Преобладающую долю атмосферы составляет углекислый газ (~ 97%); азота - около 3%; водяного пара - менее десятой доли процента, кислорода - тысячные доли процента. В очень малых количествах имеются также примеси SO2, H2S, CO, HCl. Облака Венеры состоят в основном из 75 - 80-процентной серной кислоты. Концентрация водяного пара увеличивается с высотой, достигая максимума на высоте около 50 км, где она в сто раз выше, чем у твердой поверхности, то есть доля пара на этой высоте приближается к одному проценту. Установлено, что легкого изотопа аргона на Венере на два порядка больше, чем на Земле.

Температура на поверхности Венеры (на уровне среднего радиуса планеты) - около 750 К, причем ее суточные колебания незначительны. Давление - около 100 атмосфер, плотность газа почти на два порядка выше, чем в атмосфере Земли. Установление этих фактов явилось разочарованием для многих исследователей, полагавших, что на этой, так похожей на нашу, планете условия близки к тем, что были на Земле в каменноугольный период, а, следовательно, там и похожая фауна. Первые определения температуры, казалось, могли оправдать такие надежды, но уточнения (в частности, при помощи спускаемых аппаратов) показали, что благодаря парниковому эффекту возле поверхности Венеры исключено всякое существование жидкой воды.

Температура и давление сначала падают с увеличением высоты. Минимум температуры (150 - 170 К) определен на высоте 100 - 120 км. По мере дальнейшего подъема температура растет, достигая на высоте 12 тыс. км 600 - 800 К. Ветер, весьма слабый у поверхности планеты (не более 1 м/с), на высоте свыше 50 км усиливается до 150 м/с. Наблюдения с автоматических космических станций обнаружили в атмосфере грозы.

Магнитное поле Венеры незначительно - ее магнитный дипольный момент меньше, чем у Земли, по крайней мере, на пять порядков. Из-за относительной близости к Солнцу Венера испытывает значительные приливные воздействия, благодаря чему над ее поверхностью возникает электрическое поле, напряженность которого может вдвое превышать напряженность того «поля ясной погоды», наблюдаемого над поверхностью Земли. [6]

3.2.5 Внутреннее строение

На основании полученных данных предлагается несколько моделей внутреннего строения Венеры. Согласно одной из них, наиболее реалистичной, на Венере имеется три оболочки. Первая из них - кора - имеет толщину примерно 16 км. Далее - мантия, силикатная оболочка, простирающаяся на глубину порядка 3300 км до границы с железным ядром, масса которого составляет около четверти всей массы планеты. [6]

3.2.6 Атмосфера

Загадочная атмосфера Венеры была центральным пунктом программы исследований при помощи автоматических аппаратов за последние два десятилетия. Важнейшими аспектами ее исследований были химический состав, вертикальная структура и динамика воздушной среды. Большое внимание отводилось облачному покрову, играющему роль непреодолимого барьера для проникновения вглубь атмосферы электромагнитных волн оптического диапазона. При телевизионной съемке Венеры удавалось получить изображение только облачного покрова. Непонятными были необычайная сухость воздушной среды и ее феноменальный парниковый эффект, за счет которого фактическая температура поверхности и нижний слоев тропосферы оказалась более чем на 500 выше эффективной (равновесной).

Атмосфера Венеры крайне жаркая и сухая, благодаря парниковому эффекту. Она представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии. Давление у поверхности 90 бар (как в земных морях на глубине 900 м). Космические корабли приходится конструировать так, чтобы они выдерживали сокрушительную, раздавливающую силу атмосферы. Атмосфера Венеры состоит в основном из углекислого газа (CO2) - 97%, который способен действовать как своего рода покрывало, задерживая солнечное тепло, а также небольшого количества азота (N2) - 2,0%, паров воды (H2O) - 0,05% и кислорода (О) - 0,1%. В виде малых примесей обнаружены соляная кислота (HCl) и плавиковая кислота (HF). Общее количество углекислого газа на Венере и Земле приблизительно одинаковое. Только на Земле он связан в осадочных породах и отчасти поглощен водными массами океанов, на Венере же весь он сконцентрирован в атмосфере. Днем поверхность планеты освещена рассеянным солнечным светом примерно с такой интенсивностью, как в пасмурный день на Земле. Ночью на Венере замечено много молний.

Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты (H2SO4). Верхний слой облаков удален от поверхности на 90 км, температура там около 200 К; нижний слой - на 30 км, температура около 430 К. Еще ниже так жарко, что облаков нет. Разумеется, на поверхности Венеры нет жидкой воды. Атмосфера Венеры на уровне верхнего облачного слоя вращается в том же направлении, что и поверхность планеты, но значительно быстрее, совершая оборот за 4 суток; это явление называют супер ротацией, и объяснения ему пока не найдено. [6]

3.3 Земля

Земля - третья от Солнца планета Солнечной системы. По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. Средний радиус Земли 6371,032 км, полярный - 6356,777 км, экваториальный - 6378,160 км. Масса - 5,976·1024 кг. Средняя плотность Земли 5518 кг/м3. Площадь поверхности Земли 510,2 млн. км2, из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Марианская впадина в Тихом океане) равна 11,022 км; объем воды 1370 млн. км3, средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м; наибольшая высота (вершина Джомолунгма в Гималаях) 8848 м. Горы занимают свыше 1/3 поверхности суши. Пустыни покрывают около 20% поверхности суши, саванны и редколесья - около 20%, леса - около 30%, ледники - свыше 10%. Свыше 10% суши занято под сельскохозяйственными угодьями.
У Земли имеется единственный спутник - Луна.

Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям, Земля стала местом, где возникла и получила развитие органическая жизнь. По современным космогоническим представлениям планета образовалась примерно 4,6 - 4,7 млрд. лет назад из захваченного притяжением Солнца протопланетного облака. На образование первых, наиболее древних из изученных горных пород потребовалось 100 - 200 млн. лет. Примерно 3,5 млрд. лет назад возникли условия, благоприятные для возникновения жизни. Homo sapiens (Человек разумный) как вид появился примерно полмиллиона лет назад, а формирование современного типа человека относят ко времени отступления первого ледника, то есть около 40 тыс. лет назад. [7]

3.3.1 Движение

Подобно другим планетам она движется вокруг Солнца по эллиптической орбите, эксцентриситет которой 0,017. Расстояние от Земли до Солнца в разных точках орбиты неодинаковое. Среднее же расстояние около 149,6 млн. км. В процессе движения нашей планеты вокруг Солнца плоскость земного экватора перемещается параллельно самой себе таким образом, что в одних участках орбиты земной шар наклонен к Солнцу своим северным полушарием, а в других - южным. Период обращения вокруг Солнца составляет 365,256 дней, при суточном вращении - 23 ч. 56 мин. Ось вращения Земли расположена под углом в 66.5є к плоскости её движения вокруг Солнца. [8]

