Клеточное строение живых организмов

Вакуоли и сферосомы растительных клеток. Локализация рибосом в клетке. Рибосомы прокариот и эукариот. Размножение и превращения пластид. Уровни структурной организации хроматина. Регуляция клеточного цикла и митоза. Общая характеристика эпителиев.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 10.12.2017
Размер файла 201,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пахитена отличается максимальной конденсацией хромосом в составе бивалента. При этом они становятся настолько короткими и толстыми, что бивалент можно принять за одну хромосому. Число пахитенных хромосом-бивалентов равно гаплоидному числу хромосом данного вида. Иногда пахитенные хромосомы могут закручиваться относительно друг друга (соотносительное закручивание).

В пахитене начинается процесс взаимного обмена участками между гомологичными хромосомами - кроссинговер. Поскольку одна из гомологичных хромосом в биваленте происходит от матери, а вторая - от отца, в ходе кроссинговера происходит формирование генетически новых вариантов хромосом, сочетающих в себе аллели обоих родителей. В результате кроссинговера мейоз будет порождать кроссоверные гаметы, которые увеличивают наследственную изменчивость потомства. В пахитене наблюдается незначительный репаративный синтез ДНК.

Пахитенные хромосомы часто имеют опушенность, которая связана с деконденсацией некоторых хромомеров. Деконденсация хромомеров на стадии пахитены является морфологическим проявлением активации генов, контролирующих дифференцировку гамет.

Диплотена называется так потому, что на этой стадии начинается отталкивание гомологичных хромосом друг от друга, и они становятся различимы в составе бивалента. Отталкивание хромосом начинается в центромерных районах и распространяется вдоль бивалента. При этом становятся заметными места взаимного перекреста гомологичных хромосом - хиазмы.

В диплотене хромосомы еще больше конденсируются, в результате чего в биваленте происходит обособление хроматид. В микросокопе видно, что в образование хиазм вовлекаются только две хроматиды из четырех. При отталкивании хромосом происходит деструкция синаптонемального комплекса, его участки сохраняются только в хиазмах.

На стадии диплотены в ооцитах амфибий и насекомых хромосомы приобретают вид “ламповых щеток”. Поверхность хромосом этого типа покрыта петлями из хроматиновых нитей, которые выходят из хромомеров. На петлях хроматина транскрибируется большое количество долгоживущей иРНК, которая используется для синтеза белков, необходимых на ранних этапах эмбриогенеза.

Диакинез принципиально не отличается от диплотены. В нем происходит дальнейшее уменьшение числа хиазм, укорочение бивалентов и растворение ядрышек. Биваленты удаляются друг от друга, располагаясь по периферии ядра. В конце диакинеза гомологичные хромосомы остаются скрепленными в биваленте только терминальными хиазмами. При этом биваленты образуют характерные фигуры в форме крестов, колец, восьмерок или коротких скрученных веревок в зависимости от длины хромиосомы и числа хиазм. Диакинез завершается образованием веретена деления и распадом нуклеолеммы.

Метафаза I начинается с перемещения бивалентов в экваториальную плоскость веретена деления. При этом они ориентируются таким образом, что центромеры гомологичных хромосом обращены к противоположным полюсам клетки. Метафаза I мейоза принципиально отличается от метафазы митоза тем, что в плоскости экватора расположены спаренные хромосомы, повернутые на 900 относительно своей оси.

В анафазе I хромосомы перемещаются к полюсам клетки. Однако в отличие от митоза к полюсам расходятся не сестринские хроматиды, а гомологичные хромосомы. Сестринские хроматиды при этом по-прежнему скреплены центромерами. Расхождение гомологичных хромосом в анафазе I происходит случайно, и хромосомы бивалента с равной вероятностью могут отойти к тому или иному полюсу. Это обеспечивает все возможные сочетания материнских и отцовских хромосом в гаметах.

В телофазе I хромосомы достигают полюсов клетки, причем у каждого полюса оказывается гаплоидное число хромосом. В дальнейшем в телофазе I мейоза происходят процессы, аналогичные телофазе митоза - деконденсация хромосом, восстановление нуклеолеммы, образование ядрышек и цитокинез. На этом редукционное деление мейоза (мейоз I) заканчивается.

Интеркинез, разделяющий первое и второе деления мейоза, отличается от обычной интерфазы отсутствием репликации ДНК. Иногда в интеркинезе хромосомы остаются в конденсированном состоянии, сохраняя свои морфологические особенности.

Эквационное деление мейоза (мейоз II) протекает сходно с митозом, но на гаплоидном уровне. После непродолжительной профазы и растворения нуклеолеммы двухроматидные хромосомы формируют митотическую фигуру. На стадии анафазы сестринские хроматиды становятся свободными хромосомами и отходят к полюсам клетки. События в телофазе протекают как в митозе, завершаясь цитокинезом. Таким образом, мейотическое деление одной клетки с диплоидным набором хромосом обеспечивает образование четырех клеток с гаплоидным набором хромосом. Их дальнейшая судьба зависит от типа мейоза, который характерен для данного вида. При наиболее распространенном гаметном типе порождаемые мейозом клетки дифференцируются в гаметы.

Редукция числа хромосом представляет собой основной, но не единственный результат мейоза. Большое значение для биологии вида имеет также создаваемая мейозом комбинаторная наследственная изменчивость, которая возникает благодаря случайному распределению родительских хромосом по гаметам и кроссинговеру.

8. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

Согласно определению А. А. Заварзина ткань - это филогенетически обусловленная система гистологических элементов (клеток и межклеточного вещества), объединенных общей структурой, функцией и происхождением. В соответствии с этим определением критериями классификации тканей являются особенности их строения, функциональной специализации и происхождения в онтогенезе и филогенезе.

Первая классификация тканей была предложена Л. Лейдигом в монографии “Анатомические и гистологические исследования над рыбами и рептилиями” (1853). С некоторыми изменениями она используется и поныне. Согласно этой классификации все ткани подразделяются на четыре группы:

Эпителиальные ткани - занимают пограничное положение в организме и обеспечивают обмен со средой.

Ткани внутренней среды - формируют опорные структуры и поддерживают гомеостаз.

Мышечные ткани - обеспечивают сокращение и движение органов и всего организма.

Ткани нервной системы - получают информацию из внешней и внутренней среды, сохраняют ее и вырабатывают управляющие сигналы для мышц и других органов.

Существуют также и другие классификации тканей. Например, Н. Г. Хлопин разработал гистогенетическую классификацию тканей (1946), основываясь на их онтогенезе и способности к метаплазии - переходу одного вида ткани в другой. Принципиально иную классификацию предложил в 1964 г. Ш. Леблон, который использовал результаты исследований пролиферативной активности тканей. В соответствии с ней ткани подразделяются на три группы:

Статические ткани, в которых клетки практически не делятся (нервная ткань).

