Краткая характеристика и классификация нефтетехнологических процессов

Классификация процессов переработки нефти, газовых конденсатов и газов. Специфика и история развития нефтетехнологических процессов. Промышленные установки по первичной переработке сырья. Физико-химические свойства и методы выделения компонентов.

Рубрика Химия
Вид шпаргалка
Язык русский
Дата добавления 13.01.2014
Размер файла 808,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Классификация процессов переработки нефти, газовых конденсатов и газов

Технологические процессы НПЗ принято классифицировать на следующие 2 группы: физические и химические.

1. Физическими (массообменными) процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений и удаление(извлечение) из фракций нефти, нефтяных остатков, масляных фракций, газоконденсатов и газов нежелательных компонентов (полициклических ароматических углеводородов, асфальтенов, тугоплавких парафинов), неуглеводородных соединений. Физические процессы по типу массообмена можно подразделить на следующие типы:1.1 -- гравитационные;1.2-- ректификационные;1.3 -- экстракционные (деасфальтизация, селективная очистка, депарафинизация кристаллизацией); 1.4 -- адсорбционные (депарафинизация цеолитная, контактная очистка);абсорбционные;В химических процессах переработка нефтяного сырья осуществляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных НПЗ, по способу активации химических реакций подразделяются на: термические; каталитические.Термические процессы по типу протекающих химических реакций можно подразделить на следующие типы: -- термодеструктивные (термический крекинг, висбрекинг, коксование, пиролиз, пекование, производство технического углерода и др.); -- термоокислительные (производство битума, газификациякокса, углей и др.).В термодеструктивных процессах протекают преимущественно реакции распада (крекинга) молекул сырья на низкомолекулярные, а также реакции конденсации с образованием высокомолекулярных продуктов, например кокса, пека и др. Каталитические процессы по типу катализа можно классифицировать на следующие типы:-- гетеролитические, протекающие по механизму кислотного катализа (каталитический крекинг, алкилирование, полимеризация, производство эфиров и др.);-- гомолитические, протекающие по механизму окислительно-восстановительного (электронного) катализа (производства водорода и синтез газов, метанола, элементной серы);-- гидрокаталитические, протекающие по механизму бифункционального (сложного) катализа (гидроочистка, гидрообессеривание гидрокрекинг, каталитический риформииг, изомеризация, гидродеароматизация, селективная гидродепарафинизация и др.).Структура нефтеперерабатывающей промышленности некоторых стран

НПЗ

Катализатор

Количество, тонн

Сроки использования, лет

Павлодарский

Риформинг, КР-108

Гидроочистка, ГО-70

Крекинг, ДА-250

100

50

1000

5

5

1

Шымкентский

Риформинг, КР-108

Гидроочистка, ГО-70

Крекинг, ДА-250

80

120

800-1000

5

5

1

Атырауский

Риформинг, АП-64

Гидроочистка, ГО-70

24

8-10

5

5

Алгинский

Риформинг

Гидроочистка

Крекинг

35-40

50-60

400-500

5

5

1

Мангистауский

Риформинг

Гидроочистка

Крекинг

40-50

50-60

500-700

5

5

1

Жанажольский

Риформинг

Гидроочистка

Крекинг

Кумкольский

Риформинг

Гидроочистка

Крекинг

Глобальные изменения в структуре мирового производства и потребления нефтехимической продукции привели к перестройке ведущих химических компаний. Перестройка химических фирм протекает на фоне стремления к экономии средств, внедрения высокоэффективных экологически безопасных технологий, предпочтения выпуска продукции с высокой добавленной стоимостью, расширения сети филиалов в странах с дешевыми трудовыми ресурсами.

Основными тенденциями развития мировой нефтехимической промышленности являются:

ужесточение экологических норм - принята и реализуется международная программа «Responsible Care» (Ответственная забота), система регистрации, оценки свойств и оформления разрешения на производство различных видов химических продуктов.рост стоимости рабочей силы и энергоресурсов при стремлении к оптимизации производств. Поиск схем эффективного размещения внес существенные изменения в географию размещения химической промышленности: к традиционным районам - США, Западная Европа, Япония -присоединяются новые - Ближний Восток, Индия, Китай, страны Юго-Восточной Азии и Латинской Америки. переход на безопасные и эффективные технологии, частая их сменяемость. Основной упор в новых технологиях делается на обеспечение качества продукции, уменьшение расхода сырья, энергии, сокращение числа стадий химических процессов. По прогнозам, в ближайшие 15 лет объем производства нефтехимической продукции увеличится на 85 процентов;

упор на небольшие поточные линии, производящие малотоннажную химическую продукцию. увеличение удельного веса газового сырья (метана, пропана, бутана). В США, Канаде, Германии, Саудовской Аравии, Алжире, Чили и некоторых других странах «газохимическое крыло» занимает важнейшее место в нефтехимии. Технологии, основанные на переработке природного газа и газового конденсата, позволяют достигать высокой технологичности и экономичности производства.

