Молекулярная генетика

Строение и функции нуклеиновых кислот. Методы молекулярной генетики. Методы поиска и выделения фрагментов ДНК. Роль нуклеиновых кислот в биосинтезе белка. Генетический код и его свойства. Полиморфизм митохондриальных ДНК в популяциях человека.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 12.10.2024
Размер файла 73,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Лекция 1

Тема: Введение. Строение и функции нуклеиновых кислот. Методы молекулярной генетики

Цели:

- ознакомиться с областью исследования молекулярной генетики;

- изучить строение, функции и роль нуклеиновых кислот в живых организмах;

- ознакомиться с основными методами молекулярной генетики.

План

1 Молекулярная генетика

2 Строение нуклеиновых кислот

3 Функции нуклеиновых кислот

4 Роль нуклеиновых кислот

5 Молекулярно-генетические методы

5.1 Методы поиска и выделения фрагментов ДНК. Гибридизация с ДНК-зондами.

5.2 Полимеразная цепная реакция (ПЦР)

5.3 Секвенирование ДНК. Обратная транскриптаза ДНК

1 Молекулярная генетика- раздел генетики и молекулярной биологии, ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетической информации, а также способа её хранения.

М. г. выделилась в самостоятельное направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физических и химических методов (рентгеноструктурный анализ, хроматография, электрофорез, высокоскоростное центрифугирование, электронная микроскопия, использование радиоактивных изотопов и т. д.), что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отдельных компонентов клетки и всю клетку как единую систему. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики. Большую роль в быстром развитии М. г. сыграло перенесение центра тяжести генетических исследований с высших организмов (эукариотов) -- основных объектов классической генетики, на низшие (прокариоты) -- бактерии и многие другие микроорганизмы, а также вирусы. Преимущества использования более простых форм жизни для решения генетических проблем заключаются в быстрой смене поколений у этих форм и возможности изучать одновременно огромное число особей; благодаря этому сильно возрастает разрешающая способность генетического анализа и повышается его точность. Кроме того, сравнительная простота организации бактерий и особенно вирусов облегчает выяснение молекулярной природы генетических явлений. Высказываемое иногда мнение о тождестве М. г. и генетики микроорганизмов ошибочно. М. г. изучает молекулярные основы генетических процессов как у низших, так и у высших организмов и не включает частной генетики прокариотов, занимающей видное место в генетике микроорганизмов.

За свою недолгую историю М. г. достигла значительных успехов, углубив и расширив представления о природе наследственности и изменчивости, и превратилась в ведущее и наиболее быстро развивающееся направление генетики.

Одно из главных достижений М. г. -- выяснение химической природы гена. Классическая генетика установила, что все наследственные потенции организмов (их генетическая информация) определяются дискретными единицами наследственности -- генами, локализованными главным образом в хромосомах клеточного ядра, а также в некоторых органеллах цитоплазмы (пластидах, митохондриях и др.). Однако методы классической генетики не позволяли вскрыть химическую природу генов, что было отмечено ещё в 1928 выдающимся советским биологом Н. К. Кольцовым, обосновавшим необходимость изучения механизма наследственности на молекулярном уровне. Первый успех в этом направлении был достигнут при изучении генетической трансформации у бактерий. В 1944 американский учёный О. Т. Эйвери с сотрудниками обнаружил, что наследственные признаки одного штамма пневмококков могут быть переданы другому, генетически отличному штамму путём введения в его клетки дезоксирибонуклеиновой кислоты (ДНК), выделенной из первого штамма. Впоследствии подобная генетическая трансформация с помощью ДНК была осуществлена у других бактерий, а в последнее время -- и у некоторых многоклеточных организмов (цветковые растения, насекомые). Т. о., было показано, что гены состоят из ДНК. Этот вывод был подтвержден опытами с ДНК-содержащими вирусами: для размножения вируса достаточно введения молекул вирусной ДНК в клетку восприимчивого хозяина; все др. компоненты вируса (белки, липиды) лишены инфекционных свойств и генетически инертны. Аналогичные опыты с вирусами, содержащими вместо ДНК рибонуклеиновую кислоту (РНК), показали, что у таких вирусов гены состоят из РНК. Выяснение генетической роли ДНК и РНК послужило мощным стимулом для изучения нуклеиновых кислот биохимическими, физико-химическими и рентгеноструктурными методами. В 1953 американский учёный Дж. Уотсон и английский учёный Ф. Крик предложили модель структуры ДНК, предположив, что её гигантские молекулы представляют собой двойную спираль, состоящую из пары нитей, образованных нуклеотидами, расположенными апериодически, но в определённой последовательности. Каждый нуклеотид одной нити спарен с противолежащим нуклеотидом второй нити по правилу комплементарности. Многочисленные экспериментальные данные подтвердили гипотезу Уотсона и Крика. Несколько позже было установлено, что аналогичной структурой обладают молекулы разных РНК, только они большей частью состоят из одной полинуклеотидной нити. Дальнейшие работы, в которых химические и физико-химические методы сочетались с точными генетическими методами (использование разнообразных мутантов, явлений трансдукции, трансформации и т. д.), показали, что разные гены различаются как числом входящих в них пар нуклеотидов (от нескольких десятков до полутора тысяч и более), так и строго определённой для каждого гена последовательностью нуклеотидов, в которой закодирована генетическая информация. (Принципиально сходную химическую структуру имеют и гены, состоящие из РНК, -- у вирусов РНК-типа.)

Классическая генетика рассматривала ген как дискретную и неделимую единицу наследственности. Важное значение в пересмотре этой концепции имели работы советского генетика А. С. Серебровского и его учеников, в 1930-х гг. впервые указавших на возможность делимости гена. Однако разрешающая способность методов классической генетики была недостаточной для изучения тонкого строения гена. Только с развитием М. г. удалось в 50--60-х гг. решить эту проблему. Многими работами, проведёнными сначала на бактериях и вирусах, а затем и на многоклеточных организмах, было выяснено, что ген обладает сложным строением: он состоит из десятков или сотен участков -- сайтов, способных независимо мутировать и рекомбинировать. Пределом дробимости гена, а следовательно, и минимальным размером сайта является одна пара нуклеотидов (у вирусов, которые содержат одну нить РНК, -- один нуклеотид). Установление тонкого строения генов позволило значительно углубить представление о механизме генетической рекомбинации и закономерностях возникновения генных мутаций, оно способствовало также выяснению механизма функционирования генов.