Растущие ткани, в которых количество клеток в онтогенезе постепенно возрастает (ткань печени).

Обновляющиеся ткани, в которых постоянно идет процесс физиологической регенерации на клеточном уровне (эпителии, кровь).

Классификацию тканей по особенностям их к репаративной регенерации разработал Д. С. Саркисов (1970). Органы значительно различаются по способности восстанавливать свою структуру и функции. Некоторые из них, вероятно, вообще не способны восстанавливаться, другие восстанавливаются за счет размножения малодифференцированных клеток. В последние годы возможности репаративной регенерации тканей связывают со стволовыми клетками взрослого организма ASC (adult stem cells). В 2000 г. были клонированы гены, контролирующие дифференцировку клеток крови из стволовой кроветворной клетки. Можно надеяться поэтому, что в ближайшем будущем будут разработаны новые классификации тканей, основанные на генетических программах дифференцировки стволовых клеток.

8.1 Общая характеристика эпителиев

Эпителиальные ткани отличаются:

Пограничностью, формируя наружные покровы и стенки внутренних полостей.

Отсутствием межклеточного вещества. Эпителиальные клетки, как правило, плотно прилежат друг к другу.

Полярностью клеток, которая заключается в структурно-функциональных различиях их апикальной и базальной сторон.

Наличием базальной пластинки (базальной мембраны), которая служит опорой для клеточного пласта. Она состоит в основном из белка коллагена и образуется при взаимодействии эпителия с подлежащей соединительной ткани.

Происхождением в онтогенезе из эктодермы и энтодермы.

Способностью к репаративной регенерации. Эпителии взрослого организма имеют собственные стволовые клетки и постоянно обновляются.

Диффузным питанием и дыханием. Кровеносные и лимфатические сосуды и капилляры в эпителии отсутствуют.

Наиболее употребительной является морфологическая классификация эпителиев, основы которой были разработаны еще Я. Генле (1842). В соответствии с морфологической классификацией эпителии подразделяются на три типа: однослойные, многослойные и переходный эпителий. У однослойных эпителиев все клетки контактируют с базальной пластинкой. У многослойных эпителиев, напротив, только один ряд клеток базального слоя контактирует с базальной пластинкой, тогда как остальные клетки формируют многорядный пласт, прочно соединяясь между собой межклеточными контактами. Отдельную ткань представляет переходный эпителий, который может выглядеть как многослойный или однослойный в зависимости от функционального состояния.

Однослойные эпителии берут свое начало в онтогенезе из энтодермы. Поэтому почти весь желудочно-кишечный тракт покрыт эпителием этого типа. Многослойный эпителий образует в основном внешние покровы тела, источником развития его является эктодерма. Граница между производными экто- и энтодермы у взрослого организма проходит в нижней части пищевода, а также в начале прямой кишки. Эту границу можно наблюдать на препарате “Переход пищевода в желудок” из набора по частной гистологии.

Однослойный эпителий характерен также для воздухоносных путей. Однако в этом случае клетки более дифференцированы между собой и их ядра находятся на различной высоте по отношению к базальной пластинке. Поэтому такой эпителий называется многорядным в отличие от однорядного эпителия кишечника.

Важным критерием морфологической классификации эпителиев является форма клетки. По этому признаку эпителии подразделяют на плоские, кубические и цилиндрические (призматические). Плоскую форму имеют, в частности, клетки мезотелия, который покрывает изнутри плевральную и перитонеальную полости. Поэтому мезотелий классифицируют как плоский однослойный однорядный эпителий. Мезотелий отличается от других эпителиев еще и тем, что развивается из несегментированной мезодермы (спланхнотома). Плоским называют также многослойный эпителий кожи (эпидермис), поскольку клетки его верхних слоев представляют собой уплощенные роговые чешуи.

Клетки кубического эпителия имеют изометрическую форму. Эпителий этого типа выстилает, например, почечные канальцы. Кубический однослойный однорядный эпителий почек может быть низким (клетки одинаковые по высоте и ширине) и высоким (высота клетки несколько больше ее ширины). Если же высота клетки значительно больше ее ширины, эпителий называют цилиндрическим или призматическим. К этому типу относится, например, эпителий тонкого кишечника.

В морфологической классификации используют также и другие структурные особенности клеток, в частности наличие ресничек и микроворсинок. Например, эпителий воздухоносных путей имеет реснички и называется реснитчатым, а эпителий тонкого кишечника с многочисленными микроворсинками каемчатым.

Многослойный эпителий в морфологической классификации представлен двумя типами: ороговевающим (эпидермис кожи) и неороговевающим (роговица глаза, слизистая ротовой полости, пищевод, прямая кишка). Полное наименование эпидермиса кожи будет поэтому “плоский многослойный ороговевающий эпителий”, а роговицы глаза - “плоский многослойный неороговевающий эпителий”.

Отдельно в морфологической классификации рассматривается эпителий мочевого пузыря, мочеточников и почечных лоханок. Взаимное расположение клеток в нем зависит от степени растяжения стенки органа: в нерастянутом состоянии он выглядит как многослойный, а в растянутом как однослойный. Поэтому он был назван переходным эпителием. Позднее с помощью электронного микроскопа было обнаружено, что все клетки переходного эпителия контактируют с базальной пластинкой, и его следовало бы считать однослойным. Источником развития переходного эпителия является мезодерма (нефротом).

Морфологическая классификация эпителиев

Однослойный

Многослойный

Переходный

Однорядный

Многорядный

Плоский

Ороговевающий

Кубический

Неороговевающий

Цилиндрический

Каемчатый

Реснитчатый

Морфологическая классификация эпителиев удачно дополняется гистогенетической классификацией Н. Г. Хлопина. Эта классификация учитывает, что свойства эпителиев могут быть не только у тканей эктодермального и энтодермального происхождения, но также и у производных мезодермы. Согласно гистогенетической классификации эпителиальные ткани подразделяют на пять типов:

Эпидермальные (производные эктодермы: эпидермис кожи, роговица глаза, эпителий прямой кишки и др.).

Энтеродермальные (производные энтодермы: кишечные эпителии, пищеварительные железы).

Цело-нефродермальные (развиваются из нефротома - участка мезодермы: переходный эпителий, эпителий почек и гонад, мезотелий).

Эпендимо-глиальные (образуются из нервной трубки и дают эпендимную глию, которая выстилает стенки спинномозгового канала и желудочков мозга).

