Микробиология

Основные этапы развития микробиологии и их характеристика. Роль отечественных ученых в развитии микробиологической науки. Предмет, задачи и разделы медицинской микробиологии. Систематика бактерий, ультраструктура и химический состав бактериальной клетки.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 07.02.2015
Размер файла 362,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

12. Споры, капсулы, жгутики, включения бактерий. Биологическая роль, методы выявления

Включения содержатся в цитоплазме некоторых бактерий в виде зерен, которые можно обнаружить при микроскопии. Большей частью это запас питательных веществ. Например, у дифтерийных палочек на концах видны зерна волютина, и это является важным признаком для определения этого вида бактерий. Вместе с тем это могут быть и скопления неорганических веществ, например, серы, и продукты бактериального метаболизма.

Пили (лат. pili - волоски) иначе реснички, фимбрии, бахромки, ворсинки - короткие нитевидные отростки на поверхности бактерий. Пили общего типа (common pili) в количестве нескольких сотен равномерно покрывают бактерию. Они осуществляют прикрепление (адгезию) бактерии к клетке хозяина и участвуют в питании. Половые пили (sex-пили) имеют внутри канал и образуются только клетками-донорами. Они обеспечивают конъюгацию у бактерий и переход ДНК из одной клетки в другую.

Споры образуют среди патогенных бактерий только палочки - бациллы и клостридии. Споры бактерий не являются способом размножения, поскольку из одной клетки формируется только одна спора. Биологическая роль спор - сохранение вида в неблагоприятных условиях внешней среды.

Превращение бактериальной клетки в спору происходит при попадании бактерии во внешнюю среду, чаще всего - в почву. Спора формируется внутри клетки, затем вегетативное тело лизируется. Образование споры происходит в течение суток. Споры чрезвычайно устойчивы и могут длительное время сохранять жизнеспособность: десятками лет остаются живыми в почве споры возбудителей сибирской язвы, столбняка, ботулизма. Они не погибают при 100°С, убить их можно только автоклавированием, сухим жаром при 160-170°С в течение 1-2 часов, или с помощью спороцидных химических веществ. При попадании в благоприятные условия (оптимальная температура, достаточная влажность, наличие питательных веществ) происходит прорастание спор в вегетативные формы. Прогревание спор при 100°С вызывает их тепловую активацию с последующим прорастанием. Это явление используется при стерилизации дробными методами.

Спорообразование - одно из свойств, характерное для определенных видов бактерий. Форма и расположение споры внутри клетки являются постоянным признаком вида и могут быть использованы для его идентификации. Форма спор бывает круглой или овальной. Расположение центральное - у бацилл сибирской язвы, субтерминальное (ближе к одному из концов) - у клостридий ботулизма и газовой анаэробной инфекции, терминальное (на конце) - у клостридий столбняка. Для окраски спор применяют способ Ожешки, основанный на их кислотоустойчивости.

Жгутики. Многие виды бактерий способны передвигаться благодаря наличию жгутиков. Из патогенных бактерий только среди палочек и извитых форм имеются подвижные виды. Жгутики представляют собой тонкие эластичные нити, длина которых у некоторых видов в несколько раз больше длины тела самой бактерии. Число и расположение жгутиков является характерным видовым признаком бактерий. Различают бактерии: монотрихи - с одним жгутиком на конце тела, лофотрихи - с пучком жгутиков на конце, амфитрихи, имеющие жгутики на обоих концах, и перитрихи, у которых жгутики расположены по всей поверхности тела. К монотрихам относится холерный вибрион, к перитрихам - сальмонеллы брюшного тифа.

Жгутики настолько тонки, что не видны в световом микроскопе. Их можно видеть в электронном микроскопе, а также при специальных способах окраски, когда толщину жгутика искусственно увеличивают: при помощи танина достигают набухания жгутикового белка, а затем обрабатывают азотнокислым серебром или красителем, который оседает на жгутиках, увеличивая их толщину. Можно косвенно судить о наличии жгутиков, наблюдая подвижность живых бактерий в препаратах "раздавленной" или "висячей" капли. Определение подвижности у бактерий является важным диагностическим признаком, и при повседневной практической работе удобно применять метод посева. В столбик полужидкого питательного агара уколом производится посев бактерий. Неподвижные бактерии растут по ходу укола, а у подвижных наблюдается диффузный рост.

Капсула - наружный слизистый слой, который имеется у многих бактерий. У одних видов он настолько тонок, что обнаруживается только в электронном микроскопе - это микрокапсула. У других видов бактерий капсула хорошо выражена и видна в обычном оптическом микроскопе - это макрокапсула. Капсула обычно состоит из полисахаридов, а у палочки сибирской язвы - из полипептидов

Одни бактерии образуют капсулу только в организме хозяина, например, пневмококки, палочка сибирской язвы, палочка чумы; другие постоянно сохраняют ее, - это капсульные бактерии, например, клебсиеллы. Капсула защищает бактерии от фагоцитоза и антител, поэтому в инфекционном процессе она играет роль одного из факторов патогенности, обеспечивающего антифагоцитарную активность возбудителя болезни. Наличие капсулы является дифференциальным признаком для определения вида таких микробов, как пневмококк, палочка сибирской язвы, клебсиеллы пневмонии, которые образуют макрокапсулу, видимую в световом микроскопе. Для обнаружения капсулы применяют способ окраски по Бурри-Гинсу: при этом на темном фоне туши видны окрашенные фуксином бактерии, окруженные бесцветной капсулой.

13. Морфология и ультраструктура актиномицетов. Патогенные представители. Актиномицеты - продуценты антибиотиков

Актиномицеты - лучистые грибы, относящиеся к роду Actinomyces.

Относятся к прокариотам, располагаются под растениями.

Морфология: клетки актиномицетов обычно имеют вид длинных и ветвящихся нитей, напоминающих в ряде случаев мицелий одноклеточных грибов, но встречаются палочковидные и кокковидные формы. Нити мицелия имеют длину 100-600 мкм и толщину 0,2-1,2 мкм.

