Клеточное строение живых организмов

Вакуоли и сферосомы растительных клеток. Локализация рибосом в клетке. Рибосомы прокариот и эукариот. Размножение и превращения пластид. Уровни структурной организации хроматина. Регуляция клеточного цикла и митоза. Общая характеристика эпителиев.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 10.12.2017
Размер файла 201,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Белые и красные мионы млекопитающих

Свойство

Белые мионы

Красные мионы

цвет

белый

красный

диаметр

большой

небольшой

миоглобин

мало

много

митохондрии

мало

много

липиды

мало

много

гликоген

много

мало

кровоснабжение

слабое

сильное

сокращение

сильное и быстрое

слабое и медленное

10.2 Сердечная мышечная ткань

Из сердечной мышечной ткани состоит только один орган - сердечная мышца, или миокард. Она образована тесно связанными между собой клетками - кардиомиоцитами, которые располагаются цепочками друг за другом. Различают рабочие, проводящие и секреторные кардиомиоциты.

Наиболее многочисленными являются в миокарде рабочие (сократительные) кардиомиоциты. Они имеют цилиндрическую форму, причем в отличие от мионов ядра в них расположены в центре, а миофибриллы смещены на периферию. Миофибриллы сердечной мышечной ткани обладают поперечной исчерченностью, их строение такое же, как в мионах скелетной мускулатуры. Рабочие кардиомиоциты отличаются высоким содержанием митохондрий, кристы которых располагаются вдоль оси и могут ветвиться. Саркоплазматическая сеть развита слабее, чем в мионах, она имеет вид каналов и цистерн, ориентированных вдоль миофибрилл.

Следующие друг за другом кардиомиоциты прочно связаны между собой при помощи вставочного диска (вставочной полоски). В области вставочного диска граница клеток неровная, с многочисленными выступами. Между плазмолеммами соседних клеток имеется пространство шириной 2030 нм. С внутренней стороны клетки утолщенный участок плазмолеммы сливается с Z-полоской миофибриллы. Совпадение Z-полоски с границей клетки в области вставочного диска позволяет сохранить последовательность саркомеров в миофибриллах соседних клеток и объединить их сократительные структуры в единое целое.

Кроме вставочных дисков кардиомиоциты соединяются между собой с помощью десмосом, а также плотных и щелевых контактов. Каждый ряд кардиомиоцитов покрыт базальной пластинкой и прослойкой соединительной ткани, в которой проходят кровеносные капилляры и нервные волокна. Эти одинарные ряды кардиомиоцитов раньше назывались “волокнами Пуркинье”.

Проводящие кардиомиоциты образуют атипичную мускулатуру миокарда, которая обеспечивает распространение волны сокращения. От рабочих клеток они отличаются высоким содержанием гликогена и лизосом, сниженным числом митохондрий и миофибрилл. В них отсутствуют каналы Т-системы, но клетки хорошо иннервированы. Благодаря проводящей системе сердце обладает способностью к автономным сокращениям, а нервная система регулирует только их интенсивность и частоту. Исходная частота сердечных сокращений задается водителем ритма сердца, затем волна сокращения распространяется с предсердий на желудочки. В проводящую систему сердца входят синусо-предсердный узел Кис-Фляка, предсердно-желудочковый узел Ашофф-Тавара и предсердно-желудочковый пучок Гисса.

Эндокринные (секреторные) сердечные мышечные клетки расположены в предсердиях. Они отличаются звездчатой формой и малым числом миофибрилл. В цитоплазме секреторных кардиомиоцитов обнаруживаются гранулы диаметром 200300 нм, которые содержат предсердный натрийуретический пептид (ПНП). Этот регулятор улучшает условия работы миокарда при высоких нагрузках, вызывая усиленное выведение натрия и воды с мочой, а также расширяя сосуды и снижая артериальное давление.

10.3 Гладкая мышечная ткань

Гладкая мышечная ткань образует мышечные оболочки сосудов, стенки желудка, кишечника, мочевого пузыря, матки и многих других органов. Структурной единицей этого типа мышечных тканей является гладкая мышечная клетка.