Ангиодермальные (источником является диффузная мезодерма - мезенхима, клетки образуют внутреннюю выстилку сосудов, капилляров и эндокарда).

8.2 Эпителий кишечника

Однослойный цилиндрический каемчатый эпителий покрывает тонкий кишечник и двенадцатиперстную кишку. В этих отделах желудочно-кишечного тракта осуществляется внутриполостное и пристеночное переваривание пищи. Поверхность тонкого кишечника представлена складками, состоящими из выпячиваний - ворсинок и углублений - крипт. В слизистой тонкого кишечника наблюдается регулярное чередование ворсинок и крипт. Профиль базальной пластинки повторяет конфигурацию поверхности эпителия. Под базальной пластинкой находятся соединительная ткань, кровеносные и лимфатические капилляры, скопления лимфоидной ткани.

В однослойном эпителии тонкого кишечника различают четыре типа зрелых функционирующих клеток:

столбчатые (всасывающие),

бокаловидные (слизистые),

энтерохромаффинные (энтероэндокринные),

панетовские.

Столбчатые энтероциты составляют подавляющее большинство клеток ворсинки и крипты. С их участием осуществляется пристеночное пищеварение и всасывание питательных веществ из просвета кишечника в кровь и лимфу. Отличительными признаками столбчатых клеток являются микроворсинки, гликокаликс и межклеточные контакты.

Микроворсинки представляют собой выросты апикальной плазмолеммы энтероцита. Они имеют диаметр 100 нм и длину до 3 мкм. Внутри микроворсинки продольно располагается пучок, состоящий из актиновых нитей. У основания микроворсинки нити актина вплетены в терминальную сеть. Актино-миозиновые комплексы микроворсинок регулируют их высоту и тем самым площадь апикальной поверхности, которая при активном всасывании возрастает в несколько раз. На один зрелый энтероцит приходится до 1000 микроворсинок.

Гликокаликс располагается на поверхности микроворсинок в виде густой сети гликопротеидов. В нем фиксированы ферменты, участвующие в пристеночном пищеварении углеводов, белков и липидов, а также белки, обеспечивающие трансмембранный транспорт их мономеров. Гликокаликс совместно с микроворсинками образует на поверхности кишечного эпителия щеточную каемку, поэтому эпителий кишечника часто называют каемчатым.

Межклеточные контакты обеспечивают прочное соединение энтероцитов между собой. В кишечном эпителии встречаются следующие типы межклеточных контактов:

Замыкательные пластинки, расположенные в апикально-латеральных участках энтероцитов. Верхняя часть замыкательной пластинки образована плотными контактами, в районе которых электронно-плотные слои плазмолемм соседних клеток сливаются на протяжении 11,5 мкм. Плотные контакты энтероцитов (зоны слияния, или zona occludens) в виде ободка охватывают всю клетку. Ниже зоны слияния пространство между соседними клетками увеличено до 2040 нм и заполнено электронно-плотным веществом, тогда как с внутренней стороны плазмолеммы находятся нити терминальной сети. Эта часть замыкательной пластинки называется зоной прилипания (zona adherens).

Латеральные поверхности энтероцитов ниже замыкательных пластинок соединены между собой с помощью простых контактов. Плазмолеммы соседних клеток в этом типе контакта разделены электронно-прозрачным пространством шириной 1520 нм, содержащем компоненты гликокаликса.

Энтероциты могут быть связаны между собой также контактами наподобие замка, представляющими собой взаимодополняющие складки плазмолеммы.

Латеральные поверхности энтероцитов могут скрепляться щелевидным контактом (nexus), в которых плазмолеммы на протяжении 0,53 мкм разделены пространством шириной 3 нм. В образующих нексус участках плазмолеммы наблюдается гексагональная упаковка белковых глобул размером 7 нм с центральным каналом диаметром 12,5 нм. По этим каналам осуществляется межклеточный транспорт низкомолекулярных веществ. Щелевидные контакты распространены не только в эпителиальных, но и в других тканях.

В кишечном эпителии могут также встречаться десмосомы. Они представляют собой участки плазмолеммы соседних клеток, которые укреплены как снаружи, так и внутри электронно-плотным веществом, формирующим диск или поясок вокруг клетки. Со стороны цитоплазмы к диску подходят пучки тонофиламентов.

К подлежащей базальной пластинке эпителиальные клетки прикреплены с помощью гемидесмосом (полудесмосом), которые имеют структуру половины десмосомы с дополнительным, богатым липидами слоем между диском и базальной пластинкой.

Клетки однослойного эпителия прочно связаны с базальной пластинкой. В световом микроскопе базальная пластинка выявляется как граница между эпителием и подлежащей соединительной тканью, но сама непосредственно не видна. В электронном микроскопе видно, что она имеет толщину около 100 нм и состоит из двух слоев: светлого подъэпителиального толщиной 40 нм и сетчатого толщиной 60 нм. Светлый слой содержит углеводы, белки, большое количество ионов кальция. Сетчатый слой состоит из коллагена и гликозаминогликанов. Базальная пластинка является продуктом взаимодействия эпителия с соединительной тканью.

Столбчатые клетки составляют более 90 % всех клеток кишечного эпителия, выстилая поверхность ворсинки. На втором месте по численности в тонком кишечнике стоят бокаловидные клетки, которые выполняют секреторные функции. Выделяемая ими в просвет кишечника слизь содержит белки и углеводы, обеспечивающие механическую защиту энтероцитов, а также создающие оптимальные условия для работы пищеварительных ферментов. Эти клетки отличаются более тонкой базальной частью, в которой располагаются клеточное ядро, плазматическая сеть, митохондрии, пластинчатый комплекс и другие органоиды, и расширенной апикальной частью, содержащей различного размера пузырьки со слизью. Как свидетельствуют результаты авторадиографического исследования, белковый компонент слизи синтезируется на мембранах плазматической сети, тогда как углеводный компонент образуется в пластинчатом комплексе. Сформировавшиеся в пластинчатом комплексе пузырьки со слизью отделяются от этого органоида и перемещаются к апикальной поверхности клетки, где сливаются с плазмолеммой и выводят слизь наружу.

В эпителии тонкого кишечника обнаруживаются также энтерохромаффинные (энтероэндокринные) клетки. От других энтероцитов они отличаются аргирофильными секреторными гранулами, локализованными в базальной части клетки. Энтерохромаффинные клетки синтезируют и выделяют ряд гормонов и других биологически активных веществ энтеринов, которые регулируют функции пищеварительной системы, а также оказывают влияние на трофику других физиологических систем организма.

Самые малочисленные из всех энтероцитов клетки Панета никогда не покидают дна крипты. Они содержат крупные гранулы в апикальной части клетки, которые содержат интерфероны и другие белки, обеспечивающие функции местного иммунитета.