Ультраструктура: клеточная стенка, цитоплазматическая мембрана, которая ограничивает цитоплазму, где содержится нуклеоид, рибосомы, внутриклеточные включения. Мезосомы актиномицетов являются производными цитоплазматической мембраны. В составе пептидогликана некоторых актиномицетов обнаружены арабиноза, галактоза и др., отсутствующие у бактерий сахара.

Актиномицеты размножаются спорами, поперечным делением, почкованием.

Патогенные представители актиномицетов вызывают у человека актиномикоз и нокардиоз. Это Actinomyces israelli, Nocardia asteroides и другие. Возбудители актиномикоза вне организма, на питательной среде представляют собой длинные ветвящиеся нити, местами распадающиеся на фрагменты. В организме человека патогенные актиномицеты образуют друзы - переплетающиеся нити в центре с отдельными отходящими в виде лучей нитями по периферии. Отсюда название: актиномицеты - лучистые грибы. Концы нитей, погруженные в ткань, утолщены, ослизнены и имеют иной химический состав, и, подобно капсуле бактерий, защищают микроб от фагоцитоза.

Актиномицеты - продуценты антибиотиков: многие актиномицеты, средой обитания которых являются почва, образуют антибиотики, широко применяющиеся в медицинской практике.

Актиномицеты грам +; выявляются простыми методами окраски, либо окраской по методу Грама.

Актиномицеты - одноклеточные микроорганизмы, относятся к прокариотам. Их клетки имеют такую же структуру, как бактерии: клеточную стенку, содержащую пептидогликан, цитоплазматическую мембрану; в цитоплазме расположены нуклеоид, рибосомы, мезосомы, внутриклеточные включения. Поэтому патогенные актиномицеты чувствительны к антибактериальным препаратам. В то же время они имеют сходную с грибами форму ветвящихся переплетающихся нитей, а некоторые актиномицеты, относящиеся к семейству стрентомицет, размножаются спорами. Другие семейства актиномицет размножаются путем фрагментации, то есть распада нитей на отдельные фрагменты.

Актиномицеты широко распространены в окружающей среде, особенно в почве, участвуют в круговороте веществ в природе. Среди актиномицетов есть продуценты антибиотиков, витаминов, гормонов. Большинство антибиотиков, применяемых в настоящее время, продуцируется актиномицетами. Это стрептомицин, тетрациклин и другие.

Патогенные представители актиномицетов вызывают у человека актиномикоз и нокардиоз. Это Actinomyces israelli, Nocardia asteroides и другие. Возбудители актиномикоза вне организма, на питательной среде представляют собой длинные ветвящиеся нити, местами распадающиеся на фрагменты. В организме человека патогенные актиномицеты образуют друзы - переплетающиеся нити в центре с отдельными отходящими в виде лучей нитями по периферии. Отсюда название: актиномицеты - лучистые грибы. Концы нитей, погруженные в ткань, утолщены, ослизнены и имеют иной химический состав, и, подобно капсуле бактерий, защищают микроб от фагоцитоза.

14. Спирохеты: классификация, морфология и физиология. Патогенные представители разных родов (названия по-латыни)

С. относятся к прокариотам, располагаются в классификации под животными.

Морфология: С. представляют собой тонкие спирально извитые нити, изогнутые вокруг центральной оси. Клетки С. представляют собой цитоплазматические цилиндры, отграниченные цитоплазматической мембраной (ЦМ) от тонкой и эластичной клеточной стенки. Между ЦМ и цитоплазматическим цилиндром расположены фибриллы, которые, как и жгутики бактерий, состоят из белка флагеллина. У трепонем и боррелий имеется два пучка фибрилл, прикрепленных к дисковидным образованиям - блефаропластам. Фибриллы обеспечивают разные типы движения С.: поступательное, вращательное и сгибательное.

Классификация: представители отдельных родов различаются по длине и толщине, числу и характеру завитков.

Род

Кол-во и характер завитков

Характер движения

Окраска поРомановскому - Гимзе

Borrellia

Treponema

Leptospira

3-10, крупные, неравномерные

8-12, мелкие, равномерные

Многочисленные первичные завитки, вторичные завитки в виде буквы S

Толчкообразное, сгибательно - поступательное

Плавное, сгибательно- поступательное

Очень активное, вращательно - поступательное

Сине - фиолетовая

Бледно - розовая

Розово - сиреневатая

Патогенные представители: Treponema pallidum - вызывает сифилис, Treponema pertenue - возбудитель фрамбезии, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

С. в отличие от других бактерий плохо воспринимают анилиновые красители. Выявляются в препаратах «раздавленной» или «висячей» капли в темнопольном или фазово - контрастном микроскопе, а также окраской по Романовскому - Гимзе смесью метиленового синего, эозина и азура: на мазок наносят рабочий раствор красителя (2 капли красителя на 1 мл дистиллированной воды) на 10-20 мин.; затем препарат промывают водой и высушивают на воздухе. Боррелии в отличие от трепонем и лептоспир хорошо окрашиваются анилиновыми красителями.

Спирохеты относятся к прокариотам. Имеют признаки, общие как с бактериями, так и с простейшими микроорганизмами. Это одноклеточные микробы, имеющие форму длинных тонких спирально изогнутых клеток, способны к активному движению. В неблагоприятных условиях некоторые из них могут переходить в форму цисты.

Исследования в электронном микроскопе позволили установить структуру клеток спирохет. Это цитоплазматические цилиндры, окруженные цитоплазматической мембраной и клеточной стенкой, содержащей пептидогликан. В цитоплазме находятся нуклеоид, рибосомы, мезосомы, включения. Под цитоплазматической мембраной расположены фибриллы, обеспечивающие разнообразное движение спирохет - поступательное, вращательное, сгибательное.