Гладкая мышечная клетка имеет веретеновидную форму. Длина ее составляет от 20 до 500 мкм, диаметр 120 мкм. В цитоплазме обнаруживаются тонкие актиновые и толстые миозиновые нити, которые, однако, не образуют упорядоченных структур. Поэтому гладкая мускулатура не обладают поперечной исчерченностью. Тонкие актиновые протофибриллы прикреплены к плазмолемме и мембранам плазматической сети и ориентированы вдоль оси клетки.

Ядро у гладкой мышечной клетки одно, располагается в центре. В цитоплазме кроме протофибрилл содержатся в большом количестве мелкие пузырьки с кальцием, которые выполняют функции саркоплазматической сети. Кроме того, имеются митохондрии, пластинчатый комплекс, включения гликогена и другие органоиды.

Снаружи гладкая мышечная клетка покрыта базальной пластинкой, к которой прикреплены нити коллагеновых и ретикулярных волокон. Эти клетки часто формируют группы, окруженные соединительнотканной оболочкой с сосудами и нервами.

10.4 Гистогенез мышечных тканей

Скелетная (соматическая) мускулатура образуется из миотомов сегментированной мезодермы. Миотомы состоят из удлиненных клеток - миобластов, которые способны делиться митозом. Во время эмбриогенеза миобласты сначала мигрируют в диффузную мезодерму - мезенхиму, где они образуют закладки будущих мышц. Затем они выстраиваются в цепочки и сливаются друг с другом, формируя миотубы. Некоторая часть миобластов сохраняется в малодифференцированном состоянии в виде миосателлитов. Дифференцировка миотуб сопровождается их ростом, ядра при этом выстраиваются цепочкой по центру симпласта, а в цитоплазме появляются тонкие и толстые протофибриллы. По мере роста миотуб расположение протофибрилл постепенно становится упорядоченным. При этом происходит перемещение ядер на периферию, а их место занимают формирующиеся миофибриллы. Одновременно из многочисленных мелких пузырьков создается саркоплазматическая сеть. Такая реорганизация саркоплазмы означает переход миотуб в незрелые мионы. Дальнейший рост миона обеспечивается как делением его ядер, так и слиянием с ним миосателлитов. Созревание миона заканчивается дифференцировкой структурных элементов саркомеров.

Физиологическая и репаративная регенерация мышечных волокон в целом напоминает их гистогенез. Она обеспечивается главным образом миобластами, которые образуются из миосателлитов.

Сердце закладывается в виде двух симметрично расположенных сосудов мезенхимального происхождения. Затем эти сосуды сливаются вместе и обрастают участком висцерального листка спланхнотома - миоэпикардиальной пластинкой. Миокард образуется из внутренней части миоэпикардиальной пластинки.

При формировании миокарда клетки мезодермы постоянно пролиферируют, хотя величина пролиферативного пула постепенно снижается, а длительность клеточного цикла увеличивается. Некоторые клетки при этом становятся полиплоидными. Одновременно наблюдаетсмя удлинение клеток, в их цитоплазме появляются миофибриллы. По мере дифференцировки миокарда формируются вставочные диски и другие типы межклеточных контактов. Из клеток мезенхимы образуются соединительнотканные прослойки между кардиомиоцитами, в которые врастают сосуды и нервы.

Регенерация миокарда при инфаркте осуществляется лишь частично. В поврежденном участке возникает рубец из соединительной ткани, а сохранившиеся поблизости кардиомиоциты делятся митозом или подвергаются гипертрофии.