Данные о химической природе и тонком строении генов позволили разработать методы их выделения. Впервые это было выполнено в 1969 американским учёным Дж. Бэквитом с сотрудниками для одного из генов кишечной палочки. Затем то же удалось осуществить у некоторых высших организмов (земноводных). Ещё более значительный успех М. г. -- первый химический синтез гена (кодирующего аланиновую транспортную РНК дрожжей), осуществленный Х. Корана в 1968. Работы в этом направлении ведутся в ряде лабораторий мира. Для внеклеточного синтеза более крупных генов успешно применены новейшие биохимические методы, основанные на явлении т. н. обратной транскрипции. Используя эти методы, С. Спигелмен, Д. Балтимор, П. Ледер и их сотрудники (США) далеко продвинулись по пути искусственного синтеза генов, определяющих структуру белка в молекулах гемоглобина у кролика и человека. Такие же работы проведены в последнее время и в ряде других лабораторий, в том числе и в СССР.

Т. о., М. г. уже выяснила в принципе вопрос о том, как записана и хранится генетическая информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отдельного гена требует ещё огромной работы.

Установление структуры ДНК открыло возможности для экспериментального исследования биосинтеза молекул ДНК -- их репликации. Этот процесс лежит в основе передачи генетической информации от клетки к клетке и от поколения к поколению, т. е. определяет относительное постоянство генов. Изучение репликации ДНК привело к важному выводу о матричном характере биосинтеза ДНК: для его осуществления необходимо наличие готовой молекулы ДНК, на которой, как на шаблоне (матрице), синтезируются новые молекулы ДНК. При этом двойная спираль ДНК раскручивается, и на каждой её нити синтезируется новая, комплементарная ей нить, так что дочерние молекулы ДНК состоят из одной старой и одной новой нити (полуконсервативный тип репликации). Выделен белок, вызывающий раскручивание двойной спирали ДНК, а также ферменты, осуществляющие биосинтез нуклеотидов и их соединение ("сшивание") друг с другом. Несомненно, что в клетке имеются механизмы, регулирующие синтез ДНК. Пути такой регуляции ещё во многом неясны, но очевидно, что она в большой степени определяется генетическими факторами.

М. г. достигла выдающегося успеха и в решении важнейшей задачи, сформулированной ещё классической генетикой, -- каким образом ген определяет признак, или как происходит реализация генетической информации. Предпосылкой послужило сформулированное ещё в 1941 Дж. Бидлом и Э. Тейтемом положение "один ген -- один фермент". Это положение позволило поставить вопрос в следующем виде: как гены, т. е., по сути дела, участки молекулы ДНК, определяют химическую структуру и свойства белков, специфическую для данного организма? Раскрытие химической структуры ДНК и белка дало возможность сопоставить эти два типа биополимеров, что привело к концепции генетического кода, согласно которой порядок чередования 4 сортов нуклеотидов в ДНК определяет порядок чередования 20 сортов аминокислот в белковой молекуле. От последовательности расположения аминокислот в белковой молекуле (её первичной структуры) зависят все её свойства. Расшифровка принципов, на которых основан генетический код, была осуществлена в 1962 Ф. Криком с сотрудниками в генетических опытах с мутантами одного бактериального вируса. Оказалось, что каждая тройка нуклеотидов в цепи ДНК (триплет, кодон) определяет, какая именно из 20 аминокислот займёт данное место в полипептидной цепи синтезируемого белка, т. е. каждый триплет кодирует определённую аминокислоту. Последующие работы позволили полностью расшифровать генетический код и установить нуклеотидный состав всех триплетов, кодирующих аминокислоты, а также состав инициирующего кодона, определяющего начало синтеза данной полипептидной цепи, и трёх терминирующих кодонов, определяющих конец синтеза. Было найдено, что генетический код универсален для всего живого, т. е. что он один и тот же для любого организма, начиная от вирусов и кончая высшими животными и человеком. Участок молекулы ДНК, составляющий один ген, определяет, как правило, последовательность аминокислот в молекуле одного белка (или в одной полипептидной цепи, если данный белок состоит из нескольких таких цепей).

Расшифровка генетического кода сыграла выдающуюся роль в выяснении механизма биосинтеза белка -- процесса, включающего перенос заключённой в ДНК генетической информации на молекулы т. н. информационной, или матричной, РНК (и-РНК). Этот процесс, сущность которого составляет синтез и-РНК на матрице ДНК, получил название транскрипции. Информационная РНК связывается затем с особыми клеточными структурами -- рибосомами, на которых и осуществляется синтез полипептидной цепи в соответствии с информацией, записанной в молекуле и-РНК. Этот процесс синтеза полипептидных цепей при посредстве и-РНК назван трансляцией.

Т. о., передача генетической информации происходит по схеме: ДНК ® РНК белок. Это основное положение (догма), правильность которого установлена многими исследованиями на различных организмах, получило в 1970 важное дополнение. Американские учёные Х. Темин и Д. Балтимор обнаружили, что при репродукции некоторых РНК-содержащих вирусов, вызывающих опухоли у животных, генетическая информация передаётся от РНК вируса к ДНК. Подобная обратная транскрипция осуществляется особыми ферментами, содержащимися в этих вирусах. Явление обратной транскрипции было обнаружено также в некоторых здоровых клетках животных и человека. Полагают, что обратная транскрипция играет существенную роль в возникновении по крайней мере некоторых форм злокачественных опухолей и лейкозов, а, возможно, также в процессах дифференцировки при нормальном развитии организмов. Следует подчеркнуть, что открытие обратной транскрипции не противоречит основному положению М. г. о том, что генетическая информация передаётся от нуклеиновых кислот к белкам, но не может передаваться от белка к нуклеиновым кислотам.

Замечательное достижение М. г. -- раскрытие генетических механизмов регуляции синтеза белков в бактериальной клетке. Как показали в 1961 французские учёные Ф. Жакоб и Ж. Моно, биосинтез белка в бактерии находится под двойным генетическим контролем. С одной стороны, молекулярная структура каждого белка детерминируется соответствующим структурным геном, с другой -- возможность синтеза этого белка определяется особым геном-регулятором, который кодирует специальный регуляторный белок, способный связываться со специфическим участком ДНК -- т. н. оператором -- и при этом "включать" или "выключать" функционирование структурных генов, управляемых этим оператором. Система из одного или нескольких структурных генов и их оператора составляет т. н. оперон. Способность регуляторных белков связываться с оператором зависит от взаимодействующих с этими белками низкомолекулярных соединений -- эффекторов. Эффекторы поступают в клетку извне или синтезируются ею и служат сигналами о необходимости синтеза этой клеткой тех или иных белков или прекращения их синтеза. Регуляторные белки бывают двух типов: белки-репрессоры, которые, связываясь с оператором, блокируют синтез белка (негативная регуляция), и белки-активаторы, которые, связываясь с оператором, индуцируют синтез белка (позитивная регуляция). При негативной регуляции в одних случаях репрессор до взаимодействия с эффектором находится в активной форме и, связываясь с оператором, препятствует транскрипции структурных генов оперона (а следовательно, и синтезу соответствующих белков). Эффектор переводит репрессор в неактивную форму, оператор освобождается и транскрипция структурных генов (а отсюда и синтез кодируемых ими белков) становится возможной. В других случаях взаимодействие репрессора с эффектором переводит репрессор в активную форму, в которой он способен связаться с оператором, что и приводит к блокированию синтеза белка. При позитивной регуляции, напротив, только активная форма белка-активатора, способная связываться с оператором, обусловливает синтез белка. Активная форма белка-активатора тоже определяется его взаимодействием с эффектором.