Клетки эпителия кишечника постоянно обновляются. Время жизни большинства энтероцитов не превышает 34 суток. Столь высокие темпы физиологической регенерации обеспечиваются постоянной пролиферацией стволовых клеток, которые локализованы в стенке крипты. Клетки Панета дифференцируются сразу же после деления стволовых клеток и смещаются ко дну крипты. Эти клетки делятся очень редко. Предшественники энтерохромаффинных клеток делятся два раза, смещаясь в сторону ворсинки. Бокаловидные клетки образуются после трех делений, а столбчатые клетки - после четырех делений, также смещаясь к вершине ворсинки. На вершине ворсинки все три типа клеток погибают путем апоптоза и слущиваются в просвет кишечника.

Гистофизиологию эпителия тонкого кишечника можно рассмотреть также с позиций теории дифферона. Дифферон - это клеточный клон, образованный стволовой клеткой. В эпителии тонкого кишечника одна его граница совпадает с дном крипты, где расположены клетки Панета, а другая - с вершиной ворсинки, где погибают энтероциты. Началом дифферона будет стенка крипты, где локализованы стволовые клетки. Дифферон тонкого кишечника стабилен, он постоянно воспроизводится за счет деления недифференцированных клеток. Этот же тип дифферона характерен и для других отделов желудочно-кишечного тракта. Если сравнить, например, тонкий и толстый кишечник, то, несмотря на определенные различия, вполне просматривается общность структурно-функциональной организации этих тканей. Поверхность толстого кишечника гладкая, без ворсинок, внешне не похожая на тонкий кишечник. Она покрыта столбчатыми клетками, которые хотя и обладают сходством с аналогичными клетками тонкого кишечника, отличаются меньшим количеством микроворсинок. Функция этих клеток состоит во всасывании воды. Количество бокаловидных клеток в толстом кишечнике увеличено. Они сконцентрированы в глубоких складках, образуя выделяющие слизь либеркюновы железы. Усиленная продукция слизи толстым кишечником необходима для формирования каловых масс. Таким образом, эпителий толстого кишечника также состоит из дифферонов кишечного эпителия, но по сравнению с тонким кишечником они несколько видоизменены в связи с их иной функциональной специализацией.

8.3 Эпидермис

Кожа образована эпителием и подлежащей соединительной тканью. Эпителиальная часть кожи - эпидермис представляет собой плоский многослойный ороговевающий эпителий. В эпидермисе выделяют пять слоев клеток в направлении от базальной пластинки к поверхности:

Базальный слой, состоящий из одного ряда делящихся клеток цилиндрической формы.

Шиповатый слой, образованный 48 рядами делящихся клеток крыловидной формы.

Зернистый слой из 34 рядов уплощенных неделящихся клеток с гранулами.

Блестящий слой из 12 ряда сильно уплощенных погибающих клеток.

Роговой слой, состоящий из многих рядов плоских мертвых клеток.

Базальный слой располагается непосредственно на базальной пластинке. В цитоплазме клеток базального слоя обнаруживаются тонофиламенты, митохондрии, пластинчатый комплекс, ядра с крупными ядрышками и мелкодисперсным хроматином. Пальцевидные выросты базальной поверхности клеток вдаются в базальную пластинку, заканчиваясь гемидесмосомами. Клетки этого слоя интенсивно пролиферируют, причем их потомство смещается в вертикальном направлении. В базальном слое находятся стволовые клетки эпидермиса, обладающие способностью к самоподдержанию.

Шиповатый (крылатый, остистый) слой образован клетками неправильной формы, имеющими крыловидные отростки. Отростки заканчиваются десмосомами, которые прочно скрепляют клетки между собой. Цитоплазма клеток богата органоидами, многочисленные тонофиламенты собраны в пучки - тонофибриллы. Клетки этого слоя еще способны делиться, поэтому его вместе с базальным слоем объединяют в единый ростковый слой.

Зернистый слой состоит из клеток уплощенной формы, также соединенных между собой десмосомами. В цитоплазме хорошо видны базофильные гранулы кератогиалина величиной до 1 мкм, которые содержат профиллагрин, необходимый для последующей агрегации кератиновых тонофибрилл. Клеточные ядра клеток зернистого слоя отличаются пикнотичностью и уже не способны делиться.

Блестящий слой обнаруживается только в коже ладоней и подошв. Он образован сильно уплощенными клетками, которые заполнены предшественником кератина - элеидином. Органоиды в цитоплазме этих клеток деградируют, а ядра подвергаются кариорексису, что свидетельствует о развитии процессов клеточной гибели.

Роговой слой эпидермиса представлен многочисленными роговыми чешуями, которые обеспечивают физическую и химическую защиту организма. Роговые чешуи - это не что иное, как плоские мертвые, лишенные ядра эпителиальные клетки, около 80 % массы которых составляют промежуточные филаменты из белка кератина. Клетки в толще рогового слоя еще прочно скреплены между собой десмосомами, однако по мере приближения к поверхности клеточный пласт разрыхляется под воздействием выделяющихся в межклеточное пространство лизосомальных ферментов. Одновременно клетки теряют до 70 % собственной массы из-за высыхания. Десквамация (слущивание) роговых чешуй обеспечивает защитные функции эпидермиса.

Эпидермис отличается интенсивной физиологической регенерацией, полностью обновляясь через неделю. Этот процесс обеспечивается постоянным делением стволовых клеток и коммитированного потомства в ростковом слое, дальнейшей дифференцировкой неделящихся клеток зернистого слоя и их гибелью при переходе к роговому слою. Ообенностью эпидермиса как ткани является то, что основную нагрузку принимают на себя мертвые клетки, которые, однако, находятся под контролем живых клеток нижележащих слоев.

Очевидно, что дифферон многослойного эпителия является более сложным по сравнению с диффероном кишечного эпителия. Недаром многослойный эпителий имеется только у позвоночных животных. Мягкий гидролиз белков десмосом эпидермиса позволяет выделить его диффероны, которые напоминают перевернутые пирамиды. В отличие от однослойного эпителия лишь незначительная часть клеток дифферона этого типа непосредственно связана с базальной пластинкой. Остальные клетки формируют клеточный пласт с помощью десмосом и других межклеточных контактов, что требует высокой координации их пролиферации и дифференцировки.

Другой формой многослойного эпителия является многослойный неороговевающий эпителий роговицы глаза. В отличие от эпидермиса этот эпителий имеет три слоя:

Базальный слой, сходный с базальным слоем эпидермиса.

Шиповатый слой, который отличается полигональной формой клеток и диффузным расположением кератиновых тонофиламентов, не образующих пучки.