Сапрофитные спирохеты имеются в окружающей среде. Несколько непатогенных видов являются постоянными обитателями организма человека. Патогенные для человека виды относятся к трем родам: Treponema, Borrelia, Leptospira. Они различаются по форме и расположению завитков. Трепонемы состоят из 8-12 одинаковых по величине завитков, положение которых при движении не меняется. Боррелии образуют 5-8 завитков, меняющихся при движении подобно движению змейки. Лептоспиры состоят из 40-50 очень мелких постоянных завитков, концы изогнуты в виде крючков и имеют утолщения. При движении концы лептоспир изгибаются в разные стороны, причем образуются форму в виде русской буквы С или латинской S. Спирохеты за исключением боррелий, плохо воспринимают анилиновые красители, поэтому их окрашивают по Романовскому-Гимза. По лучше всего наблюдать спирохеты в живом виде в темном поле зрения.

Патогенные представители спирохет: Treponema pallidum - вызывает сифилис, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

15. Микроскопические грибы. Классификация, строение разных групп и патогенные представители

Грибы (Fungi, Mycetes) - эукариоты, низшие растения, лишенные хлорофилла, в связи с чем они не синтезируют органические соединения углерода, то есть это гетеротрофы, имеют дифференцированное ядро, покрыты оболочкой, содержащей хитин. В отличие от бактерий, грибы не имеют в составе оболочки пептидогликана, поэтому нечувствительны к пенициллинам. Для цитоплазмы грибов характерно присутствие большого количества разнообразных включений и вакуолей.

Среди микроскопических грибов (микромицетов) имеются одноклеточные и многоклеточные микроорганизмы, различающиеся между собой по морфологии и способам размножения. Для грибов характерно разнообразие способов размножения: деление, фрагментация, почкование, образование спор - бесполых и половых.

При микробиологических исследованиях наиболее часто сталкиваемся с плесенями, дрожжами и представителями сборной группы так называемых несовершенных грибов.

Плесени образуют типичный мицелий, стелющийся по питательному субстрату. От мицелия вверх поднимаются воздушные ветви, которые оканчиваются плодоносящими телами различной формы, несущими споры.

Мукоровые или головчатые плесени (Mucor) - одноклеточные грибы с шаровидным плодоносящим телом, наполненным эндоспорами.

Плесени рода Aspergillus - многоклеточные грибы с плодоносящим телом, при микроскопии напоминающим наконечник лейки, разбрызгивающей струйки воды; отсюда название "леечная плесень". Некоторые виды аспергилл используются в промышленности для производства лимонной кислоты и других веществ. Есть виды, вызывающие заболевания кожи и легких у человека - аспергиллезы. Плесени рода Penicillum, или кистевики - многоклеточные грибы с плодоносящим телом в виде кисточки. Из некоторых видов зеленой плесени был получен первый антибиотик - пенициллин. Среди пенициллов есть патогенные для человека виды, вызывающие пенициллиоз. Различные виды плесеней могут быть причиной порчи пищевых продуктов, медикаментов, биологических препаратов. Дрожжи - дрожжевые грибы (Saccharomycetes, Blastomycetes) имеют форму круглых или овальных клеток, во много раз крупнее бактерий. Средний размер дрожжевых клеток приблизительно равен поперечнику эритроцита (7-10 мкм). Отличительной морфологической особенностью дрожжей является отсутствие нитевидного мицелия и обычное размножение почкованием. На поверхности материнских клеток возникают отростки, которые, отделившись затем от материнской клетки, превращаются в самостоятельные новые особи. Кроме почкования, истинные дрожжи могут размножаться половым способом, образуя аски - половые споры. Большинство видов дрожжей непатогенны. Их способность вызывать брожение широко используется в промышленности - в хлебопечении, виноделии, в получении спиртов и витаминов. Существуют патогенные дрожжевые грибы, вызывающие заболевания, например, Blastomyces dermatitidis - возбудитель бластомикоза, Pneumocystis carinii - возбудитель пневмоцистоза легких.

Несовершенные грибы не имеют специальных органов плодоношения. К ним относятся дрожжеподобные грибы и дерматомицеты.

Дрожжеподобные грибы, подобно истинным дрожжам, представляют собой круглые или овальные клетки, размножающиеся почкованием. Но есть два существенных признака, по которым их отличают при проведении микробиологических исследований: дрожжеподобные грибы, в отличие от истинных дрожжей, образуют псевдомицелий и не образуют половых спор. Дрожжеподобные грибы рода Candida могут быть обнаружены на слизистых оболочках здоровых людей. У новорожденных и грудных детей, у ослабленных больных они вызывают кандидоз - поражение слизистых оболочек, кожи, внутренних органов. Это заболевание может возникнуть вследствие экзогенного заражения. Но чаще кандидоз развивается как эндогенная инфекция при длительном лечении антибиотиками широкого спектра действия, которые, будучи направлены против бактерий - возбудителей заболевания, попутно подавляют рост бактерий - представителей нормальной микрофлоры организма, что ведет к дисбактериозу. Будучи эукариотамй, грибы Кандида нечувствительны к антибактериальным антибиотикам. Освободившись от антагонистического влияния бактерий, они безудержно размножаются и вызывают кандидозы. Наиболее часто возбудителями кандидозов у человека являются виды Candida albicans, C.tropicalis и другие.

Дерматомицеты являются возбудителями заболеваний кожи (греч. derma - кожа), волос, ногтей. Это трихофитон - возбудитель трихофитии, эпидермофитон - возбудитель эпидермофитии, микроспорон - возбудитель микроспории, ахорион - возбудитель парши. В волосах, чешуйках кожи, соскобах ногтей отрезки мицелия дерматомицетов хорошо видны, так как сильно преломляют свет.

16. Морфология и физиология микоплазм. Виды, патогенные для человека

Микоплазмы относятся к прокариотам, размеры их 125-200 нм. Это наиболее мелкие из клеточных микробов, величина их близка к пределу разрешающей способности оптического микроскопа. У них отсутствует клеточная стенка, и в этом отношении они близки к L-формам бактерий. С отсутствием клеточной стенки связаны характерные особенности микоплазм. Они не имеют постоянной формы, поэтому встречаются сферические, овальные, нитевидные формы. Так как микоплазмы не образуют пептидогликана, они нечувствительны к пенициллинам и другим антибиотикам, избирательно подавляющим синтез этого вещества.