У многоклеточных организмов генетическая регуляция синтеза белка сложнее и пока изучена недостаточно. Однако ясно, что и здесь большую роль играет обратная связь, подобная описанной у бактерий для системы эффектор -- регуляторный белок -- оператор, причём сигнальными веществами в ряде случаев служат гормоны.

С развитием М. г. более глубоким стало понимание мутационного процесса, т. е. изменения генетической информации. Было показано, что мутации представляют собой либо замены отдельных нуклеотидов, либо вставки или выпадения нуклеотидов в молекуле ДНК. Мутации возникают как вследствие случайных ошибок при репликации ДНК, так и в результате повреждающего нуклеиновые кислоты действия различных физических и химических агентов -- мутагенов; они возникают также из-за изменений т. н. генов-мутаторов, кодирующих ферменты, участвующие в репликации, исправляющие генетические повреждения и др. Вызываемые мутагенами изменения химической структуры ДНК либо непосредственно представляют мутации, либо ведут к возникновению мутаций вследствие обусловленных этими изменениями ошибок в ходе последующей репликации ДНК. Значительная доля молекулярных повреждений ДНК, вызываемых мутагенами, не реализуется в мутации, а исправляется (репарируется). Суть явления репарации состоит в том, что у всех организмов имеются гены, кодирующие особые ферменты, способные "узнавать" поврежденные участки ДНК, "вырезать" их из молекулы и заменять полноценными. Некоторые из этих ферментов идентифицированы, установлен и механизм их действия, но полного понимания процесса репарации ещё не достигнуто.

Изучение репарации открыло новые подходы к исследованию механизма рекомбинации сцепленных (т. е. лежащих в одной хромосоме) генов, представляющей одну из причин комбинативной изменчивости, которая наряду с мутациями играет важную роль в эволюции. Классической генетикой было показано, что рекомбинация сцепленных генов происходит путём обмена гомологичных хромосом участками (кроссинговер), но тонкий механизм такого обмена оставался неизвестным. Экспериментальные данные последних 10--15 лет позволяют рассматривать внутрихромосомную и внутригенную (межсайтовую) рекомбинацию как ферментативный процесс, происходящий при взаимодействии молекул ДНК. Акт рекомбинации осуществляется путём разрывов и соединения в новом сочетании отрезков полинуклеотидных нитей. При этом разрывы с последующим воссоединением могут происходить как одновременно в обеих нитях ДНК (кроссинговер), так и в пределах одной нити (т. н. полукроссинговер). Чтобы имел место кроссинговер, так же как и для репарации, необходимы разрывы, репарационный синтез поврежденных участков и восстановление нарушенных фосфатных связей, осуществляемые соответствующими ферментами.

М. г. своими замечательными открытиями оказала плодотворное влияние на все биологические науки. Она явилась той основой, на которой выросла молекулярная биология, значительно ускорила прогресс биохимии, биофизики, цитологии, микробиологии, вирусологии, биологии развития, открыла новые подходы к пониманию происхождения жизни и эволюции органического мира. Вместе с тем М. г., позволившая глубоко проникнуть в природу важнейших жизненных процессов и успешно продолжающая их исследование, отнюдь не претендует на решение многих, в том числе и генетических, проблем, касающихся целостного организма, а тем более совокупностей организмов -- популяций, видов, биоценозов и т. д., где преобладают закономерности, изучение которых требует иных методов, чем те, какие использует М. г.

Достижения М. г., внёсшие огромный теоретический вклад в общую биологию, несомненно будут широко использованы в практике сельского хозяйства и медицины (т. н. генная инженерия путём замены вредных генов полезными, в том числе искусственно синтезированными; управление мутационным процессом; борьба с вирусными болезнями и злокачественными опухолями путём вмешательства в процессы репликации нуклеиновых кислот и опухолеродных вирусов; управление развитием организмов посредством воздействия на генетические механизмы синтеза белка и т. д.). Перспективность практического применения достижений М. г. подтверждается успехами, достигнутыми на модельных объектах. Так, у наиболее изученных в генетическом отношении видов бактерий удаётся получать мутации любого гена, лишать клетку какого-либо гена или привносить в неё желаемый ген извне, регулировать функции многих генов. Несмотря на то что генетические свойства клеток эукариотов изучены на молекулярном уровне ещё недостаточно, увенчались успехом первые попытки введения некоторых генов в клетки млекопитающих с помощью вирусов, осуществлена гибридизация соматических клеток и др. Например, в 1971 американский учёный С. Меррилл с сотрудниками, культивируя вне организма клетки человека, больного галактоземией (такие клетки неспособны вырабатывать один из ферментов, необходимых для утилизации молочного сахара, что и является причиной этой тяжёлой наследственной болезни), ввели в эти клетки неинфекционный для них бактериальный вирус, содержащий ген, кодирующий данный фермент. В результате клетки "излечились" -- стали синтезировать недостающий фермент и передавать эту способность последующим клеточным поколениям. Уже сейчас данные М. г. используют при создании медикаментов, применяемых для профилактики и лечения новообразований, лейкозов, вирусных инфекций, лучевых поражений, при изыскании новых мутагенов и т. Д

2. Строение нуклеиновых кислот

И только после открытия 2-ойной спирали ДНК в 1953-ем году и установления важности роли нуклеиновых кислот в передаче наследственности пришла пора расцвета исследований этих кислот.

Удивительно быстро (меньше чем за 2 десятилетия) полностью было установлено строение двух типов молекул нуклеиновых кислот (ДНК и РНК) и доказано, что это в них сосредоточены основные структуры наследственности -- так называемые гены.

Выяснена конкретная роль буквально каждого отдельного вида НК в передаче тех или иных наследственных свойств, а также управлении клеточной жизнедеятельностью, осуществлен поначалу искусственный молекулярный синтез ДНК и РНК вне живых клеток организмов.

После чего разработаны методы по осуществлению искусственного синтеза частей данных молекул -- генов. На сегодняшний день идёт разработка способов внедрения чужеродных участков молекул ДНК в живые клетки в целях исправления тех или иных наследственных дефектов.

Наконец, надо отметить, что на протяжении последних лет препараты НК начали применять и непосредственно в целях лечения больных, которые страдают некоторыми тяжелыми формами кроветворных нарушений и ещё рядом иных болезней.