Поверхностный слой, состоящий из уплощенных гибнущих клеток, которые постоянно удаляются путем десквамации.

Сходную структуру имеют многослойный неороговевающий эпителий полости рта, глотки, пищевода, влагалища и других органов эктодермального происхождения.

8.4 Железистый эпителий

Железы представляют собой органы, которые синтезируют и выделяют различные вещества, необходимые для жизнедеятельности организма. Большинство желез образовано эпителиальной тканью - железистым эпителием. Исключение составляют мозговой слой надпочечников, задняя доля гипофиза и эпифиз, паренхима которых имеет нейрогенное происхождение.

Железистые клетки - гландулоциты являются высокоспециализированными клетками, которые специализируются на синтезе, накоплении и выведении секрета. Ядро гландулоцитов, как правило, крупное, имеет одно или несколько ядрышек. Цитоплазма содержит многочисленные органоиды; особенно хорошо развит пластинчатый комплекс. Характер развития органоидов зависит от химической природы синтезируемых веществ. Распределение органоидов в цитоплазме неравномерно, клетки отличаются выраженной полярностью. Процесс синтеза, накопления и выделения секрета гландулоцитом обозначается как секреторный цикл. Он состоит из четырех фаз: поглощения исходных веществ, синтеза компонентов, накопления продукта и его выведения. Фаза поглощения обеспечивается транспортными системами, которые связаны с плазмолеммой базальной части клетки. В большинстве случаев исходные вещества поступают непосредственно из крови, но иногда они могут запасаться в цитоплазме гландулоцита. Фаза синтеза связана с деятельностью шероховатой и гладкой плазматической сети, пластинчатого комплекса и митохондрий. Синтезированный продукт накапливается в пластинчатом комплексе, где происходит его созревание и упаковка в одномембранные пузырьки. Фаза накопления состоит в появлении в цитоплазме гландулоцита секреторных гранул, которые укрупняются, сливаясь между собой. Фаза выведения обычно заключается в экзоцитозе секреторных гранул или вакуолей (экструзии), однако продукты могут выводиться и диффузно.

Наиболее короткой является фаза поглощения, она протекает не более 5 мин. Продолжительность фаз синтеза и накопления составляет около 1015 мин. Самой продолжительной является фаза выведения, которая занимает 30 мин. Общее время секреторного цикла составляет около одного часа.

Железистый эпителий образует органы двух типов:

экзокринные железы, которые выделяют секрет на поверхность тела или в просвет внутренних органов;

эндокринные железы, которые выводят продукт (инкрет, или гормон) в кровь.

Экзокринные железы имеют концевые (секреторные) отделы и выводные протоки. Концевой отдел (ацинус) экзокринной железы состоит из железистых клеток, которые в один или несколько слоев располагаются на базальной пластинке и продуцируют секрет. Выводной проток также состоит из эпителиальных клеток, растущих на базальной пластинке, но они обычно не секретируют, а обеспечивают связь концевого отдела с покровным эпителием.

В морфологической классификации экзокринных желез используются такие их признаки как форма концевых отделов (трубчатая, альвеолярная, трубчато-альвеолярная), ветвление концевого отдела (разветвленный и неразветвленный), ветвление выводного протока (простая и сложная железы).

Морфологическая классификация экзокринных желез

Железа

Тип по морфологической классификации

Сальная железа

Простая неразветвленная альвеолярная

Потовая железа

Простые неразветвленная трубчатые

Слюнная железа

Сложная разветвленная альвеолярная

Поджелудочная железа

Сложная альвеолярная

Молочная железа

Сложная альвеолярно-трубчатая

Кроме морфологической классификации экзокринные железы подразделяют также на группы в зависимости от количества клеток (одноклеточные, малоклеточные и многоклеточные), расположения относительно эпителиального пласта (экзоэпителиальные и эндоэпителиальные), состава секрета (белковые, слизистые, белково-слизистые, липидные, кислотные). Экзокринные железы классифицируют также по типу секреции:

Голокриновый тип, при котором происходит гибель и разрушение гландулоцита (сальная железа).

Макроапокриновый тип, при котором наблюдается утрата материала апикального конца клетки (молочная железа).

Микроапокриновый тип, который отличается отрывом расширенных вершин микроворсинок (хориоидное сплетение в третьем желудочке мозга).

Мерокриновый (эккриновый) тип, при котором не наблюдается явных изменений морфологии гландулоцитов (большинство желез).

В качестве примера приведем краткую морфо-функциональную характеристику сальной, поджелудочной (экзокринная часть) и молочной желез.

Сальная железа находится рядом с волосом. Она состоит из небольшого количества расположенных на базальной пластинке клеток, которые делятся, синтезируют секрет и разрушаются. Ее единственный проток впадает во влагалище волоса. Клеточный детрит содержит жироподобный секрет, необходимый для смазывания роговых чешуй. Тип секреции - голокриновый.

Экзокринная часть поджелудочной железы состоит из многочисленных долек, стенки которых образованы крупными клетками однослойного эпителия, расположенного на базальной пластинке. В базальной части гландулоцита поджелудочной железы находится большинство органоидов, тогда как в апикальной части локализованы гранулы зимогена (комплекса пищеварительных ферментов). Гранулы путем экструзии выходят в просвет дольки и по протокам достигают кишечника. Тип секреции - мерокриновый.

Молочная железа выделяет секрет сложного состава, который содержит много липидов, специфических белков, сахаров и неорганических веществ, особенно кальция. Она состоит из тяжей эпителиальных клеток, располагающихся между прослойками соединительной ткани. Гландулоциты молочной железы крупные, с большим ядром, развитой плазматической сетью и пластинчатым комплексом. Во время лактации от апикальной части гландулоцитов отрываются пузырьки различного размера. Тип секреции - макроапокриновый.

Эндокринные железы в отличие от экзокринных не имеют выводных протоков, представляя собой группы эпителиальных клеток, оплетенных кровеносными капиллярами. Эндокринные железы синтезируют и выделяют в кровь гормоны (инкреты), которые представляют собой биологически активные вещества, регулирующие многие жизненно важные функции организма.

Эндокринные железы имеют различное строение. Они могут быть представлены отдельными клетками (например, энтерохромаффинные клетки кишечного эпителия, которые в совокупности образуют диффузную эндокринную систему) или органами различной величины (гипофиз, надпочечники, щитовидная железа). Особенности гистофизиологии эндокринных желез можно рассмотреть на примере трех органов: передней доли гипофиза, островков поджелудочной железы и щитовидной железы.