Микоплазмы широко распространены в природе. Их можно выделить из почвы, сточных вод, от животных и человека. Существуют и патогенные виды: Mycoplasma pneumoniae является возбудителем респираторных заболеваний. Условно-патогенные микоплазмы также играют роль в развитии заболеваний: M.hominis - заболеваний мочеполового тракта, M.arthritidis - ревматоидного артрита. Из рода уреаплазм патогенными являются Ureaplasma urealyticum, вызывающие заболевания мочеполовых органов.

17. Риккетсии: морфология и физиология. Патогенные представители

Риккетсии - прокариотные микробы, получили свое название в память американского микробиолога Говарда Тейлора Риккетса, погибшего в результате лабораторного заражения сыпным тифом. Риккетсии сходны с бактериями по клеточному строению и структуре, а с вирусами их сближает строгий внутриклеточный паразитизм. Они не могут размножаться вне живых клеток хозяина, так как не синтезируют дыхательные ферменты и поэтому неспособны к самостоятельному биологическому окислению. В отличие от вирусов, они содержат оба вида нуклеиновых кислот - ДНК и РНК - и осуществляют процесс биосинтеза белков.

Для риккетсий характерен плеоморфизм, то есть в зависимости от условий существования у них изменяется морфология. В благоприятных для размножения условиях это кокковидные формы (300-400 нм) или короткие палочки, в условиях, когда процесс роста происходит быстрее, чем размножение, преобладают длинные палочки и нитевидные формы.

Многие виды риккетсий вызывают заболевания человека, называемые риккетсиозами. Это Rickettsia prowazekii (риккетсий Провацека) - возбудитель эпидемического сыпного тифа и Coxiella burneti (коксиелла Бернета) -возбудитель Ку-лихорадки.

18. Морфология и химический состав вирусов. Отличие вирусов от других организмов. Методы культивирования вирусов. Культуры клеток и их характеристика

Первооткрывателем вирусов, основоположником вирусологии является русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ). Вирусы настолько отличаются от м.о., что выделены в особое царство - царство Vira.Вирус- мельчайшие микробы, не имеющие клеточного строения, белок синтезирующей системы, содержащие только один тип нуклеиновой кислоты (ДНК или РНК). В. являются облигатными внутриклеточными паразитами, размножаются в цитоплазме или в ядре клетки.

В. изучают с помощью электрон. микроскопа, т.к. их размеры малы и сравнимы с толщиной оболочки бактерий.

Формы в.:палочковидной формы (вирус табачной мозаики);пулевидной (вирус бешенства); сферический (в. Полиомиелита, ВИЧ); в виде сперматозоида (бактериофаги).

Самый мелкий в. - в. полиомиелита имеют вирион размером 17-25 им, самый крупный- в. натуральной оспы- 300-400 им.

Различают ДНК и РНК-содержащий вирус. Они гаплоидны, т.е. имеют один набор генов.

Особенности вирусов, отличающие их от всех других живых существ:1) наличие только одного типа нуклеиновой кислоты - ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза белков;2) отсутствие собственных белоксинтезирующих систем и клеточного строения;3) внутриклеточный паразитизм на молекулярном (генетическом) уровне;4) убиквитарность (распространенны повсеместно);5) имеют микроскопические размеры.

ВИРИОН-сформированная вирусная частица.

В центре вириона располагается его геном. Это нуклеиновая кислота - ДНК или РНК (однонитевая или двунитевая).

Вокруг нуклеиновой кислоты симметрично располагаются белковые молекулы - капсомеры, составляющие капсид (лат. capsa - коробка). Вирионы, содержащие только нуклеиновую кислоту и белок, составляют нуклеокапсид. Это простые вирусы, например, ВТМ, вирус полиомиелита.

У вирионов сложноорганизованных вирусов имеется еще поверхностная оболочка - суперкапсид, содержащий, кроме белков, также углеводы, липиды, компоненты клетки хозяина. Строение вириона лежит в основе классификации вирусов. По типу нуклеиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структуре вирионов, по месту размножения и по другим признакам проводится деление на семейства и роды.

Культура ткани - это клетки ткани, выращенные вне организма на специальной питательной среде. Клетки ткани в искусственных условиях сохраняют присущий им обмен веществ и восприимчивость к определенным вирусам. Наиболее пригодными для культивирования вирусов являются клетки с быстрым росток и высоким обменом веществ. По этой причине широко применяют эмбриональные ткани (фибробласты куриных эмбрионов, клетки амниона человека и др.), а также культуры тканей опухолей. Выращивание клеток культур тканей производят в специальных флаконах (колбы - матрицы, флаконы Карреля и др.) и в пробирках. Методы культивирования вирусов. Вирусы - строгие внутриклеточные паразиты, поэтому их можно выращивать только в живых клетках. Для культивирования вирусов используют лабораторных животных, развивающиеся куриные эмбрионы и культуры клеток. Лабораторные животные: белые мыши (для вирусов гриппа, Коксаки), кролики (вирус бешенства). Индикацию, то есть обнаружение вируса, проводят на основании развития типичных признаков заболевания и изменений органов животного. Куриные эмбрионы 5-19-дневной инкубации пригодны для культивирования большинства вирусов: Преимущества метода: стерильность и отсутствие скрытых вирусных инфекций, возможность получения вирусов в больших количествах, простота техники работы. В зависимости от цели и от вида вируса материал вносят на хорион-аллантоисную оболочку, в аллантоисную полость, желточный мешок, амниотическую полость. Индикацию вирусов проводят по характеру колоний вируса на хорион-аллантоисной оболочке. В аллантоисной жидкости вирусы обнаруживают по реакции гемагглютинации. Эта реакция основана на способности вируса гриппа и некоторых других вирусов агглютинировать (склеивать) куриные эритроциты. Культура клеток - это клетки из органа животного или человека, которые живут и размножаются вне организма в питательном растворе (в среде 199 или в среде Хенкса). Культивирование в культуре клеток - один из наиболее распространенных методов в вирусологии. Чаще всего применяются однослойные культуры клеток, прикрепленные к стенкам пробирок или плоских флаконов. Различают несколько типов культур.