Например, установлено, что препараты НК имеют способность плодотворность деятельности костного мозга, в значительной мере способствуют коррекции выраженных нарушений обмена фосфора, приводящих к рахиту.

Поэтому изучение этих кислот является исключительно важным не только для правильного понимания основных моментов в жизни организмов и клеток, но и для проникновения в суть способности сохранять постоянными свойства в целом ряду поколений, роль в делении клеток, управлении всеми протекающими в организмах биохимическими реакциями, способности логично отвечать на раздражения, которые вызываются внешней в отношении организма средой и т. д.

Изучение НК, кроме того, создает возможности и для успешного практического использования этих кислот в медицине. Они -- наибольшие молекулы в клетках у живых организмов и внешне представляют собой полимеры линейного типа с огромным молекулярным весом.

В клетках НК многократно скручены (иначе говоря, спирализованы) и образуют довольно компактные структуры, позволяющие им занимать сравнительно небольшой объем, однако если разложить молекулы ДНК в длину (всего лишь одной человеческой клетки), то получились бы цепи, чья длина составила несколько метров.

Только этот один факт уже говорит о сложности строения НК. Но как оказалось, основной их принцип строения довольно-таки прост. Цепи кислот состоят из чередующихся звеньев -- так называемых нуклеотидов, чьё специфическое чередование и определяет запись всей наследственной информации в каждой клетке.

Каждые 3 последовательно располагающихся нуклеотида кодируют одну какую-то аминокислоту, а порядок последовательности нуклеотидов в ДНК-цепях у каждого организма поистине уникален, как и уникальна сама по себе наследственная информация у любого из видов организмов.

В свою очередь нуклеотиды тоже имеют достаточно сложное строение и состоят из 3-ех соединенных меж собой молекул: 5-тиуглеродного сахара (так называемой пентозы), азотистого основания, а также остатка фосфорной кислоты. А названия нуклеотидам даются по имени конкретного азотистого основания, которое входит в их состав.

В строении молекулы ДНК встречается 4 основных вида азотистых оснований: это аденин (А), цитозин (Ц), гуанин (Г) и тимин (Т). В состав молекулы РНК тимин заменяет другое, близкое к нему по строению основание -- это урацил (У). Ещё одним отличием ДНК и РНК становится то, что включённые в состав ДНК нуклеотиды содержат в себе 5-тичленный сахар -- так называемую дезоксирибозу, а в РНК в наличие имеется иной углевод -- рибоза.

В клетках буквально каждого из высших организмов есть ядро, которое от цитоплазмы отграничено особой оболочкой. Потому данные организмы названы были эукариоты (от греческого «эу» -- значит «собственно», и «карио» -- значит «ядро»).

Как раз в ядре и содержится превалирующая часть клетки ДНК. Причём ДНК ядерная эукариотов соединяется с особыми, называемыми ядерными белками, образуя так называемые нуклеопротеидные нити.

Данные нити, скручиваясь многократно, формируют хромосомы. Помимо того, в клетках высших организмов -- то есть эукариотов -- ДНК обнаруживается в составе целого ряда разного рода внутриклеточных образований.

В большинстве случаев ДНК молекула выстроена из 2-ух полинуклеотидных цепей, которые скручены друг с другом. Данные цепи между собой соединяются по строго установленным правилам: тимин может соединяться с адештном и лишь с аденином, а тозин -- с гуанином и т. п.

Строго установленные правила сочетания различных оснований в пары (иначе говоря, комплементарность аденина тимину и цитозина гуанину) понятными стали лишь после изучения точных размеров 2-ойной ДНК спирали.

Оказалось, что по всей длине диаметр 2-ойной спирали постоянен. Обеспечено постоянство данного размера спирали обеспечено может быть лишь в случае единственного сочетания оснований в паре. Лишь в том случае, если тимин соединяется с аденином, а цитозин с гуанином, могут получиться пары оснований, имеющих одинаковую длину.

Перед началом деления клеток происходит их удвоение (то есть репликация) ДНК молекул. Данный процесс представляет собой довольно сложную цепь одну за другой протекающих реакций, в итоге которых на материнских исходных молекулах ДНК происходит синтезирование их точных дочерних копий.

РНК также присутствуют во всех клетках живых организмов, при этом у части вирусов они являются одним единственным видом НК. Рибонуклеиновые кислоты исполняют важнейшую роль -- обеспечивают перенос важной генетической информации непосредственно от ДНК к белкам. В живых организмах присутствует довольно большое количество разных белков, каждый из них выполняет чёткие функции.

Причём функциональные возможности, а также специализированность конкретного белка определяется его строением и, как правило, тем, в какой именно последовательности у него в молекуле располагаются основные единицы его структуры -- аминокислоты.

Нуклеиновые кислоты -- это основные участники центрального жизненного акта -- синтеза молекул белка. Все, что требуется клетке для нормальной жизни, изначально запрограммировано на отрезках ДНК молекулы -- то есть генах, что располагаются главным образом в ядре клетки.

Как раз они и являются хранителями всех эволюционных жизненных достижений, зафиксированных на языке генетического кода. Однако сами по себе гены белка не синтезируют. Информация, записанная в них, реализуется молекулами РНК.

Прежде чем построить белки, снимаются так называемые «чертежи» гена: на ДНК молекуле синтезируется информационной РНК молекула, являющаяся её точной копией -- то есть зеркальным отражением скопированного гена. После этого молекулы информационной РНК переходят в цитоплазму, доставляя туда «приказы» генов.

Роль так называемых «переводчиков» с языка непростого генетического кода на рабочий язык аминокислот выполняется молекулами РНК иного вида -- транспортными.

Маленькие по своему размеру и удельному молекулярному весу эти молекулы имеют способность различать необходимые аминокислоты, подтаскивать и присоединять их к себе, транспортировать к рибосоме.

Буквально каждой из аминокислот соответствует собственная транспортная РНК. То есть, в клетке присутствует, по меньшей мере, два десятка видов РНК транспортных в соответствии с числом аминокислот.

Процесс распознавания транспортными РНК «собственных» аминокислот идёт при помощи специальных ферментов (коих также существует не менее 20-ти видов), управляющих аминокислотным прикреплением к соответствующим РНК транспортного типа.

Молекула РНК-транспортной, которая соединена с аминокислотой, подплывая к рибосоме, воссоединяется с ней. Уже в следующее мгновение сформировавшаяся матрица (то есть информационная РНК) двигается по рибосоме на определённое расстояние, что соответствует участку, на котором записан шифр присоединённой аминокислоты, словно подставляя участок для прочтения, на котором закодирована определённая аминокислота.

РНК информационная так продвигается до тех самых пор, пока буквально вся матрица не будет прочитанной рибосомой, а молекула соответствующего ей белка в полной мере синтезированной.