Гладкая мускулатура развивается из мезенхимы. При этом звездчатые мезенхимальные клетки удлиняются, в их цитоплазме появляются протофибриллы. Постепенно клетки приобретают способность к сокращению. Гладкая мускулатура способна к регенерации путем размножения и гипертрофии зрелых клеток, а также за счет дифференцировки клеток-предшественниц

11. НЕРВНАЯ ТКАНЬ

Нервная ткань образует нервную систему, которая наряду с эндокринной и иммунной обеспечивает регуляцию деятельности клеток во всем организме. Функции нервной системы состоят в получении, хранении и обработке информации из внешней средыи внутренних органов, а также выработке управляющих сигналов для координации работы физиологических систем.

По расположению нервная система подразделяется на центральную и периферическую, а по характеру передаваемых ею сигналов на соматическую (произвольные действия) и вегетативную (непроизвольные действия).

11.1 Клетки нервной ткани

Нервная ткань построена исключительно из клеток, межклеточного вещества у нее почти нет. Клетки нервной ткани подразделяются на два типа - нейроны (нейроциты) и глиоциты (нейроглия). Нейроны способны генерировать и проводить нервные импульсы, тогда как нейроглия обеспечивает вспомогательные функции. Нервная ткань имеет эктодермальное происхождение, достаточно рано обособляясь в эмбриогенезе в виде нервной трубки.

Нейроны представляют собой крупные отростчатые клетки, причем многие из них полиплоидные. Тело нейрона называется перикарионом. Он содержит крупное округлое ядро с мелкодисперсным хроматином и 12 ядрышка. В цитоплазме (нейроплазме) имеются многочисленные митохондрии и пластинчатый комплекс диффузного типа с множеством диктиосом, окружающих ядро. В нейроплазме при специальных методах окрашивания обнаруживаются два вида структур, характерных только для нейронов - тигроид (вещество Ниссля) и нейрофибриллы.

В световом микроскопе тигроид наблюдается в виде базофильных пятен различного размера и плотности, заполняющих перикарион. При использовании электронного микроскопа становится очевидным, что на ультраструктурном уровне тигроид состоит из уплощенных цистерн гранулярной плазматической сети. К цистернам с наружной стороны прикреплены многочисленные рибосомы. Наличие подобных структур в нейроне свидетельствует об интенсивном синтезе белков. Нейрофибриллы выявляются в нейронах после обработки солями серебра. Они образованы промежуточными филаментами (нейрофиламентами) и микротрубочками. Нейрофибриллы в отличие от тигроида находятся не только в перикарионе, но и в отростках. Эти структуры формируют в нейроне мощную систему внутриклеточного транспорта, обеспечивающего перемещение везикул на периферию отростков (антероградный транспорт) и обратно (ретроградный транспорт). Специфическим моторным белком в этом транспорте служит аналог динеина кинезин.

Нейроны классифицируют по числу отростков на униполярные, псевдоуниполярные, биполярные и мультиполярные. У человека наиболее часто встречаются биполярные нейроны клетки с двумя отростками.

Отростки у нейронов бывают двух видов - аксоны и дендриты. Аксон (нейрит) в нейронах позвоночных всегда один. Он начинается в перикарионе с небольшого расширения, которое называется аксональным холмиком. Его легко отличить от остальной части перикариона по отсутствию тигроида. Аксон не ветвится и может достигать длины до 1,5 м. В цитоплазме аксона имеются многочисленные микротрубочки, канальцы гладкой плазматической сети, митохондрии и мелкие пузырьки. В области аксонального холмика возникает нервный импульс, который движется на периферию аксона. Поэтому аксоны называются двигательными (центробежными, или эфферентными) отростками. В физическом плане нервный импульс представляет собой волну деполяризации плазмолеммы нейрона (потенциал действия). Дендриты отличаются от аксонов способностью ветвиться, а также наличием боковых выступов - шипиков. Последние представляют собой выступы плазмолеммы дендрита, которые содержат систему плоских цистерн и мембран, ориентированных перпендикулярно поверхности. Шипики участвуют в формировании межнейронных контактов, но, какие при этом они выполняют функции, остается неизвестным. Дендритов в нейроне может быть несколько. Этот вид отростков способен генерировать нервный импульс на периферии и проводить его к перикариону. Поэтому дендриты называются чувствительными (центростремительными, или афферентными) отростками. Нейроны с помощью аксонов и дендритов связаны в нервной системе в сложные сетевые структуры, которые могут с высокой скоростью обрабатывать большие объемы информации.