1) первично-трипсинизированные, которые получают, обрабатывая трипсином исходную ткань, например, почки обезьян, или эмбриональную ткань человека. Культура клеток используется однократно.

2) перевиваемые культуры клеток способны размножаться при многократных посевах на свежие питательные среды. Они могут поддерживаться в лаборатории путем постоянных пересевов в течение десятков лет.

3) полуперевиваемые культуры клеток - это, например, диплоидные клетки из фибробластов человеческого эмбриона, способные размножаться в течение 40-50 пассажей (пересевов), сохраняя исходный диплоидный набор хромосом.

Обнаружение вирусов в культуре клеток. Вирусы в культуре клеток обнаруживаются по цитопатическому действию (ЦПД), которое вызывают многие вирусы, например, вирус полиомиелита. ЦПД проявляется в дегенерации и разрушении клеток, или в формировании многоядерных клеток.

ЦПД можно обнаружить по цветной пробе. Для этого используют клетки, помещенные в питательную среду с индикатором, например, метиловым красным. При размножении незараженных клеток образуются кислые продукты метаболизма, и индикатор меняет цвет на желтый. Если клетки заражены вирусом, происходит нарушение нормального метаболизма клеток, и цвет среды не меняется. Для подсчета количества вирионов используют метод бляшек.

19. Принципы классификации вирусов. Репродукция вирусов (фазы взаимодействия с клеткой хозяина)

Принципы классификации вирусов:

Вирусы составляют царство Vira, которое подразделено по типу нуклеиновой кислоты на два подцарства -- рибовирусы и дезоксирибовирусы. Подцарства делятся на семейства, которые в свою очередь подразделяются на роды. В основу классификации в. положены следующие категории: тин НК (ДНК или РНК), ее структура, количество нитей (одна или две), особенности воспроизводства вирусного генома, размер и морфология вирионов, количество капсомеров и тип симметрии, наличие суперкапсида, чувствительность к эфиру и дезоксихолату, местот размножения в клетке, антигенные св-ва и др.

Различают 3 типа взаимодействия вируса с клеткой:

1-продуктивный или цитоцидный тип, в зараженных клетках образуется новое поколение вирионов.

2-абортивный тип-прерывание инфекционного процесса

в клетке, поэтому новые вирионы не образуются.

3- интегративный тип или вирогения-встраивание вирусной ДНК в хромосому клетки.

Репродукция вирусов проходит несколько стадий:

1-адсорбция (прикрепление) вирионов-в. избирательно пораж. определ. клетки, проявляя так называемый тропизм. Н. в. репродуцирующиеся (размножающиеся) преимущественно в клетках печени, называются гепатотропными, а внервных клетках-нейротропными.

2-проникновение в. в клетку-виропексис- слияние оболочки в. с клеточной мембраной. В. как бы заглатывается клеткой, происходит впячивание клеточной мембраны, поглощение вириона и образование внутриклеточной вакуоли, содержащей в.

3-«раздевание» и высвобождение вирусного генома;

4-биосинтез компонентов в.-осуществляется в разных частях клетки-такой способ называется дисъюнктивным (разобщенный). Одновременно происходит репликация (повторение), т.е. синтез вирусных нуклеиновых кислот.

5-формирование в.- путем «самосборки»;

6-выход вирионов из клетки.

2 типа:1тип- взрывной - из погибающей клетки одновременно выходят большое кол-во вирионов- выходят просто устроенные вирусы, неимеющие суперкапсида.

2тип -почкованием. Он присущ в., имеющим суперкапсид-оболочку, которая является производной от клеточной мембраны.

Полный цикл репродукции в. завершается через 5-6 ч. (в. гриппа) или через несколько суток (в. кори).

20. Фаги (вирусы микробов): морфология и ультраструктура. Фазы взаимодействия вирулентного и умеренного фагов с бактериальной клеткой. Определение активности (титра) бактериальной клетки. Профаг. Фаготипирование микроорганизмов, значение. Практическое использование фагов

Явление бактериофагии открыл и изучил французский микробиолог д'Эррель. В 1917 г. он наблюдал лизис культуры бактерий дизентерии после внесения в нее фильтрата испражнений больного, выздоравливающего от дизентерии. При многократных пассажах, то есть переносе из одной культуры в другую, фильтраты сохраняли свою лизирующую активность и даже усиливали ее. Ученый сделал из этого правильный вывод о том, что лизирующий агент - живой и при пассажах размножается в бактериях. Д'Эррель назвал этот агент бактериофагом (лат. phagos -пожирающий), а само явление лизиса - бактериофагией.

бактериофаг - это вирус бактерий, он размножается в бактериях, вызывая их лизис. Добавление бактериофага в культуру бактерий на жидкой питательной среде вызывает просветление среды. На плотных питательных средах при посеве смеси бактерий и бактериофага на фоне сплошного роста бактерий появляются стерильные пятна или негативные колонии фагов.

Бактериофаги специфичны, то есть лизируют определенные виды бактерий. Отсюда их названия: дизентерийный бактериофаг, стафилококковый бактериофаг.

Структура бактериофагов

Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встречаются и лучше изучены бактериофаги, имеющие форму сперматозоида или головастика. Состоят они из головки, хвостового отростка, базальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спирально скрученная пить ДНК, покрытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окруженный сократительным чехлом. Базальная пластинка и нити осуществляют процесс адсорбции бактериофага на бактериальной клетке.

Взаимодействие бактериофага с бактериальной клеткой

Как все вирусы, бактериофаги не размножаются на питательных средах. Их размножение происходит только в чувствительных к ним бактериальных клетках, в процессе взаимодействия, в котором наблюдаются те же фазы, что при взаимодействии других вирусов с клеткой.

Адсорбция(прикрепление) бактериофага. Как все вирусы, фаги неподвижны, и столкновение с бактерией происходит случайно, затем адсорбция становится прочной, если у клетки имеются на поверхности фагоспецифические рецепторы. Фаги, имеющие сократительный чехол, адсорбируются с помощью хвостового отростка.