Перспективы В нефтепереработке будет происходить диверсификация каталитических процессов, направленная на рост числа новых процессов риформинга нефти.

Потребуется много новых катализаторов для переработки тяжелых фракций, в том числе глубокая десульфуризация дизельных фракций и мазута.

В реакциях нефтепереработки важно достичь баланса по водороду - получение в одних процессах, потребление в других.

Ключевые процессы для нефтепераработки в ближайшем будущем - глубокий гидрокрекинг, изомеризация н-гентана (на эти продукты приходится «октановая яма» в зависимости октанового числа от числа атомов С в линейных парафинах), удаление ароматических и раскрытие кольца в полициклических углеводородах. Переработка природного газа в жидкое топливо (GTL, gas-to-liquid) становится главнейшей отраслью каталитической химии. Нефтехимический завод будущего

2. Специфика, история развития и актуальные проблемы НПЗ. Краткая характеристика и классификация НПЗ

НПЗ представляет собой совокупность основных нефтетехнологических процессов (установок, цехов, блоков), а также вспомогательных и обслуживающих служб, обеспечивающих нормальное функционирование промышленного предприятия (товарно-сырьевые, ремонтно-механические цеха, цеха КИПиА, паро-, водо- и электроснабжения, цеховые и заводские лаборатории, транспортные, пожаро- и газоспасательные подразделения, медпункты, столовые, диспетчерская, дирекция, отделы кадров, финансов, снабжения, бухгалтерия и т.д.).

Целевое назначение НПЗ -- производство в требуемых объеме и ассортименте высококачественных нефтепродуктов и сырья для нефтехимии (в последние годы -- и товаров народного потребления).По ассортименту выпускаемых нефтепродуктов НПЗ делятся на группы:

1) НПЗ топливного профиля;

2) НПЗ топливно-масляного профиля;

3) НПЗ топливно-нефтехимического профиля (нефтехимкомбинаты);

4) НПЗ (нефтехимкомбинаты) топливно-масляно-нефтехимического профиля.

Наряду с мощностью и ассортиментом нефтепродуктов, важным показателем НПЗ является глубина переработки нефти (ГПН). Глубина переработки нефти -- показатель, характеризующий эффективность использования сырья. По величине ГПН можно косвенно судить о насыщенности НПЗ вторичными процессами и структуре выпуска нефтепродуктов.

В отечественной нефтепереработке под ГПН подразумевается суммарный выход в % на нефть всех нефтепродуктов, кроме непревращенного остатка, используемого в качестве котельного топлива

В современной нефтепереработке принято подразделять НПЗ (без указания разграничивающих пределов ГПН) на два типа: с неглубокой переработкой (НГП) и глубокой переработкой нефти (ГПН). Такая классификация недостаточно информативна, особенно относительно НПЗ типа ГПН: неясно, какие именно вторичные процессы могут входить в его состав.

По признаку концентрирования остатка удобно классифицировать НПЗ на 4 типа:

1) НПЗ с неглубокой переработкой нефти (НГП);2) НПЗ с углубленной переработкой нефти (УПН);3) НПЗ с глубокой переработкой нефти (ГПН);4) НПЗ с безостаточной переработкой нефти (БОП).

Качество перерабатываемого нефтяного сырья оказывает существенное влияние на технологическую структуру и технико-экономические показатели НПЗ. Легче и выгоднее перерабатывать малосернистые и легкие нефти с высоким потенциальным содержанием светлых, чем сернистые и высокосернистые, особенно с высоким содержанием смолисто-асфальтеновых веществ, переработка которых требует большей насыщенности НПЗ процессами облагораживания. Завышенные затраты на переработку низкосортных нефтей должны компенсироваться заниженными ценами на них.

Одним из важных показателей НПЗ является также соотношение дизтопливо/бензин. На НПЗ НГП это соотношение не поддается регулированию и обусловливается потенциальным содержанием таких фракций в перерабатываемой нефти. На НПЗ УГП или ГПН потребное соотношение дизтопливо/бензин регулируется включением в состав завода вторичных процессов, обеспечивающих выпуск компонентов автобензинов и дизтоплива в соответствующих пропорциях. Так, НПЗ преимущественно бензинопроизводящего профиля комплектуется, как правило, процессами каталитического крекинга и алкилирования.

Для преобладающего выпуска ДТ в состав НПЗ обычно включают процесс гидрокрекинга. Наиболее важным показателем структуры НПЗ является набор технологических процессов, который должен обеспечить оптимальную ГПН и выпуск заводом заданного ассортимента нефтепродуктов высокого качества с минимальными капитальными и эксплуатационными затратами. При минимизации капитальных и эксплуатационных затрат наиболее значительный эффект достигается, когда в проекте предусматривается строительство НПЗ на базе крупнотоннажных технологических процессов и комбинированных установок.