В нервной системе встречаются также особые нейроны, которые называются нейросекреторными клетками. Секретируемые ими пептиды синтезируются в перикарионе тигроидом и оформляются пластинчатым комплексом в секреторные гранулы, которые перемещаются по аксону на периферию. Концевые разветвления аксонов нейросекреторных клеток, заканчивающиеся на базальной пластинке капилляров, выделяют эти гормоны в кровь.

У человека нейросекреторные клетки сконцентрированы в гипоталамусе, где их перикарионы образуют супраоптическое и паравентрикулярное ядра. В гипоталамусе происходит секреция либеринов и статинов - пептидных гормонов, которые контролируют аденогипофиз. Аксоны нейросекреторных клеток гипоталамуса направляются в заднюю и промежуточную доли гипофиза, где они выделяют ряд других гормонов.

В отличие от нейронов глиальные клетки нервной ткани не способны генерировать и проводить нервные импульсы. Однако они не менее важны для нормальной работы нервной системы, выполняя такие функции как опорная, изолирующая, разграничительная, трофическая, гомеостатическая, репаративная и защитная.

Классификация и функции клеток нейроглии

Макроглия

Микроглия

Астроциты (формируют гематоэнцефалический барьер)

защитные

Эпендимоциты (выстилают желудочки и канал мозга)

функции

Олигодендроциты (питают и изолируют нейроны)

Астроцитарная глия представлена плазматическими и волокнистыми астроцитами (астроглиоцитами). Плазматические астроциты находятся в сером веществе мозга, имеют перикарион диаметром 1520 мкм с крупным овальным ядром, а также короткие широкие отростки, которые заканчиваются на сосудах, нейронах и олигодендроцитах. Гранулярная плазматическая сеть развита у астроцитов слабо, микротрубочек и промежуточных филаментов мало, однако имеются многочисленные митохондрии и включения гликогена. Волокнистые астроциты находятся в белом веществе мозга. Они имеют перикарион диаметром 1020 мкм и многочисленные дихотомически ветвящиеся тонкие отростки. Длинные отростки этих клеток заканчиваются на сосудах, а короткие отростки контактируют с мягкой оболочкой мозга, формируя краевую глию. В цитоплазме волокнистых астроцитов органоидов мало, за исключением пучков промежуточных филаментов в отростках. Митохондрии этих клеток часто имеют неправильную форму.

Как плазматические, так и волокнистые астроциты выполняют опорную и разграничительную функции, изолируя тела и отростки нейронов от внешних воздействий. Астроциты также формируют гематоэнцефалический барьер - физиологический фильтр со специфической проницаемостью, который на уровне сосудистого русла отделяет нервную систему от остального организма.

Эпендимная глия образует выстилку желудочков мозга и центрального канала головного и спинного мозга. Эпендимоциты представляют собой клетки кубической формы с ресничками на апикальной поверхности и отростком на базальном конце. Ядра в клетках смещены к базальному концу, а гранулярная плазматическая сеть - к апикальному концу. Отростки эпендимоцитов могут иметь различную степень ветвления и длину, некоторые из них проходят через весь мозг, соединяясь с отростками других глиальных клеток. Эпендимоциты секретируют компоненты цереброспинальной жидкости и биением ресничек содействуют ее току.

Олигодендроциты (малоотростчатая глия) имеют небольшие размеры и незначительное число коротких отростков. Этих клеток много как в сером, так и в белом веществе. К ним, в частности, относятся глиоциты-сателлиты, которые локализованы на поверхности перикариона нейрона, и леммоциты (шванновские клетки), формирующие оболочки нервных волокон Олигодендроциты, которые в белом веществе располагаются между нервными волокнами, называются интерфасцикулярными клетками.