Внедрение фага внутрь клетки. Под действием фермента лизоцима, который находится в хвостовом сегменте, в клеточной стенке бактерии образуется отверстие. Через это отверстие в результате сокращения хвостового чехла внутрь бактериальной клетки переходит ДНК фага. Белковый капсид остается снаружи.

Синтез ДНК и белка бактериофага. В клетке прекращается синтез бактериальных белков. Образуются фаговые ДНК, а на рибосомах бактерий синтезируются молекулы фагового белка.

Формирование фага. Сборка зрелых фагов из ДНК и капсида происходит в цитоплазме клетки. Выход зрелых фагов из клетки происходит при разрушении бактерий с помощью лизоцима, а затем зрелые фаги внедряются в новые клетки.

Весь цикл взаимодействия, занимающий от 10 минут до нескольких часов, называется литическим циклом, а фаг при таком взаимодействии - вирулентным.

В отличие от вирулентных, умеренные фаги не лизируют бактерии. Их геном, проникнув в клетку, встраивается в хромосому бактерии и в дальнейшем остается в хромосоме в виде профага и реплицируется вместе с ней. Бактерии, несущие профаг, называются лизогенными, а само явление - лизогенией. Лизогенные бактерии встречаются очень часто. Профаг, находясь в геноме бактерии, придает ей какие-либо новые свойства. Так, например, продукция экзотоксина у палочек дифтерии и ботулизма связана с наличием профага.

Передача генетического материала от одной бактерии к другой с помощью умеренного бактериофага называется трансдукцией. Таким образом, могут передаваться такие признаки, как устойчивость к антибиотикам, способность продуцировать какие-либо ферменты. Умеренные бактериофаги применяются в генетической инженерии в качестве вектора - переносчика генов.

Практическое значение бактериофагов

Препараты бактериофагов применяются для диагностики, профилактики и лечения. Лечебно-профилактическое действие фагов основано на их литической активности.

Для получения препарата бактериофага культуру бактерий заражают бактериофагом. На следующий день лишрованную культуру фильтруют через бактериальный фильтр. К фильтрату в качестве консерванта добавляют хинозол.

Для количественной характеристики бактериофагов используют такой критерий, как титр бактериофага. Титр фага можно выразить двумя показателями:

1) наибольшее разведение препарата, при котором бактериофаг лизирует соответствующие бактерии:

2) количество активных корпускул бактериофага в 1 мл препарата. Методы титрования бактериофага:

1) метод серийных разведении в пробирках с жидкой питательной средой по Аппсльману;

2) двуслойный агаровый метод, при котором подсчитывают число негативных колоний фага на фоне сплошного роста бактерий - метод Грациа.

Готовый жидкий препарат бактериофага должен быть совершенно прозрачным. При кишечных инфекциях препарат применяют вместе с раствором питьевой соды, так как кислое содержимое желудка разрушает бактериофаг. Препараты некоторых бактериофагов для инъекций и местного применения выпускают в ампулах. Для приема внутрь препараты бактериофагов выпускаются также в виде таблеток с кислотоустойчивым покрытием, которое в щелочной среде тонкого кишечника растворяется. В качестве покрытия применяется пектин или ацетилфталилцеллюлоза (ЛФП).

21. Питание бактерий. Типы питания. Механизмы переноса веществ в клетку. Факторы роста микроорганизмов

В зависимости от способности усваивать органические или неорганические источники углерода и азота микроорганизмы делятся на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают углерод из углекислоты (СО2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

Гетеротрофы (греч. heteros - другой, trophic - питающийся) используют сложные органические соединения, такие как углеводы, спирты, аминокислоты, органические кислоты. Среди гетеротрофных микроорганизмов различают сапрофитов (греч. sapros - гнилой, phyton - растение) и паразитов.

Сапрофиты используют мертвые органические соединения. Они широко распространены в природе, разлагают органические вещества, отбросы, участвуя таким образом в санитарной очистке окружающей среды.

Паразиты живут и размножаются в тканях человека, животных, растений. Микробы могут изменять свой тип питания с паразитического на сапрофитный. Их можно культивировать вне организма, на питательных средах. Среди прокариотов исключение составляют риккетсии и хламидии, которые могут жить только в живых клетках хозяина. Их называют строгими, или облигатными паразитами (лат. obligatus - обязательный). Облигатными паразитами являются также все вирусы. Факультативные паразиты ( от греч.-нахлебник).

В зависимости от источников энергии и природы доноров м.о. подразделяют на фототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно - восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.

В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).

В зависимости от источников азота - прототрофы - микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, аминокислоты и др.) из глюкозы и солей аммония. Ауксотрофы - микроорганизмы, не способные синтезировать какое - либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.

Транспорт питательных веществ

Проникновение питательных веществ в клетку происходит с помощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диффузии по градиенту концентрации, то есть вследствие того, что концентрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту концентрации, но с участием ферментов-переносчиков, так называемых пермеаз( белок-переносчик). Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышающих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация (перенос) радикалов - это четвертый механизм передачи веществ. Это активный перенос химически измененных молекул, с участием пермеаз. Например, такое простое вещество, как глюкоза, переносится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пассивной диффузии или путем облегченной диффузии с участием пермеаз.

Факторы роста микроорганизмов: К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями.

Биологическое окисление (энергетический метаболизм)

Процесс биологического окисления дает энергию, необходимую для жизни клетки.

У м.о. существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением.

Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободного кислорода. К ним можно отнести микобактерии туберкулеза, холерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при отсутствии доступа кислорода. К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии.

Термином "рост" обозначают увеличение размеров отдельной особи, а "размножение" - увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стенки и цитоплазматической мембраны образуется перегородка, врастающая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.