Гипофиз - это эндокринная железа шаровидной формы, которая связывает головной мозг и эндокринные железы в единую систему. Он состоит из трех долей: передней, промежуточной и задней. Передняя доля (аденогипофиз) состоит из соединительно-тканной оболочки и тесно прилежащих эпителиальных клеток, которые оплетены кровеносными капиллярами. При окраске гематоксилин-эозином в аденогипофизе выделяют три типа клеток: оксифильные, базофильные и хромофобные. Оксифильные и базофильные клетки синтезируют и накапливают пептидные гормоны, которые концентрируются в секреторных гранулах диаметром 20100 нм. При этом каждая клетка секретирует только один тип гормона. Хромофобные клетки не содержат гранул с гормонами и находятся вне секреторного цикла.

Аденогипофиз координирует деятельность всех других эндокринных желез. Он секретирует в кровь такие гормоны как соматотропин (СТГ, или гормон роста - усиливает анаболические процессы), аденокортикотропин (АКТГ - усиливает катаболические процессы), тиреотропин (ТТГ - контролирует щитовидную железу), лютеинизирующий и фолликулостимулирующий гормоны (ЛГ и ФСГ - регулируют созревание яйцеклеток и сперматозоидов) и ряд других. Нарушения функций клеток аденогипофиза приводят к тяжелым формам гормональных дисфункций - карликовости, умственной отсталости, бесплодию у мужчин и женщин.

Панкреатические островки (островки Лангерганса-Соболева) представляют собой небольшие группы клеток, расположенные около сосудов между дольками экзокринной части. Клетки панкреатических островков синтезируют и выделяют гормоны, регулирующие уровень сахара в крови. Как и в аденогипофизе, каждая клетка островка секретирует только один вид гормона, который упаковывается в гранулы. В панкреатическом островке различают четыре типа клеток: А, В, С и D. А - клетки синтезируют глюкагон, который способствует образованию глюкозы из гликогена. В - клетки синтезируют инсулин, стимулирующий превращение глюкозы в гликоген. D - клетки выделяют соматостатин, снижающий уровень гормона роста в крови. С - клетки гранул не имеют, они являются предшественниками В-клеток. Для медицины особенно важны генетические дефекты В-клеток панкреатических островков, приводящие к недостатку инсулина и развитию тяжелого заболевания - диабета.

Щитовидная железа находится в переднем средостении и состоит из двух или трех неравных долек. Структурно-функциональной единицей этого органа являются фолликулы, представляющие собой округлые полости различной величины. Между фолликулами находится соединительная ткань. Стенка фолликула щитовидной железы образована однослойным эпителием, расположенным на базальной пластинке. Полость фолликула заполнена коллоидом - полупрозрачным веществом, состоящим из белка тироглобулина (660 кД). Тироглобулин синтезируется и выделяется клетками фолликулярного эпителия - тироцитами. Одновременно тироциты поглощают тироглобулин и, расщепляя его, секретируют в кровь два гормона - тироксин (Т4) и трийодтиронин (Т3). Таким образом, сначала тироциты создают запас высокомолекулярного тироглобулина, а затем используют его для образования низкомолекулярных гормонов.

Активной формой гормона щитовидной железы является Т3. Поступая в ядра всех клеток организма, он регулирует интенсивность транскрипции генов и тем самым уровень обмена веществ в организме. Т4 служит в качестве неактивной формы для быстрой конвертации в Т3. Оба гормона содержат атомы йода, который является лимитирующим фактором для образования активной формы. Поэтому при недостатке йода в пище уровень обмена веществ снижается, а щитовидная железа компенсаторно увеличивается. Нарушения синтеза и выделения гормонов этой железой приводит к ряду тяжелых нарушений обмена веществ, замедленному развитию и умственной отсталости.

В состав щитовидной железы входят также группы клеток паращитовидной (околощитовидной) железы. Они секретируют в кровь зависимый от витамина D паратгормон, который способствует повышению концентрации кальция в крови. Его антагонистом является кальцитонин, который выделяется С-клетками фолликулярного эпителия щитовидной железы.

9. ТКАНИ ВНУТРЕННЕЙ СРЕДЫ

Ткани внутренней среды составляют большую и разнообразную группу. Они отличаются следующими характерными признаками:

располагаются внутри организма, не контактируя с внешней средой и полостями внутренних органов;

содержат много межклеточного вещества;

клетки не обладают полярностью;

развиваются из мезодермы и ее производных;

способны к физиологической и репаративной регенерации, обладая собственными стволовыми клетками;

создают и поддерживают внутреннюю среду организма;

снабжаются кислородом и питательными веществами с помощью сосудов и капилляров;

Классификация тканей внутренней среды

Ткани внутренней среды

кровь и лимфа

соединительные ткани:

Соединительные ткани

собственно соединительная ткань

хрящевая ткань

костная ткань

Собственно соединительная ткань

Волокнистая

со специальными свойствами

Волокнистая

Рыхлая

плотная

Плотная

Неоформленная

оформленная

Функции тканей внутренней среды могут быть различными. Например, кровь, лимфа и рыхлая волокнистая соединительная ткань обеспечивают питание организма и защиту его от чужеродных продуктов. Большинство соединительных тканей выполняет механические функции, образуя такие опорные органы, как кости, хрящи, сухожилия и связки. Рыхлая волокнистая соединительная ткань выполняет также заместительные функции, обеспечивая репарацию повреждений на тканевом уровне.

Обычно кровь и лимфа рассматриваются отдельно от других тканей. Однако если рассматривать плазму крови как жидкое межклеточное вещество, ее можно считать типичной тканью внутренней среды. Другая большая группа тканей внутренней среды - это соединительные ткани. Они различаются клеточным составом, химическими и физическими свойствами межклеточного вещества, а также количеством и степенью упорядоченности волокнистого компонента.

В наборе препаратов по общей гистологии для вузов есть препарат “Мезенхима зародыша цыпленка”. Он представляет собой поперечный срез через развивающийся зародыш курицы. Препарат надо сориентировать в микроскопе таким образом, чтобы более крупная нервная трубка находилась сверху, а хорда располагалась ниже. Наружный одинарный слой клеток представляет собой эктодерму. Внутренний одинарный слой клеток (ниже хорды) является энтодермой. По обе стороны от нервной трубки и хорды будут находиться скопления более темных клеток мезодермы. Эти скопления состоят из более широкой верхней части, составляющей сегментированную мезодерму, или сомиты. Клетки внутренней части сомита (обращенные к нервной трубке) относятся к склеротому. Клетки наружной части сомита (обращенные к эктодерме) относятся к дерматому. Между дерматомом и склеротомом находятся клетки миотома. Нижняя, более узкая часть мезодермы составляет несегментированную мезодерму, или спланхнотом. Пространство между осевыми структурами (хордой и нервной трубкой) заполнено рыхло расположенными отростчатыми клетками диффузной мезодермы, или мезенхимы (эмбриональной соединительной ткани). На некоторых препаратах более позднего срока видно, что несегментированная мезодерма (спланхнотом) расщепляется на два листка - внутренний (висцеральный) и наружный (париетальный). Между ними образуется вторичная полость тела, или целом. Иногда в нижней части зародыша видны симметрично расположенные первичные сосуды (чуть выше энтодермы). На границе сомитов и спланхнотома находятся клетки нефротома.