3.3.2 Атмосфера

Атмосфера Земли состоит на 78% из азота и на 21% из кислорода (других газов в атмосфере очень мало); это результат длительной эволюции под влиянием геологических, химических и биологических процессов. Возможно, первичная атмосфера Земли была богата водородом, который затем улетучился. Дегазация недр наполнила атмосферу углекислым газом и водяным паром. Но пар сконденсировался в океанах, а двуокись углерода оказалась связанной в карбонатных породах. Таким образом, в атмосфере остался азот, а кислород появился постепенно в результате жизнедеятельности биосферы. Еще 600 млн. лет назад содержание кислорода в воздухе было раз в 100 ниже нынешнего. Наша планета окружена обширной атмосферой. В соответствии с температурой составом и физическими свойствами атмосферы можно разделить на разные слои. Тропосфера - это область, лежащая между поверхностью Земли и высотой в 11 км. Это довольно толстый и густой слой, содержащий большую часть водяных паров, находящихся в воздухе. В ней имеют место почти все атмосферные явления, которые непосредственно интересуют жителей Земли. В тропосфере находятся облака, атмосферные осадки и т. д. Слой отделяющий тропосферу от следующего атмосферного слоя - стратосферы, называется тропопауза. Это область весьма низких температур.
Состав стратосферы такой же, как и тропосферы, но в ней возникает и концентрируется озон. Ионосфера, то есть ионизированный слой воздуха, образуется как в тропосфере, так и в более низких слоях. Она отражает высокочастотные радиоволны. Атмосферное давление на уровне поверхности океана составляет при нормальных условиях приблизительно 0,1 МПа. Полагают, что земная атмосфера сильно изменилась в процессе эволюции: обогатилась кислородом и приобрела современный состав в результате длительного взаимодействия с горными породами и при участии биосферы, т. е. растительных и животных организмов. Доказательством того, что такие изменения действительно произошли, служат, например, залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах, они содержат громадное количество углерода, который раньше входил в состав земной атмосферы в виде углекислого газа и окиси углерода. Ученые считают, что древняя атмосфера произошла из газообразных продуктов вулканических извержений; о ее составе судят по химическому анализу образцов газа, "замурованных" в полостях древних горных пород. В исследованных образцах, возраст которых приблизительно 3,5 млрд. лет содержится приблизительно 60% углекислого газа, а остальные 40% - соединения серы, аммиак, хлористый и фтористый водород. В небольшом количестве найдены азот и инертные газы. Весь кислород был химически связанным. Для биологических процессов на Земле огромное значение имеет озоносфера - слой озона, находящийся на высоте от 12 до 50 км. Область выше 50 - 80 км называют ионосферой. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения. Если бы не озоновый слой, потоки излучения доходили бы до поверхности Земли, производя разрушения в имеющихся там живых организмах. Наконец, на расстояниях более 1000 км газ настолько разрежен, что столкновения между молекулами перестают играть существенную роль, а атомы ионизированы более чем наполовину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиационные пояса. [8]

...

Подобные документы

  • Орбитальные, физические, географические характеристики Земли - третьей от Солнца планеты Солнечной системы, крупнейшей по диаметру, массе и плотности среди планет земной группы. Состав атмосферы. Особенности формы, которая близка к сплюснутому эллипсоиду.

    презентация [1,5 M], добавлен 22.10.2011

  • Ознакомление с строением Солнечной системы. Анализ научных данных и сведений по планетам земной группы. Рассмотрение особенностей Меркурия, Венеры, Земли и Марса. Изучение размеров, массы, температуры, периодов обращения вокруг оси и вокруг Солнца.

    реферат [26,8 K], добавлен 28.01.2015

  • Строение, состав, происхождение Солнечной системы, расположение и физические характеристики больших планет, разделение планет на группы по характеристикам массы, давления, вращения и плотности. Строение и эволюция Вселенной; Галактика, Солнце и звезды.

    реферат [1016,1 K], добавлен 14.08.2010

  • Происхождение небесных тел и определение их возраста. Общие сведения о Солнечной системе и ее планетах. Особенности планет земной группы. Планеты, их спутники и пояс астероидов. Основные источники энергии в недрах планет. Характеристика планет-гигантов.

    курсовая работа [75,3 K], добавлен 24.09.2011

  • Физическая природа планет-гигантов, их основные физические характеристики, история открытия и изучения. Особенности планет Юпитер, Сатурн, Уран и Нептун, планеты-астероида Плутон - размеры и масса, температура, удаленность от Солнца, период обращения.

    лекция [10,6 K], добавлен 05.10.2009

  • Планеты Земной группы: Земля и сходные с ней Меркурий, Венера и Марс. Венера - самая горячая планета группы. Планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. Блеск Юпитера, кольца Сатурна. Основные характеристики планеты Уран. Нептун и его спутники.

    презентация [2,1 M], добавлен 08.04.2011

  • Место планеты Земля в космическом пространстве, ее связь с другими космическими телами. Форма, размеры и масса планеты, особенности гравитационного и магнитного поля Земли. Оболочки Земли: атмосфера, стратосфера, термосфера, гидросфера, литосфера.