Рост бактерий подразделяют на несколько фаз :

1) латентная фаза (лаг-фаза) - бактерии адаптируются к питательной среде, количество их не увеличивается;

2) фаза логарифмического роста - количество бактерий увеличивается в геометрической прогрессии;

3) фаза стационарного роста, во время которой число вновь образованных бактерий уравнивается числом погибших, и количество живых бактерий остается постоянным, достигая максимального уровня. Это М-концентрация - величина, характерная для каждого вида бактерий;

4) фаза отмирания, когда число отмирающих клеток начинает преобладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

22. Питательные среды. Классификация их по назначению, происхождению, составу. Основные требования к питательным средам. Приготовление МПБ и МПА

По составу и происхождению питательные среды бывают естественные, искусственные и синтетические. Естественные питательные среды - это натуральный продукт, например, картофель, другие овощи. Искусственные питательные среды готовят по определенной прописи из продуктов с добавлением органических и неорганических соединений. Синтетические среды содержат определенные химические соединения в известных концентрациях.

По консистенции питательные среды бывают жидкие, полужидкие, плотные. В качестве уплотнителя обычно применяют агар-агар - полисахарид, выделенный из морских водорослей. Агар-агар не используется микроорганизмами в качестве питательного вещества, образует в воде гель, плавящийся при 100°С и застывающий при 45°С.

По целевому назначению питательные среды могут быть разделены на обычные (простые), специальные, элективные, дифференциально-диагностические.

Питательные среды должны соответствовать определенным требованиям. Они должны содержать все питательные вещества, необходимые для размножения данного вида микробов. Одни патогенные микроорганизмы растут на простых питательных средах, другие для своего размножения нуждаются в добавлении крови, сыворотки крови, витаминов.

В питательных средах должны быть созданы определенные условия путем добавления хлорида натрия или буферных растворов. Для большинства бактерий благоприятной является питательная среда, содержащая 0,5% хлорида натрия. Реакция питательной среды, благоприятная для большей части патогенных бактерий - слабощелочная, что соответствует рН=7,2-7,4. Холерный вибрион растет при рН=7,8-8,5, грибы - при рН=5-5,5. Питательные среды должны быть влажными, то есть содержать достаточное количество воды, быть по возможности прозрачными и стерильными, то есть до посева не содержать микробов.

Простые питательные среды применяют для культивирования большинства микроорганизмов, это мясопептонный бульон (МПБ), мясопептонный агар (МПА). Культивирование, то есть выращивание микроорганизмов в лаборатории, применяется для изучения их свойств и для получения биомассы. Бактерии, грибы, актиномицеты, спирохеты и некоторые простейшие культивируются на питательных средах. Хламидии, риккетсии, вирусы и некоторые простейшие способны размножаться только в организме животного или в живых клетках.

Культуральные свойства данного вида микроорганизмов - это: 1) условия, необходимые для размножения, и 2) характер роста на питательных средах. Культуральные свойства - это одна из характеристик, которые учитываются при идентификации (определения вида) микроорганизмов.

Питательные среды

Питательные среды должны соответствовать определенным требованиям. Они должны содержать все питательные вещества, необходимые для размножения данного вида микробов. Одни патогенные микроорганизмы растут на простых питательных средах, другие для своего размножения нуждаются в добавлении крови, сыворотки крови, витаминов.

В питательных средах должны быть созданы определенные условия путем добавления хлорида натрия или буферных растворов. Для большинства бактерий благоприятной является питательная среда, содержащая 0,5% хлорида натрия. Реакция питательной среды, благоприятная для большей части патогенных бактерий - слабощелочная, что соответствует рН=7,2-7,4. Холерный вибрион растет при рН=7,8-8,5, грибы - при рН=5-5,5. Питательные среды должны быть влажными, то есть содержать достаточное количество воды, быть по возможности прозрачными и стерильными, то есть до посева не содержать микробов.

Специальные питательные среды применяют для культивирования микроорганизмов, которые не растут на простых средах. Например, кровяной агар и сахарный бульон для стрептококка, сывороточный агар для менингококка и гонококка.

Элективные питательные среды используют для выделения одного какого-либо вида из смеси различных бактерий. Данный вид бактерий растет на этой среде быстрее и лучше других, опережая их в своем росте; рост других бактерий задерживается на этой среде. Например, свернутая сыворотка для палочки дифтерии, щелочная пептонная вода для холерного вибриона, желчный бульон для палочки брюшного тифа, солевые среды для стафилококка.

Дифференциально-диагностические питательные среды применяются для отличия одних видов бактерий от других по их ферментативной активности.

23. Рост и размножение микробов. Определение понятия: фазы размножения, причины отмирания микробов. Условия культивирования

Рост и размножение микроорганизмов

Термином "рост" обозначают увеличение размеров отдельной особи, а "размножение" - увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамм «+» бактерий из клеточной стенки и цитоплазматической мембраны образуется перегородка, врастающая внутрь. У грамо «-» бактерий образуется перетяжка, и затем происходит разделение клетки на две особи. Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну материнскую нить и одну вновь образованную.

Быстрота размножения разных видов бактерий различна. Большинство бактерий делятся каждые 15-30 минут. Микобактерии туберкулеза делятся медленно - одно деление за 18 часов, спирохеты - одно деление за 10 часов.

Рост бактерий подразделяют на несколько фаз:

1) латентная фаза (лаг-фаза) - бактерии адаптируются к питательной среде, количество их не увеличивается;

2) фаза логарифмического роста - количество бактерий увеличивается в геометрической прогрессии;

3) фаза стационарного роста, во время которой число вновь образованных бактерий уравнивается числом погибших, и количество живых бактерий остается постоянным, достигая максимального уровня. Это М-концентрация - величина, характерная для каждого вида бактерий;

4) фаза гибели-отмирания, когда число отмирающих клеток начинает преобладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

Культура бактерий в такой замкнутой несменяющейся среде называется периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное культивирование применяют в микробиологической промышленности. Обычно причиной гибели микроорганизмов, при их поддержании на плотных питательных средах, является их обезвоживание. Применение в качестве среды для поддержания культуры полужидкого питательного агара и засев микроорганизмов "уколом" внутрь агара уменьшают риск обезвоживания. Преследуя ту же цель, покрывают растущие на скошенном агаре или столбиках агара культуры слоем жидкого стерильного минерального масла вазелинового или парафинового) толщиной 2см.