Олигодендроциты участвуют также в формировании нервных рецепторов. Это тип нейроглии отличается выраженной способностью к набуханию, что лежит в основе патогенеза мозгового отека. Функции олигодендроцитов заключаются в обеспечении питания нейронов, их изоляции и гомеостатировании нервной системы.

Астроцитам, эпендимоцитам и олигодендроцитам макроглии противопоставляется микроглия. В отличие от макроглии клетки микроглии способны к активному движению и фагоцитозу. Они имеют небольшие размеры и тонкие неветвящиеся отростки, с помощью которых прикрепляются к сосудам. Клетки микроглии выполняют защитные и репаративные функции. В частности, они способны фагоцитировать бактерии, а также погибшие нейроны и поврежденные участки нервных волокон. Раннее предполагалось мезенхимное происхождение микроглии, и ее клетки рассматривались как специализированные макрофаги нервной ткани. В настоящее время более вероятным считается нейрогенное происхождение микроглии.

11.2 Нервные волокна

Нервные волокна - это отростки нейронов, окруженные глиальной оболочкой, которые обеспечивают проведение нервных импульсов. Отросток нейрона в составе нервного волокна носит название осевого цилиндра. Оболочка волокна образована леммоцитами (шванновскими клетками). Нервные волокна формируют в центральной нервной системе белое вещество мозга. На периферии группы нервных волокон с участием соединительной ткани объединяются в нервы. При этом нервные волокна покрываются эндоневрием, который состоит из базальной пластинки, единичных фибробластов и пучков коллагеновых волокон. Нервные волокна формируют проводящие пути нервной системы, обеспечивая передачу нервных импульсов от центра к периферии и обратно. Толщина соматических волокон составляет 1214 мкм, а вегетативных 57 мкм.

При объединении нейронов с помощью нервных волокон образуются рефлекторные дуги. Простейшая рефлекторная дуга состоит из двух нейронов. Один из них центростремительный, или афферентный принимает раздражение от окончания дендрита и передает его на другой нейрон центробежный, или эфферентный. Последний передает нервный импульс по аксону на эффекторный орган, например, на поперечно-полосатую мышцу. Так устроена рефлекторная дуга, которая осуществляет коленный рефлекс. Тела афферентных нейронов рефлекторной дуги коленного рефлекса расположены в спинальных ганглиях, а тела эфферентных нейронов - в передних рогах спинного мозга. В большинстве случаев, однако, рефлекторные дуги имеют в своем составе третий, вставочный (интеркалярный) нейрон, который располагается между афферентным и эфферентным нейронами. Он связывает рефлекторную дугу с другими отделами нервной системы, которые могут с его помощью задерживать проходящий по рефлекторной дуге импульс.

Различают два типа нервных волокон - мякотные (миелиновые) и безмякотные. Безмякотные нервные волокна обнаруживаются в основном в составе вегетативной системы. Они имеют несколько (3 и более) осевых цилиндров, которые окружены цепочкой леммоцитов. Каждый осевой цилиндр как бы подвешен на мезаксоне складке, образованной смыкающимися участками плазмолеммы глиальной клетки. Леммоциты покрывают осевые цилиндры на всем их протяжении за исключением нервных окончаний. Они обеспечивают изоляцию отростков нейронов от окружающей среды, способствуя проведению нервного импульса на значительное расстояние. Скорость проведения нервного импульса по безмякотным нервным волокнам составляет около 1 м/сек.

Мякотные (миелиновые) нервные волокна обнаружены в составе как центральной, так и периферической системы. Они имеют только один осевой цилиндр, представляющий собой аксон или дендрит, погруженный в цепочку леммоцитов. Осевой цилиндр окружен мякотной, или миелиновой оболочкой. В электронном микроскопе видно, что миелиновая оболочка состоит из слоев плотно прилегающих друг к другу участков плазмолеммы глиальной клетки толщиной 12 нм. Химический состав мембран миелиновой оболочки отличается высоким содержанием липидов, в особенности холестерола и цереброзидов. Между миелиновой оболочкой и наружным участком плазмолеммы леммоцита имеется тонкий слой цитоплазмы шванновская оболочка. У мякотного волокна один мезаксон.