Клетки эктодермы дадут впоследствии многослойный эпителий покровов, железы и органы чувств. Энтодерма сформирует однослойный эпителий желудочно-кишечного тракта и пищеварительные железы. Нервная трубка даст начало спинному и головному мозгу. Хорда будет формировать позвоночник. В сегментированной мезодерме (сомитах) склеротом является источником развития скелета, миотом скелетной мускулатуры, а дерматом сетчатого слоя кожи. Несегментированная мезодерма спланхнотом даст начало мезотелию, гладкой мускулатуре, миокарду и оболочкам внутренних органов. Из нефротома будет развиваться мочеполовая система. Диффузная мезодерма мезенхима сформирует кровь, сосуды и соединительные ткани.

9.1 Рыхлая волокнистая соединительная ткань
Рыхлая волокнистая соединительная ткань образуется из мезенхимы. Она является наименее специализированной из всех соединительных тканей. Функции ее разнообразны. В частности, она формирует строму многих внутренних органов, сопровождает сосуды, замещает другие ткани при повреждении, является местом развития воспалительной реакции. Состоит рыхлая волокнистая соединительная ткань из клеток и межклеточного вещества, причем клетки составляют около 1/3 объема ткани. Клетки этой ткани бывают собственные и пришлые:

1. Фибробласты. Эти клетки имеют удлиненное овальное ядро с ядрышком и широкие отростки. Под плазмолеммой расположен более светлый слой цитоплазмы - эктоплазма (кортекс). Внутренняя, более темная эндоплазма богата органоидами. Фибробласты способны двигаться, формируя широкие выпячивания ламеллоподии. Движение клеток обеспечивается актино-миозиновыми комплексами. Фибробласты могут делиться митозом. Функции этих клеток заключаются в синтезе, выделении и трансформации компонентов межклеточного вещества. Они вырабатывают коллаген и другие белки, а также гликозаминогликаны (мукополисахариды).

2. Гистиоциты (макрофаги) по размерам несколько меньше фибробластов, округлой формы. Они имеют бобовидное ядро с нежным рисунком хроматина. В цитоплазме имеются шероховатая плазматическая сеть, пластинчатый комплекс, митохондрии и многочисленные лизосомы. Активированные гистиоциты увеличиваются в размерах и начинают амебоидное движение, образуя псевдоподии. Они могут захватывать и переваривать бактерии, клеточный детрит и инородные частицы. Гистиоциты способны к митотическому делению.

3. Тучные клетки (лаброциты, мастоциты или тканевые базофилы). Имеют округлую форму и небольшое сегментированное на две дольки ядро. Цитоплазма заполнена большим количеством гранул темно-фиолетового цвета диаметром 300700 нм, которые содержат ряд биологически активных веществ - гистамин, серотонин, гепарин и др. Функции этих клеток состоят в запуске воспалительного процесса путем секреции гистамина, регуляции химического состава межклеточного вещества и развитии аллергических реакций.

4. Плазмоциты (плазматические клетки) синтезирут и выделяют защитные молекулы - антитела. Они имеют овальную форму с одним более узким концом, в котором расположено небольшое ядро округлой формы. Для плазмоцитов характерно крестообразное распределение гетерохроматина в ядре. Цитоплазма обладает базофилией, что свидетельствует об интенсивном синтезе белка. Рядом с ядром, но ближе к центру клетки локализуется слабо базофильный “дворик”, в котором располагается пластинчатый комплекс. Основная часть цитоплазмы занята шероховатой плазматической сетью, которая формирует систему концентрических сфер. Плазмоцит образуется из лимфоцитов.

5. Адвентициальные клетки. Они имеют удлиненную форму, веретеновидное ядро и локализуются обычно у капилляров. Эти клетки являются предшественниками фибробластов и липоцитов.

6. Эндотелиальные клетки. Это уплощенные одноядерные клетки, которые выстилают кровеносные и лимфатические капилляры и сосуды, а также образуют эндокард (внутреннюю поверхность сердца). Они могут иметь небольшое число микроворсинок. Эндотелиоциты обеспечивают транспорт веществ из крови в окружающую ткань и обратно. Эндотелий кровеносных капилляров располагается на базальной пластинке, но в лимфатических капиллярах и синусоидах кроветворных органов она отсутствует, а в капиллярах печени имеет поры.

7. Перициты (перикапиллярные клетки) имеют отростчатую форму и фиксированы на эндотелии капилляров с тканевой стороны или в расщеплении базальной пластинки. Перициты способны к набуханию, на них заканчиваются нервные терминали эффекторных отростков нервных клеток.

Кроме перечисленных, в рыхлой волокнистой соединительной ткани могут встречаться также лимфоциты, нейтрофильные гранулоциты, меланоциты и другие типы клеток. Фибробласты, липоциты и адвентициальные клетки относятся к популяции собственных клеток рыхлой волокнистой соединительной ткани, которая возникла из особой стволовой клетки. Гистиоциты, лаброциты, плазмоциты и некоторые другие клетки пришли сюда из крови и являются потомством стволовой кроветворной клетки.

Межклеточное (промежуточное или межуточное) вещество рыхлой волокнистой соединительной ткани представлено волокнистым и аморфным компонентами.

Волокна в рыхлой волокнистой соединительной ткани бывают двух типов - коллагеновые и эластические. Коллагеновые волокна обычно собраны в извитые пучки или ленты толщиной 30100 мкм и более, которые пересекают ткань в различных направлениях. Эластические волокна имеют диаметр 13 мкм, они прямые или плавно изогнутые, не формируют пучков. Коллагеновые и эластические волокна придают ткани прочность и упругость.

Аморфное вещество рыхлой волокнистой соединительной ткани имеет сложный химический состав и обладает высокой вязкостью. Оно состоит из гликозаминогликанов, протеогликанов, белков плазмы крови, гормонов, низкомолекулярных органических веществ (аминокислот, пептидов, сахаров) и воды. Аморфное вещество активно участвует в обмене веществ между кровью и клетками, выполняет поддерживающую, защитную, фильтрационную и другие функции.