    реферат [22,6 K], добавлен 20.05.2010

  • Венера как землеподобная планета, происхождение её имени. Современная модель внутреннего строения Венеры, состав её атмосферы и слабость магнитного поля. Основные различия Земли и Венеры (чего не хватает Венере, чтобы стать второй обитаемой "Землей"?).

    презентация [709,0 K], добавлен 29.11.2016

  • Атмосфера Земли. Диаметр и площадь поверхности Луны. Законы Кеплера. Исследование движения планет относительно Солнца. Размеры планетарных орбит. Определение расстояния до звезд методом горизонтального параллакса. Световой год. Планеты Солнечной системы.

    презентация [3,2 M], добавлен 10.05.2016

  • Построение графика распределения официально известных планет. Определение точных расстояний до Плутона и заплутоновых планет. Формула вычисления скорости усадки Солнца. Зарождение планет Солнечной системы: Земли, Марса, Венеры, Меркурия и Вулкана.

    статья [1,5 M], добавлен 23.03.2014

  • Общие сведения о Солнечной системе как планетарной системе, имеющей центральную звезду и естественные космические объекты, вращающиеся вокруг неё. Характеристика планет земной группы: Меркурий, Венера, Земля, Марс и планет: Юпитер, Сатурн, Уран, Нептун.

    презентация [802,4 K], добавлен 21.04.2011

  • Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

    презентация [1,4 M], добавлен 15.06.2010

  • Образование первичного Солнца. Теории Ньютона и Канта о строении Вселенной. Происхождение и строение планет Солнечной системы, ее закономерности и тайны. Открытие лептонной структуры вещества высоких энергий внутри элементных частиц и атомных ядер.

    реферат [25,0 K], добавлен 12.04.2009

  • Физические и орбитальные характеристики, атмосфера, физические поля и история открытия Меркурия, особенности движения вокруг Солнца, сравнение с другими планетами системы. Исследования, посвященные наблюдениям за поверхностью планеты. Интересные факты.

    реферат [441,0 K], добавлен 29.04.2009

  • История образования атмосферы планеты. Баланс кислорода, состав атмосферы Земли. Слои атмосферы, тропосфера, облака, стратосфера, средняя атмосфера. Метеоры, метеориты и болиды. Термосфера, полярные сияния, озоносфера. Интересные факты об атмосфере.

    презентация [399,0 K], добавлен 23.07.2016

  • Восьмая планета от Солнца. Некоторые параметры планеты Нептун. Химический состав, физические условия, строение, атмосфера. Температура поверхностных областей. Спутники Нептуна, их размеры, характеристики, история открытий. Кольца Нептуна, магнитное поле.

    реферат [26,4 K], добавлен 03.04.2009

  • Образование Солнечной системы. Теории прошлого. Рождение Солнца. Происхождение планет. Открытие других планетных систем. Планеты и их спутники. Строение планет. Планета земля. Форма, размеры и движение Земли. Внутреннее строение.

    реферат [126,1 K], добавлен 06.10.2006

  • Форма, размеры и движение Земли. Поверхность Земли. Внутреннее строение Земли. Атмосфера Земли. Поля Земли. История исследований. Научный этап исследования Земли. Общие сведения о Земле. Движение полюсов. Затмение.

    реферат [991,6 K], добавлен 28.03.2007

  • Понятие и отличительные особенности планет-гигантов, характеристика каждой из них и оценка значения в Галактике: Юпитера, Сатурна, Урана и Нептуна. Физические характеристики данных планет: полярное сжатие, скорость вращения, объем, ускорение, площадь.

    реферат [28,7 K], добавлен 14.05.2014

  • Группы объектов Солнечной системы: Солнце, большие планеты, спутники планет и малые тела. Гравитационное влияние Солнца. История открытия трех больших планет. Определение параллаксов звезд Вильямом Гершелем и обнаружение туманной звезды или кометы.

    презентация [2,6 M], добавлен 09.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.