Леммоциты покрывают осевой цилиндр нервного волокна по всей его длине, тогда как миелиновая оболочка регулярно прерывается. Участки, где миелиновая оболочка отсутствует, несколько тоньше всего волокна, здесь проходит граница между двумя соседними леммоцитами. Эти участки называются кольцевыми перехватами, или перехватами Ранвье.

В районе кольцевого перехвата внутри нервного волокна обнаруживаются косые тонкие полосы. Эти структуры обозначаются как насечки неврилеммы (насечки Лантермана). Они представляют собой складки плазмолеммы глиальной клетки на краю миелиновой оболочки. В этом участке оболочки ее соседние слои переходят друг в друга. В белом веществе мякотные волокна не имеют насечек неврилеммы из-за того, что вместо леммоцитов оболочку мякотного волокна формируют отличающиеся от них олигодендроциты мозга.

Скорость проведения нервного импульса по мякотным волокнам достигает 100 м/сек и более.

11.3 Синапсы

Синапсы являются специализированными межклеточными контактами, которые характерны только для нервной системы. Различают химические и электрические синапсы. Химический синапс состоит их пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Пресинаптическая мембрана представляет собой участок плазмолеммы аксона на его конце, который контактирует с отростком или перикарионом другого нейрона. Концевое расширение аксона содержит митохондрии, микротрубочки и промежуточные филаменты, а также большое количество синаптических пузырьков диаметром 4090 нм. Эти пузырьки заполнены нейромедиатором - низкомолекулярным органическим веществом, которое синтезируется в перикарионе или в концевом расширении аксона. Постсинаптическая мембрана образована плазмолеммой второго нейрона. Она содержит встроенные в мембрану молекулы белка рецептора нейромедиатора. Синаптическая щель представляет собой замкнутое пространство между пресинаптической и постсинаптической мембранами.

Приходящий по аксону нейрона-передатчика к синапсу нервный импульс вызывает слияние синаптических пузырьков с пресинаптической мембраной и выделение нейромедиатора в синаптическую щель. Далее молекулы нейромедиатора связываются рецепторами постсинаптической мембраны, что инициирует поступление в клетку ионов натрия, деполяризацию постсинаптической мембраны и возбуждение нейрона-приемника. Если при связывании нейромедиатора усиливается поступление в клетку ионов хлора, наблюдается гиперполяризация постсинаптической мембраны и торможение нейрона-приемника. Для восстановления способности синапса к повторной передаче содержащийся в них медиатор подвергается ферментативному разрушению. Способность нейронов управлять передачей импульса через синапс путем задержки его с помощью других синапсов является основополагающим принципом обработки информации в нервной системе.

Каждый нейрон вырабатывает свой специфический нейромедиатор. Поэтому нейроны (и соответствующие им синапсы) классифицируют в зависимости от химической природы секретируемого медиатора. В нервной системе наиболее распространены холинэргические и адренэргические нейроны с ацетилхолином и норадреналином в качестве медиаторов. Довольно часто встречаются также пептидэргические нейроны, в которых медиаторами служат различные пептиды, пуринэргические нейроны с АТФ и ее производными и ГАМК-эргические нейроны, в которых медиатором является -аминомасляная кислота. В отличие от других ГАМК-эргические нейроны и синапсы обычно вызывают торможение.

Наиболее полно изучены холинэргические нейроны, к которым относятся среди прочих мотонейроны спинного мозга. Ацетилхолин в этих нейронах сконцентрирован в синаптических пузырьках диаметром 40 нм. При возбуждении мотонейрона ацетилхолин секретируется в синаптическую щель, где связывается рецепторами постсинаптической мембраны, принадлежащей другим нейронам, мышечным волокнам или гладкомышечным клеткам.