1-рвая транспортная аминокислота, которая выполнила свою задачу, сразу же покидает рибосому, освободив место для последующей.

Полностью освободившиеся от аминокислотного груза транспортные РНК постепенно уходят в цитоплазму, где их ожидают молекулы ферментов, дабы соединить со следующими порциями аминокислот. Так как в клетке, пока та живет, необходимы всё новые белки.

Существует и еще один тип РНК -- рибосомные, составляющие основную массу. Их биологическая роль в настоящее время остаётся до конца не выясненной. Известно только, что нарушение целостности рибосомных РНК молекул приводит к нарушению активности рибосом.

3. Функции нуклеиновых кислот

Нуклеиновые кислоты представляют собой усложнённые высокомолекулярные соединения, которые имеются во всех без исключения клетках, присущих живым организмам и являются материальными носителями всей наследственной информации.

Нуклеиновым кислотам принадлежит ведущую роль не в одном лишь хранении, но ещё и в передаче важной информации потомкам, а также реализации ее на протяжении индивидуального развития буквально каждого организма.

Нуклеиновые кислоты учёными были открыты уже в середине 60-тых годов 19 века (открытие сделал швейцарский ученый Ф. Мишер).

Во время опыта по обработке клетки гноя пепсином -- ферментом из желудочного сока -- Ф. Мишер с удивлением обнаружил, что ферментом переваривается не все клеточное содержимое, в их ядрах остаётся неразрушенным некое вещество.

Продолжив свои эксперименты на иных объектах, Мишер убедился в том, что им открыто новое вещество, которое сильно отличается от всех известных ранее веществ, имеющих биологическое происхождение (углеводов, белков, жиров и др.) собственным химическим строением.

Данное вещество Мишером было названо нуклеином, поскольку он нашёл его в клеточных ядрах (ядро -- с латыни «нуклеус»). Но в связи со слабым уровнем тогдашнего развития лабораторного оборудования установить точно химическое строение открытого нуклеина учёный не смог.

Поднакопив довольно большое количество нуклеина, Мишер лишь смог обнаружить, что в составе его важная роль отводится какой-то неизвестной и очень сложной в плане своего строения кислоте.

Лишь намного позже было установлено, что нуклеин, открытый Мишером, состоял из прочного соединения белка с особенными по-настоящему сложными для проведения структурного анализа видами кислот, которые получили название «нуклеиновые кислоты».

Ещё одной составной частью нуклеинового вещества были белковые молекулы, так что, по сути, нуклеин из себя представлял химическое вещество, которое сейчас называется нуклеопротеином, либо хроматином.

Лишь по завершению 30-тых годов 20 века химический состав НК был уточнен, а кроме того, установлено, что существует два типа кислот -- дезоксирибонуклеиновая (то есть ДНК) и рибонуклеиновая (или РНК), которые входят в клеточный состав абсолютно всех живых существ на планете.

Но, несмотря на это, детали строения нуклеиновых кислот оставались не совсем ясными вплоть до наступления 20-го века. В 50-тых гг., по словам ученого Д. Уотсона из Америки, установившего совместно с англичанином О. Криком базовые принципы ДНК-строения, относительно ДНК, по сравнению с белками, имелось крайне мало с точностью установленных данных.

Их изучением занимались лишь считанные химики, и если исключить тот факт, что НК представляют собой весьма большие молекулы, которые построены из мельчайших строительных блоков -- так называемых нуклеотидов, о их химии не известно было ничего особенного, за что можно ухватиться генетику.

Даже более того, химики-органики, которые работали с ДНК, практически никогда генетикой не интересовались.

4. Роль нуклеиновых кислот

Довольно сложным был и сам путь к пониманию роли нуклеиновых кислот в жизни клеток.

Довольно скоро после открытия Мишером нуклеина биологи обнаружили, что в клеточных ядрах имеются особенные морфологические структуры, которые отчетливо заметны под микроскопом в момент деления клеток, они получили название «хромосомы».

Эти структуры закономерно распределялись по так называемым дочерним клеткам в ходе процесса клеточного деления. В первом же десятилетии века 20-ого стали высказываться предположения, согласно которым именно хромосомы -- те самые носители наследственности, но сделать правильный дальнейший шаг -- то есть связать наследственность с нуклеиновыми кислотами, находящимися в хромосомах, никто не догадался вплоть до 40-вых- 50-тых годов 20-го века.

Даже более того, со временем роль нуклеиновых кислот стали значительно преуменьшать. В конце 19-го века некоторые ученые на этот счет высказывали вполне разумные предположения. К примеру, известные биологи Рихард и Оскар Гертвиги в своих работах писали о возможности роли кислот в передаче важных наследственных признаков.

В 1897-мом году в статье «Нуклеины», размещённой в «Энциклопедическом словаре» Брокгауза и Эфрона было отмечено, что нуклеин имеет огромное распространение и везде, где присутствуют клеточные ядра, есть и нуклеин…

А ещё ему приписывается поистине выдающееся значение в размножении и развитии клеток. Однако позже эти в действительности правильные взгляды оказались забыты. Учёная мысль вплоть до 50-тых годов 20 века была скованной успехами в изучении свойств и структуры белковых молекул, а нуклеиновые кислоты же получили второстепенную роль.

В распространении всеобщего убеждения в том, что основополагающая роль в наследственности отводится именно белкам, определяющее значение сыграло то обстоятельство, что видный советский ученый Н. Кольцов, который предсказал механизм осуществления передачи различных наследственных признаков посредством специфического строения полимерных макромолекул, совершенно ошибочно считал, что роль данных «наследственных молекул» отводится белкам.

5. Молекулярно-генетические методы

Молекулярно-генетические методы - большая и разнообразная группа методов, предназначенная для выявления вариаций (повреждений) в структуре участка ДНК (аллеля, гена, региона хромосомы) вплоть до расшифровки первичной последовательности оснований. В основе этих методов лежат генно-инженерные манипуляции с ДНК и РНК. Исходным этапом всех молекулярно-генетических методов является получение образцов ДНК. Источником геномной ДНК могут быть любые ядросодержащие клетки. На практике чаще используют лейкоциты, хорион, амниотические клетки, культуры фибробластов. Возможность проведения молекулярно-генетического анализа с небольшим количеством легкодоступного биологического материала является методическим преимуществом методов данной группы. Выделенная ДНК одинаково пригодна для проведения различных исследований и может долго сохраняться в замороженном виде. Во многих случаях для успешной диагностики болезни достаточно исследовать небольшой фрагмент генома. Выделение таких фрагментов стало возможным благодаря открытию ферментов - рестриктаз, которые разрезают молекулу ДНК на фрагменты в строго определенных местах.