Условия культивирования : температура, аэробные или анаэробные условия. Температура должна быть оптимальной для данного вида. Большинство патогенных бактерий размножаются при 37°С. Однако для некоторых видов оптимальной является более низкая температура, что связано с особенностями их экологии. Так, для палочки чумы, естественным местом обитания которой являются грызуны в период зимней спячки, оптимум температуры составляет 28°С, как и для лептоспир, для палочки ботулизма - 28°С-35°С. Кроме оптимальной температуры, для культивирования микроорганизмов, в зависимости от вида, необходима аэробность или анаэробность среды.

24. Процесс дыхания микроорганизмов. Классификация микроорганизмов по способу дыхания. Схемы биологического окисления у аэробов и анаэробов

Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последовательном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ. Окислению подвергаются углеводы, спирты, органические кислоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза. У микроорганизмов существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением. Начальный этап анаэробного расщепления глюкозы с образованием пировиноградной кислоты (ПВК) происходит одинаково. Эта кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с образованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образуется в результате брожений. При спиртовом брожении ПВК превращается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну молекулу глюкозы образуется только 2 молекулы АТФ.

Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободного кислорода. К ним можно отнести микобактерии туберкулеза, холерный вибрион, чудесную палочку.

Облигатные или строгие анаэробы получают энергию при отсутствии доступа кислорода. Они имеют неполный набор окислительно-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО2 и Н2О.

...

Подобные документы

  • Предмет, задачи и этапы развития микробиологии, ее значение для врача. Систематика и номенклатура микроорганизма. Механизмы резистентности бактерий к антибиотикам. Генетика бактерий, учение об инфекции и иммунитете. Общая характеристика антигенов.

    курс лекций [201,9 K], добавлен 01.09.2013

  • История развития микробиологии как науки о строении, биологии, экологии микробов. Науки, входящие в комплекс микробиологии, классификация бактерий как живых организмов. Принцип вакцинации, методы, повышающие резистентность человека к микроорганизмам.

    презентация [10,9 M], добавлен 18.04.2019

  • Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция [1,3 M], добавлен 12.10.2013

  • Этапы развития микробиологии как науки. Анатоксины: определение и практическое применение. Морфологические и культуральные свойства стрептококков. Работы Пастера, их значение в развитии и становлении микробиологии. Эволюция микробного паразитизма.

    шпаргалка [813,1 K], добавлен 13.01.2012

  • История развития микробиологии. Эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический этапы развития микробиологии. Диссертация Луи Пастера. Работы в области химии, брожения. Изучение инфекционных заболеваний.

    презентация [1,5 M], добавлен 21.12.2016

  • Задачи медицинской микробиологии, вирусологии, иммунологии и бактериологии. История развития микробиологии на мировом уровне. Изобретение микроскопа А. Левенгуком. Зарождение отечественной бактериологии и иммунологии. Работы отечественных микробиологов.

    реферат [68,2 K], добавлен 16.04.2017

  • Понятие микробиологии и ее основные вопросы. История развития данной науки, основные периоды: эвристический, морфологический, физиологический, иммунологический и молекулярногенетический. Описание методов проведения реакций Вассермана, Видаля и Райта.

    реферат [31,2 K], добавлен 16.05.2013

  • Микроорганизмы как важный фактор естественного отбора в человеческой популяции. Их влияние на круговорот веществ в природе, нормальное существование и патологии растений, животных, человека. Основные этапы развития микробиологии, вирусологии, иммунологии.

    реферат [20,4 K], добавлен 21.01.2010

  • Наука, изучающая микроорганизмы, их систематику, морфологию, физиологию, наследственность и изменчивость. Методы и цели микробиологии, этапы становления. Ученые, внесшие существенный вклад в развитии микробиологии, ее практическое значение и достижения.

    презентация [3,1 M], добавлен 14.12.2017

  • Понятие, цель и задачи клинической микробиологии. Клинико-лабораторная диагностика, специфическая профилактика и химиотерапия инфекционных болезней, часто встречающихся в широкой медицинской практике в неинфекционных клиниках. Дезинфекция. Стерилизация.

    презентация [797,3 K], добавлен 22.11.2016

  • Понятие микробиологии как науки, ее сущность, предмет и методы исследования, основные цели и задачи, история зарождения и развития. Общая характеристика микроорганизмов, их классификация и разновидности, особенности строения и практическое использование.

    реферат [20,9 K], добавлен 04.05.2009

  • Изучение частной микробиологии, систематики и методов идентификации бактерий рода Listeria, возбудителей острой инфекционной болезни, особенности морфологии и физиологии. Экология и распространение данных бактерий, медицинское и ветеринарное значение.

    курсовая работа [577,3 K], добавлен 23.01.2011

  • История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.

    шпаргалка [249,1 K], добавлен 04.05.2014

  • Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.

    презентация [967,8 K], добавлен 27.05.2015

  • Характеристика строения бактериальной клетки. Механизмы поступления питательных веществ к клетку. Описание биохимической структуры микроорганизмов. Генетический материал бактерий, изображение их ядерной структуры. Симбиотические отношения микроорганизмов.

    курсовая работа [391,9 K], добавлен 24.05.2015

  • Биография Антони ван Левенгука, его роль в развитии микробиологии. Совершенствование конструкции микроскопа, его использование в микробиологических исследованиях. Изучение Левенгуком причинных связей и способов появления и размножения микроорганизмов.

    реферат [250,4 K], добавлен 28.10.2015

  • Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.

    презентация [3,8 M], добавлен 24.01.2017

  • Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.

    реферат [27,2 K], добавлен 21.01.2010

  • Химический состав бактериальной клетки: вода, белки, жиры, углеводы и минералы. Основные типы питания. Механизмы обмена веществ, ферменты. Дыхание: аэробы и анаэробы; редокс-потенциал. Рост и размножение, репликация ДНК. Некультивируемые формы бактерий.

    презентация [2,4 M], добавлен 03.04.2012

  • Роль бактерий в природе. Clostridium Botulinum как спорообразующая палочка, продуцирующая ботулизм. Негативное влияние сапротрофных бактерий на пищевые продукты. Болезнетворные бактерии растений. Вклад Коха в развитие микробиологии и лечение туберкулеза.

    презентация [7,6 M], добавлен 07.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.