Межнейрональные синапсы классифицируются также на основе морфологических критериев. Согласно этой классификации выделяют:

аксо-соматические синапсы, которые связывают аксон одного нейрона с перикарионом другого;

аксо-дендритические синапсы, связывающие аксон и дендрит;

аксо-аксональные синапсы, соединяющие аксоны двух нейронов;

сомато-соматические синапсы, которые связывают перикарины двух нейронов;

дендро-дендритические синапсы, связывающие дендриты двух нейронов;

дендро-соматические синапсы, соединяющие дендрит и перикарион.

Электрические синапсы встречаются значительно реже, чем химические. Они отличаются почти полным слиянием мембран контактирующих клеток. Передача нервного импульса в электрических нейронах происходит путем перехода волны деполяризации с одной мембраны на другую без участия нейромедиатора. Этот тип синапсов обнаружен в спинном мозге лягушки, в электрических органах рыб и у ракообразных. Электрические синапсы не способны обрабатывать информацию так, как химические синапсы.

11.4 Нервные окончания

Нервные окончания бывают двух типов - чувствительные (рецепторные) и двигательные (эффекторные).

Рецепторные окончания представляют собой концевые аппараты дендритов афферентных нейронов, тела которых располагаются в спинальных, вегетативных и черепно-мозговых ганглиях. Их подразделяют на интерорецепторы, которые воспринимают информацию от внутренних органов, и экстерорецепторы, получающие информацию из внешней среды. В зависимости от природы сигнала различают воспринимающие прикосновение тактильные рецепторы, холодовые и тепловые рецепторы, чувствительные к давлению барорецепторы, воспринимающие химические вещества хеморецепторы и т. п.

Морфологически нервные рецепторы подразделяют на свободные и несвободные. Свободные рецепторы это окончания дендритов, которые располагаются между клетками какого-либо органа. Они обладают низкой специфичностью восприятия физических и химических сигналов. Несвободные рецепторы представляют собой отдельный орган, состоящий из дендрита и других клеток. Их разделяют далее на неинкапсулированные и инкапсулированные рецепторы.

Примером неинкапсулированного рецептора могут служить клетки Меркеля (осязательные мениски). Они обеспечивают тактильную чувствительность и широко представлены в покровном эпителии позвоночных животных. Клетки Меркеля овальной формы, с гантелевидным ядром, содержат в цитоплазме осмиофильные гранулы диаметром 70180 нм. Концевые терминали афферентных волокон образуют на этих клетках многочисленные контакты наподобие синапсов.

Инкапсулированные рецепторы давления тельца Фатера-Пачини (пластинчатые тельца) располагаются в глубоких слоях кожи и во внутренних органах. Они имеют диаметр от 0,5 до 2,0 мм и состоят из наружной соединительнотканной капсулы и внутренней глиальной “колбы”. Капсула состоит из концентрических слоев уплощенных клеток и коллагеновых волокон. Афферентное волокно входит внутрь под капсулу и образует контакты с глиальными клетками колбы. Между капсулой и колбой содержится интерстициальная жидкость, которая способствует передаче давления на нервное окончание

Эффекторные окончания, или нейроорганные синапсы имеются во всех разновидностях тканей, обеспечивая передачу управляющего сигнала от нервной системы на орган. Среди них наиболее полно изучены нервно-мышечные синапсы, или моторные бляшки. Они образованы аксонами мотонейронов передних рогов спинного мозга и эфферентных нейронов вегетативной системы.