Применение этих ферментов в эксперименте дает возможность получить относительно короткие фрагменты ДНК, в которых легко можно определить последовательность нуклеотидов. Получение достаточного количества таких фрагментов осуществляется путем амплификации (умножения) ДНК при помощи полимеразной цепной реакции. Различают прямую и косвенную ДНК-диагностику моногенных наследственных болезней. При прямой диагностике предметом анализа являются мутации гена. В ДНК-диагностике в настоящее время используются разнообразные прямые методы. Наиболее просто обнаруживаются мутации, изменяющие длину амплифицированных фрагментов ДНК, которые выявляются при электрофоретическом анализе. Для выявления точковых мутаций, небольших делеций и инверсий в исследуемых генах используют методы, при помощи которых можно проанализировать уникальную последовательность ДНК. Примером может служить метод секвенирования - определение нуклеотидной последовательности ДНК. Любые типы мутаций могут быть обнаружены путем прямого секвенирования мутантной ДНК. Для некоторых генов, имеющих небольшие размеры, этот метод с успехом применяется как основной метод сканирования мутаций. Главное преимущество прямых методов диагностики - почти 100 % эффективность.

Косвенное выявление мутаций применяется в тех случаях, когда нуклеотидная последовательность гена еще не известна, но имеется представление о положении гена на генетической карте. Косвенная ДНК-диагностика сводится к анализу полиморфных генетических маркеров у больных и здоровых членов семьи. Маркеры должны быть расположены в том хромосомном регионе, где и ген болезни. Такими маркерами могут быть участки ДНК, существующие в популяции в нескольких аллельных вариантах. Отличия могут быть по составу нуклеотидов, по числу динуклеотидных повторов. На основе вариабельности маркерных участков ДНК можно дифференцировать материнское или отцовское происхождение конкретного варианта маркера, сцепленного с геном болезни. Благодаря анализу полиморфных генетических маркеров можно определить и проследить в поколениях хромосому, несущую патологический ген. Технические приемы в косвенной диагностике те же, что и в прямой диагностике (получение ДНК, электрофорез и другие). Главный недостаток косвенных методов диагностики - обязательное предварительное изучение генотипа как минимум одного пораженного родственника.

Методы ДНК-технологии используют для выяснения локализации в той или иной хромосоме мутантного гена, ответственного за происхождение определённых форм наследственной патологии. Так как ген представляет собой участок ДНК, а мутация генов -- повреждение первичной структуры ДНК (под мутацией понимают все изменения в последовательности ДНК, независимо от их локализации и влияния на жизнеспособность индивида), то, зондируя препараты метафазных хромосом больного с наследственным заболеванием, удаётся установить локализацию патологического гена. Методы молекулярной генетики создают возможности для диагностики болезней на уровне изменённой структуры ДНК, они позволяют выяснять локализацию наследственных нарушений. Молекулярно-генетические методы могут выявить мутации, связанные с заменой даже одного-единственного основания.

Важнейший этап идентификации гена -- его выделение. ДНК может быть изолирована из любого типа тканей и клеток, содержащих ядра. Этапы выделения ДНК включают: быстрый лизис клеток, удаление с помощью центрифугирования фрагментов клеточных органелл и мембран, ферментативное разрушение белков и их экстрагирование из раствора с помощью фенола и хлороформа, концентрирование молекул ДНК путём преципитации в этаноле.

В генетических лабораториях ДНК чаще всего выделяют из лейкоцитов крови, для чего у пациента забирают 5-20 мл венозной крови в стерильную пробирку с раствором антикоагулянта (гепарин). Затем отделяют лейкоциты и проводят их обработку по изложенным выше этапам.

Следующий этап подготовки материала к исследованию -- «разрезание» ДНК на фрагменты в участках со строго специфической последовательностью оснований, которое осуществляют с помощью бактериальных ферментов -- рестрикционных эндонуклеаз (рестриктаз). Рестриктазы узнают специфические последовательности из 4-6, реже 8-12 нуклеотидов в двухцепочечной молекуле ДНК и разделяют её на фрагменты в местах локализации этих последовательностей, называемых сайтами рестрикции. Количество образующихся рестрикционных фрагментов ДНК определяется частотой встречаемости сайтов рестрикции, а размер фрагментов -- характером распределения этих сайтов по длине исходной молекулы ДНК. Чем чаще расположены сайты рестрикции, тем короче фрагменты ДНК после рестрикции. В настоящее время известно более 500 различных типов рестриктаз бактериального происхождения, и каждый из этих ферментов узнаёт свою специфическую последовательность нуклеотидов. В дальнейшем сайты рестрикции могут быть использованы в качестве генетических маркёров ДНК. Образовавшиеся в результате рестрикции фрагменты ДНК могут быть упорядочены по длине путём электрофореза в агарозном или полиакриламидном геле, а тем самым может быть определена их молекулярная масса. Обычно для выявления ДНК в геле используется специфическое окрашивание (чаще бромидом этидия) и просмотр геля в проходящем свете ультрафиолетовой области спектра. Места локализации ДНК имеют красную окраску. Однако у человека при обработке ДНК несколькими рестриктазами образуется так много фрагментов различной длины, что их не удаётся разделить с помощью электрофореза, то есть не удаётся визуально идентифицировать отдельные фрагменты ДНК на электрофоре-грамме (получают равномерное окрашивание по всей длине геля). Поэтому для идентификации нужных фрагментов ДНК в таком геле используют метод гибридизации с мечеными ДНК-зондами.

Любой одноцепочечный сегмент ДНК или РНК способен связываться (гибридизироваться) с комплементарной ему цепью, причём гуанин всегда связывается с цитозином, аденин с тимином. Так происходит образование двухцепочечной молекулы. Если одноцепочечную копию клонированного гена пометить радиоактивной меткой, получится зонд. Зонд способен отыскивать комплементарный сегмент ДНК, который затем легко идентифицировать с помощью радиоавтографии. Радиоактивный зонд, добавленный к препарату растянутых хромосом, позволяет локализовать ген на определённой хромосоме: с помощью ДНК-зонда можно идентифицировать определённые участки при саузерн-блоттинге. Гибридизация происходит, если тестируемый участок ДНК содержит нормальный ген. В случае, когда присутствует ненормальная последовательность нуклеотидов, то есть соответствующие структуры хромосомы содержат мутантный ген, гибридизация не произойдёт, что позволяет определить локализацию патологического гена.

Для получения ДНК-зондов используют метод клонирования генов. Сущность метода состоит в том, что фрагмент ДНК, соответствующий какому-либо гену или участку гена, встраивают в клонирующую частицу, как правило, бактериальную плазмиду (кольцевая внехромосомная ДНК, присутствующая в клетках бактерий и несущая гены устойчивости к антибиотикам), и затем бактерии, имеющие плазмиду со встроенным человеческим геномом, размножают. Благодаря процессам синтеза в плазмиде удаётся получить миллиарды копий человеческого гена или его участка.