9.2 Плотные соединительные ткани

Плотные волокнистые соединительные ткани отличаются большим количеством волокнистого компонента в межклеточном веществе, который придает им высокую прочность. Аморфного компонента в этих тканях немного, клетки представлены фибробластами, а также фиброцитами - малоактивными, не способными к делению уплощенными клетками, которые рассматриваются как продукт терминальной дифференцировки фибробластов. Плотные соединительные ткани выполняют в основном механические функции. Она обеспечивается прочностью коллагеновых волокон и упругостью эластических волокон.

Коллагеновые волокна (колла - клей) имеют диаметр 515 мкм. При длительном кипячении в воде они образуют желатину. Коллагеновые волокна состоят из фибриллярного белка тропоколлагена с молекулярной массой 360 кД. Длина молекулы тропоколлагена составляет 300 нм, диаметр - 1,4 нм. Она состоит из трех параллельно идущих полипептидов, свернутых в -спираль. Такая пространственная структура белка обеспечивается высокой регулярностью его первичной структуры. Аминокислотная последовательность тропоколлагена состоит из повторяющихся структур X-Y-Gly, где X - любая аминокислота кроме триптофана и цистеина, а Y - пролин или оксипролин. Глицин, пролин и оксипролин составляют в сумме около 56 % от общего содержания аминокислот.

Коллаген синтезируется фибробластами. Сначала на полисомах в плазматической сети синтезируется предшественник (протоколлаген), который не содержит оксипролина. Гидроксилирование пролина с образованием оксипролина происходит после трансляции полипептида в полостях и канальцах плазматической сети. Далее полипептид перемещается в пластинчатый комплекс, где формируется растворимая форма коллагена - проколлаген, который и выводится из клетки. В межклеточном веществе на поверхности фибробласта проколлаген переходит в тропоколлаген. При участии гликозаминогликанов тропоколлаген образует микрофибриллы диаметром 5080 нм, представляющие собой комплексы молекул, соединенные “стык в стык” и “бок о бок”. Микрофибриллы коллагена затем соединяются по такому же принципу в коллагеновые волокна диаметром 515 мкм, а те в свою очередь могут объединяться в пучки и ленты толщиной до 100 мкм и более. Коллагеновые волокна обладают высокой прочностью, их модуль упругости составляет 6 кг/мм2.

Эластические (эластиновые) волокна в отличие от коллагеновых волокон устойчивы к воздействию кислот и щелочей. Они содержат белок эластин и полисахариды, отличаются низким содержанием оксипролина. Эластические волокна менее прочны, чем коллагеновые (их модуль упругости составляет 4-6 кг/см2), однако они в большей степени способны к упругим деформациям. Основу эластического волокна составляет аморфный стержень, вокруг которого навиты фибриллы диаметром 820 нм. Толщина эластических волокон достигает 110 мкм, но они не формируют пучков.

Существуют две разновидности плотной соединительной ткани: неоформленная и оформленная. Неоформленная ткань образует сетчатый слой кожи и оболочки суставов и некоторых других органов. Коллагеновые и эластические волокна в ней расположены неупорядочено, образуя густую сеть. Оформленная ткань характеризуется регулярным расположением коллагеновых или эластических волокон. Эта разновидность плотной соединительной ткани образует сухожилия, связки, фасции, апоневрозы и собственный слой роговицы глаза.

Сухожилия прикрепляют мышцы к костям. Коллагеновые волокна сухожилия формируют пучки первого порядка, в которых отдельные волокна расположены на небольшом расстоянии параллельно друг к другу. Между волокнами находятся фиброциты (сухожильные клетки), имеющие уплощенно-звездчатую форму. Группы пучков первого порядка объединены в пучки второго порядка, покрытые оболочкой из рыхлой соединительной ткани - эндотенонием. В эндотенонии расположены сосуды и нервные окончания. Наружная оболочка сухожилия из рыхлой соединительной ткани называется перитенонием. Сухожилия могут иметь пучки до пятого порядка включительно.

...

Подобные документы

  • Одноклеточные живые организмы, не обладающие оформленным клеточным ядром. Строение и размножение прокариот. Основные группы прокариот: фототрофы, хемоавтотрофы, органотрофы и бактерии-паразиты. Сравнительная характеристика прокариот и эукариот.

    презентация [748,9 K], добавлен 01.02.2011

  • Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.

    презентация [7,4 M], добавлен 07.01.2013

  • Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

    презентация [2,9 M], добавлен 26.11.2013

  • Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.

    презентация [2,1 M], добавлен 12.02.2017

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.

    лекция [24,2 K], добавлен 21.07.2009

  • Клетка как структурно-функциональная единица развития живых организмов. Мембранные и немембранные компоненты: лизосомы, митохондрия, пластиды, вакуоли и рибосомы. Эндоплазматическая сеть и комплекс Гольджи. Строение животной клетки. Функции органоидов.

    презентация [3,5 M], добавлен 07.11.2014

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Транскрипция – процесс переноса генетической информации от ДНК к РНК. Природа информационной связи между ДНК и белками. Строение и организация единиц транскрипции у прокариот и эукариот. Синтез РНК - выделение стадий инициации, элонгации и терминации.

    лекция [27,1 K], добавлен 21.07.2009

  • История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

    реферат [17,1 K], добавлен 27.09.2009

  • Исследование структуры гена и его экспрессия. Геном современных прокариотических клеток. Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами. Единица транскрипции у прокариот. Промотор и терминатор (ДНК).

    курсовая работа [100,4 K], добавлен 23.03.2014

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Трансляция – синтез белка на матрице-РНК. Различие в рибосомах про- и эукариот. Процесс образования аминоацил-тРНК. Этапы трансляции, их сущность и краткая характеристика. Сопряженность с транскрипцией в прокариотических и эукариотических клетках.

    презентация [832,8 K], добавлен 05.12.2012

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация [2,8 M], добавлен 14.04.2014

  • Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.

    реферат [18,1 K], добавлен 22.10.2003

  • Способность размножаться как одна из основных способностей живых организмов, ее роль в жизнедеятельности, выживании организмов. Типы размножения, их характеристика, особенности. Преимущества полового размножения перед бесполым. Этапы развития организмов.

    реферат [2,0 M], добавлен 09.02.2009

  • Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

    конспект урока [34,4 K], добавлен 16.02.2010

  • Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.

    презентация [5,8 M], добавлен 11.11.2014

  • Цитология - наука о биологии клетки как элементарной единицы живого. Клеточная теория – обобщенные представления о строении клеток, их размножении и роли в формировании многоклеточных организмов; гомологичность и тотипотентность, прокариоты, эукариоты.

    лекция [35,3 K], добавлен 27.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.