Моторные бляшки выглядят как небольшие пуговки на поверхности гладкомышечных клеток и мионов, к которым подходят лишенные миелиновой оболочки разветвления нервных волокон. Последние проникают под базальную пластинку и вдавливаются в плазмолемму миона, формируя межклеточные контакты наподобие синапсов. При этом плазмолемма аксона играет роль пресинаптической мембраны, а плазмолемма мышечного волокна или гладкомышечной клетки - постсинаптической мембраны. В отличие от типичного синапса постсинаптическая мембрана в моторной бляшке собрана в многочисленные складки - субневральный аппарат. В концевых участках веточек аксона содержится большое число митохондрий и синаптических пузырьков с ацетилхолином. Приходящий по аксону нервный импульс вызывает секрецию ацетилхолина в синаптическую щель и связывание его рецепторами сарколеммы. Возникающая при этом волна деполяризации распространяется по каналам Т-системы к цистернам L-системы, обеспечивая выход кальция в гиалоплазму и сокращение миофибрилл. Секретированный ацетилхолин разрушается особым ферментом холинэстеразой, что восстанавливает способность моторной бляшки к повторной передаче импульса. В некоторых органах (желудке, сердце, кишечнике) моторные бляшки обеспечивают гиперполяризацию сарколеммы миона, задерживая нервные импульсы и расслабляя мышцы. Таким образом, моторные бляшки и другие эффекторные окончания (как, например, на железистых клетках) представляют собой видоизменения химических синапсов.

Размещено на Allbest.ru

...

Подобные документы

  • Одноклеточные живые организмы, не обладающие оформленным клеточным ядром. Строение и размножение прокариот. Основные группы прокариот: фототрофы, хемоавтотрофы, органотрофы и бактерии-паразиты. Сравнительная характеристика прокариот и эукариот.

    презентация [748,9 K], добавлен 01.02.2011

  • Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.

    презентация [7,4 M], добавлен 07.01.2013

  • Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

    презентация [2,9 M], добавлен 26.11.2013

  • Сущность и сравнительная характеристика прокариотов и эукариотов. Понятие и структура вирусов, механизм их жизнедеятельности и оценка влияния на организм. Строение бактерий и их разновидности. Отличительные свойства животных и растительных клеток.

    презентация [2,1 M], добавлен 12.02.2017

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.

    лекция [24,2 K], добавлен 21.07.2009

  • Клетка как структурно-функциональная единица развития живых организмов. Мембранные и немембранные компоненты: лизосомы, митохондрия, пластиды, вакуоли и рибосомы. Эндоплазматическая сеть и комплекс Гольджи. Строение животной клетки. Функции органоидов.

    презентация [3,5 M], добавлен 07.11.2014

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Транскрипция – процесс переноса генетической информации от ДНК к РНК. Природа информационной связи между ДНК и белками. Строение и организация единиц транскрипции у прокариот и эукариот. Синтез РНК - выделение стадий инициации, элонгации и терминации.

    лекция [27,1 K], добавлен 21.07.2009

  • История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

    реферат [17,1 K], добавлен 27.09.2009

  • Исследование структуры гена и его экспрессия. Геном современных прокариотических клеток. Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами. Единица транскрипции у прокариот. Промотор и терминатор (ДНК).

    курсовая работа [100,4 K], добавлен 23.03.2014

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Трансляция – синтез белка на матрице-РНК. Различие в рибосомах про- и эукариот. Процесс образования аминоацил-тРНК. Этапы трансляции, их сущность и краткая характеристика. Сопряженность с транскрипцией в прокариотических и эукариотических клетках.

    презентация [832,8 K], добавлен 05.12.2012

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация [2,8 M], добавлен 14.04.2014

  • Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.

    реферат [18,1 K], добавлен 22.10.2003

  • Способность размножаться как одна из основных способностей живых организмов, ее роль в жизнедеятельности, выживании организмов. Типы размножения, их характеристика, особенности. Преимущества полового размножения перед бесполым. Этапы развития организмов.

    реферат [2,0 M], добавлен 09.02.2009

  • Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

    конспект урока [34,4 K], добавлен 16.02.2010

  • Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.

    презентация [5,8 M], добавлен 11.11.2014

  • Цитология - наука о биологии клетки как элементарной единицы живого. Клеточная теория – обобщенные представления о строении клеток, их размножении и роли в формировании многоклеточных организмов; гомологичность и тотипотентность, прокариоты, эукариоты.

    лекция [35,3 K], добавлен 27.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.