В дальнейшем полученные копии ДНК, меченные радиоактивной меткой или флюорохромами, используют в качестве зондов для поиска комплементарных последовательностей среди исследуемого пула молекул ДНК.

В настоящее время существует множество разновидностей методов с использованием ДНК-зондов для диагностики генных мутаций.

Методы поиска и выделения фрагментов ДНК. Гибридизация с ДНК-зондами

Длительное время, до разработки ПЦР, единственными методами обнаружения и выделения специфических фрагментов ДНК (геномных и кДНК)с целью их последующего изучения были гибридизация с ДНК-зондами и клонирование, несмотря на целый ряд ограничений их применения. К основным ограничениям относятся следующие: большой размер исследуемых фрагментов, значительно превосходящий длину ДНК-зондов и препятствующий прямому молекулярному анализу; невозможность произвольного выбора концов изучаемых последовательностей, определяющихся наличием соответствующих сайтов рестрикции в исходной молекуле ДНК; необходимость большого количества хорошо очищенной высокомолекулярной геномной ДНК (не менее 10 мкг на одну реакцию, что равноценно 0,5--1 мл крови), для геномной гибридизации -- наличие радиоактивных ДНК-зондов с высокой удельной активностью, действующих ограниченный промежуток времени, и специально оборудованного изотопного блока. К тому же длительная экспозиция автографов значительно удлиняет время получения результатов.

Все это, а также большая трудоемкость исследований, ограничивают использование методов блот-гибридизации и клонирования для пренатальной диагностики плода (ответ в этом случае надо получить быстро) и диагностики наследственного заболевания при гибели больного в этом случае невозможно получить большое количество ДНК). Однако эти методы не потеряли своей актуальности и используются для картирования и изучения новых генов.

ДНК-зонд -- одноцепочечная ДНК, длиной до 30 нуклеотидов, используемая для поиска комплементарных последовательностей в молекуле большего размера или среди множества разнообразных молекул ДНК. ДНК-зонды можно синтезировать искусственно либо выделить из генома. Затем эти последовательности клонируют, чтобы иметь возможность получать их в любое время и в неограниченном количестве.

Блот-гибридизация. Это высокочувствительный метод идентификации специфических последовательностей ДНК. Денатурированные фрагменты ДНК переносят на плотный носитель - нитроцеллюлозный фильтр или нейлоновую мембрану. Далее фиксированную на этом носителе ДНК гибридизуют с радиоактивно меченным ДНК- или РНК-зондом. Затем положение искомого фрагмента геномной ДНК на электрофореграмме определяют методом радиоавтографии. При длительной экспозиции (в течение нескольких дней) и при высокой удельной радиоактивности ДНК-зонда этот метод позволяет выявлять менее чем 0,1 пг ДНК.

В зависимости от типа изучаемого вещества, способов его предварительной обработки и переноса (блоттинга) различают несколько разновидностей этого метода.

Саузерн-блот, или блот-гибридизация по Саузерну -- наиболее эффективный метод идентификации определенных молекул ДНК среди электрофоретически разделенных фрагментов, предложенный в 1975 г. Эдвардом Саузерном. Геномную ДНКобрабатывают одной или несколькими рестриктазами и образовавшиеся фрагменты разделяют по относительной молекулярной массе в агарозном или акриламидном геле. Далее фрагменты ДНК подвергают денатурации in situ и переносят с геля на плотный носитель. В данном случае блоттинг (перенос) осуществляется за счет действия капиллярных сил, электрического поля или вакуума.

Методы дот- и слот-гибридизации получили свои названия в зависимости от формы анализируемого пятна ДНК на фильтре - округлой или продолговатой, соответственно. На твердую матрицу препараты ДНК и РНК наносятся капельно. Принципиальное отличие этих методов в том, что с меченым ДНК-зондом гибридизуются молекулы ДНК или РНК без предварительной обработки рестриктазами и электрофореза.

Нозерн-блот (Northern-blot) - метод гибридизации ДНК-зондов с электрофоретически разделенными молекулами РНК.

Вестерн-блот (Western-blot), или иммуноблот, - это связывание электрофоретически разделенных белков, фиксированных на фильтрах, с мечеными антителами.

Перечисленные виды блот-гибридизации имеют ряд недостатков: необходимость использования хорошо очищенных препаратов ДНК и радиоактивных зондов, длительность и трудоемкость процедуры. Все это делает данные методы весьма дорогостоящими. Тем не менее, блот-гибридизация не утратила своего значения и в настоящее время. Использование различных вариантов нерадиоактивного мечения (биотин- или флуоресцеин-меченные ДНК-зонды) или окраски ДНК нитратом серебра позволяет применять этот метод для диагностики генных болезней [1].

Гибридизация in situ. Метод гибридизации с ДНК-зондами на гистологических или хромосомных препаратах (т.е. метод гибридизации, не требующий предварительного выделения и очистки ДНК). В настоящее время наиболее широко используется FISH (от англ. fluorescent in situ hybridization) -- вариант метода, при котором в качестве зондов используют препараты ДНК или РНК, меченные флуорохромами.

Меченый ДНК-зонд наносят на препараты дифференциально окрашенных и подготовленных для гибридизации (денатурированных) метафазных хромосом. После удаления не связавшихся молекул ДНК и специфической обработки, в зависимости от типа использованного зонда, места хромосомной локализации последовательностей ДНК, комплементарных соответствующим ДНК-зондам, наблюдают в микроскоп в виде характерных светящихся точек. Гибридизация in situ - один из наиболее эффективных методов картирования комплементарных ДНК-зонду последовательностей ДНК на хромосомах. Его применяют при исследовании распределения по геному повторяющихся последовательностей ДНК, клонированных последовательностей ДНК анонимного происхождения; при определении хромосомной принадлежности и внутрихромосомной локализации уникальных генов, взаиморасположения клонированных фрагментов ДНК даже в пределах одного хромосомного локуса. Разрешающая способность FISH-метода достигает нескольких хромосомных бэндов: при проведении гибридизации in situ на интерфазных (растянутых) хромосомах человека она может достигать 50 т.п.н., что составляет около 5% величины среднего хромосомного бэнда.

Гибридизация in situ молекул РНК с кДНК-зондами, проводимая на гистологических препаратах, эффективно используется для анализа тканеспецифического распределения и внутриклеточной локализации мРНК.

Полимеразная цепная реакция (ПЦР)

Настоящую революцию в методологии исследования ДНК сделал Кари Мюллис, который в 1983 году предложил метод полимеразной цепной реакции (ПЦР). За это значительное открытие он получил Нобелевскую премию. Принцип метода состоит в получении большого количества копий некоторого фрагмента ДНК благодаря репликации in vitro. При этом исходное количество молекул с наследственной информацией может быть очень малым, достаточно даже одной молекулы, которая имеет большое значение в применении молекулярной диагностики для определения присутствия ДНК инфекционных агентов.

Для проведения ПЦР в реакционной смеси должны присутствовать:

· Олигонуклеотидные праймеры - искусственно синтезированные фрагменты ДНК размером 15 - 30 п.о., которые комплементарны последовательностям нуклеотидов в начале и в конце фрагмента ДНК, который синтезируется;

· Taq - полимераза - термостабильный фермент, который достраивает комплементарную цепочку ДНК;

· Смесь дезоксинуклеотидтрифосфатов - материал для построения второй цепочки ДНК;

· Образец, который исследуется - подготовленный к внесению в реакционную смесь препарат, который может содержать ДНК, которую ищут (мишень для многоразового копирования). Если в смеси ДНК-мишень отсутствует, специфический продукт амплификации не образуется. При наличии ДНК-мишени и специальном температурном режиме образуется от миллиона до миллиарда копий исследуемого фрагмента, и такое количество ДНК хорошо видно в условиях электрофоретического расщепления.

...

Подобные документы

  • Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).

    презентация [2,4 M], добавлен 14.04.2014

  • Сведения о нуклеиновых кислотах, история их открытия и распространение в природе. Строение нуклеиновых кислот, номенклатура нуклеотидов. Функции нуклеиновых кислот (дезоксирибонуклеиновая - ДНК, рибонуклеиновая - РНК). Первичная и вторичная структура ДНК.

    реферат [1,8 M], добавлен 26.11.2014

  • История изучения нуклеиновых кислот. Состав, структура и свойства дезоксирибонуклеиновой кислоты. Представление о гене и генетическом коде. Изучение мутаций и их последствий в отношении организма. Обнаружение нуклеиновых кислот в растительных клетках.

    контрольная работа [23,2 K], добавлен 18.03.2012

  • Особенности применения метода ядерного магнитного резонанса (ЯМР) для исследования нуклеиновых кислот, полисахаридов и липидов. Исследование методом ЯМР комплексов нуклеиновых кислот с протеинами и биологических мембран. Состав и структура полисахаридов.

    курсовая работа [3,5 M], добавлен 26.08.2009

  • Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.

    презентация [628,3 K], добавлен 19.12.2014

  • История изучения нуклеиновых кислот как биополимеров, мономерами которых являются нуклеотиды, функции и значение в жизнедеятельности организма. Правила Чаргаффа. Первичная и вторичная структура ДНК. Особенности репликации у эукариот, ее разновидности.

    презентация [533,6 K], добавлен 05.11.2014

  • Первичная, вторичная и третичная структуры ДНК. Свойства генетического кода. История открытия нуклеиновых кислот, их биохимические и физико-химические свойства. Матричная, рибосомальная, транспортная РНК. Процесс репликации, транскрипции и трансляции.

    реферат [4,1 M], добавлен 19.05.2015

  • Клетка как элементарная единица строения и жизнедеятельности организмов. Молекулярная масса белков, методы ее определения. Классификация белков по степени сложности. Виды нуклеиновых кислот, их биологическая роль. Витамины в питании человека и животных.

    контрольная работа [1,1 M], добавлен 17.10.2015

  • Распад нуклеиновых кислот, гидролиз. Классификация нуклеаз по месту и специфичности действия. Экзодезоксирибонуклеазы, рестриктазы. гуанилрибонуклеазы. Распад пуриновых и пиримидиновых оснований. Образование 5-фосфорибозиламина, присоединение глицина.

    презентация [8,7 M], добавлен 13.10.2013

  • Понятие генетического кода как единой системы записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Этапы реализации, свойства и расшифровка хромосомы в клетке. Работа по секвенсированию генома человека.

    реферат [89,1 K], добавлен 18.01.2011

  • Информация о строении белков. Матричный принцип. Генетическая роль нуклеиновых кислот. Центральная догма молекулярной биологии. Репликция, репарация и полуконсервативность. Недорепликация концов линейных молекул, теломераза. Технология амплификации ДНК.

    презентация [3,3 M], добавлен 14.04.2014

  • Структура и функции нуклеиновых кислот. ДНК как основной материальный носитель наследственности. Закон гомологических рядок Н.И. Вавилова, его значение в практической селекции. Роль амфидиплоидии в восстановлении плодовитости отдаленных гибридов.

    контрольная работа [55,8 K], добавлен 03.10.2011

  • Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.

    контрольная работа [28,4 K], добавлен 23.04.2013

  • Биологическая роль нуклеиновых кислот. Строение и значение ферментов. Общая характеристика и биологические функции почек. Патологические компоненты в моче. Молекулярные механизмы утомления. Основные факторы, лимитирующие спортивную работоспособность.

    контрольная работа [129,7 K], добавлен 20.06.2012

  • История открытия нуклеиновых кислот. Основные виды РНК. Методы цитологического распознавания ДНК и РНК. Закономерности количественного содержания азотистых оснований в молекуле ДНК, правила Чаргаффа. Строение молекул РНК. Структура азотистых оснований.

    презентация [1,4 M], добавлен 13.01.2011

  • История открытия биологического полимера, состоящего из двух спирально закрученных цепочек. Первичная структура нуклеиновых кислот, конформация их компонентов. Взаимодействия между гетероциклическими основаниями в них. Полиморфизм двойной спирали.

    презентация [1,6 M], добавлен 24.02.2015

  • Сущность, состав нуклеотидов, их физические характеристики. Механизм редупликации дезоксирибонуклеиновой кислоты (ДНК), транскрипция ее с переносом наследственной информации на РНК и механизм трансляции — синтез белка, направляемый этой информацией.

    реферат [461,8 K], добавлен 11.12.2009

  • Геном человека. Генетические продукты. Определение отцовства методом ДНК-диагностики. Дактилоскопическая идентификация человека. Гистологические и цитологические методы исследования в судебной медицине. Век биологии и генетики.

    реферат [18,9 K], добавлен 18.04.2004

  • История открытия дезоксирибонуклеиновой кислоты - биологического полимера, состоящего из двух спирально закрученных цепочек. Первичная структура и конформации компонентов нуклеиновых кислот. Макромолекулярная структура ДНК, полиморфизм двойной спирали.

    презентация [1,1 M], добавлен 07.11.2013

  • Первичная структура полинуклеотидов. Вторичная и третичная структуры ДНК. Типы РНК и их биологические функции. Физико-химические свойства ДНК. Структура и физико-химические свойства РНК. Определение нуклеозидфосфатов методом тонкослойной хроматографии.

    курсовая работа [1,4 M], добавлен 20.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.