Наиболее часто комбинируют следующие процессы: ЭЛОУ-АВТ, гидроочистка бензина -- каталитический риформинг, гидроочистка вакуумного газойля каталитический крекинг-- газоразделение, сероочистка газов -- производство серы; газофракционирование и др.

3. Основные принципы углубления переработки нефти НПЗ топливного профиля

НПЗ неглубокой переработки нефти характеризуется наиболее простой технологической структурой, низкими капитальными и эксплуатационными затратами по сравнению с НПЗ углубленной и глубокой переработкой нефти.

Основной недостаток НПЗ неглубокой переработки нефти -- большой удельный расход ценного и дефицитного нефтяного сырья и ограниченный ассортимент нефтепродуктов.

Наиболее типичный нефтепродукт такого типа НПЗ -- котельное топливо, дизтопливо, автобензины, сухой и сжиженные газы. Глубина отбора моторного топлива ограничивается потенциальным содержанием их в исходной нефти.

Строительство НПЗ неглубокой переработки нефти могут позволить себе лишь страны, располагающие неограниченными ресурсами нефти (Саудовская Аравия, Иран, Ирак, Кувейт). Нефтепереработка РК со скромными запасами нефти (менее 8% от мировых), должна ориентироваться только на глубокую и безостаточную переработку нефти.

Осуществление технологии следующей ступени нефтепереработки углубленной (УГП) переработки нефти с получением моторных топлив в количествах, превышающих потенциальное их содержание в исходном сырье, связано с физико-химической переработкой остатка от атмосферной перегонки -- мазута.

В мировой практике при УГП и ГПН исключительно широкое распространение получили схемы переработки мазута посредством вакуумной переработки или глубоковакуумной переработкой с последующей каталитической переработкой вакуумного и глубоковакуумного газойля (ВГ и ГВГ) в компоненты моторных топлив.

Количество трудноперерабатываемого тяжелого нефтяного остатка -- гудрона -- при этом примерно вдвое меньше по сравнению с мазутом.

Технология химической переработки вакуумного газойля (ВГ) в нефтепереработке давно освоена и не представляет значительных технических трудностей.

Глубокая переработка гудронов с максимальным получением компонентов моторных топлив может быть осуществлена посредством тех же промышленных технологических процессов, которые применяются при переработке ВГ (ГВГ), но с предварительной деасфальтизацией и деметаллизацией сырья, где одновременно достигается деметаллизация и снижение коксуемости нефтяного остатка.

Для этой цели более предпочтительна энергосберегающая технология процесса термоадсобционная деасфальтизация и деметаллизация (ТАДД) и деметаллизация типа термоадсобционного облагораживания тяжелого сырья каталитического крекинга (АРТ), 3Д, адсорбционно-контактная очистка (АКО) и ЭТКК.

В состав перспективных НПЗ рекомендованы освоенные в промышленном или опытно-промышленном масштабе такие процессы нового поколения, как ТАДД типа 3Д или АРТ мазута или гудрона; легкий гидрокрекинг (ЛКГ) и гидрокрекинг (ГК) деметаллизованного газойля, каталитический крекинг типа ККМС газойля, а также сопутствующие ККМС процессы производства высококачественных бензинов -- алкилирование и производство МТБЭ.

Эти схемы перспективных НПЗ позволяют получить высокооктановые компоненты автомобильного бензина, такие как изомеризат, риформат, алкилат, МТБЭ, бензины каталитического и гидрокрекинга, сжиженные газы, столь необходимые для производства неэтилированных высокооктановых бензинов с ограниченным содержанием аренов, а также малосернистые ДТ и ракетные топлива летних и зимних сортов.

Общей современной тенденцией в структуре использования нефти в мировой экономике является снижение доли ее потребления в электро- и теплоэнергетике в качестве котельно-печного топлива и увеличение -- в качестве транспортного моторного топлива и нефтехимического сырья.

Это обусловлено опережающим развитием за последние годы транспортных средств с ДВС по сравнению с развитием энергетики, т.е. превышением темпов моторизации по сравнению с темпами электрификации.

В настоящее время на долю нефтехимии приходится относительно небольшое количество -- около 8 % маcсового потребляемой нефти. В различных странах эта доля колеблется в пределах 2...10 %.

К концу XXI в. нефтехимия станет почти единственным направлением применения нефти. Объемы переработки нефти в мире за последние годы изменялись почти пропорционально темпам ее добычи. В период «нефтяного бума» (1960-1970 гг.) при наличии дешевой ближневосточной и латиноамериканской нефти число и суммарные мощности НПЗ в мире увеличивались исключительно быстрыми темпами. При этом на НПЗ развитых стран (за исключением США), а также стран Латинской Америки, Ближнего и Среднего Востока и Африки преимущественное распространение получили схемы с неглубокой и умеренной глубинной нефтепереработкой в США вследствие традиционно высокого уровня потребления моторных топлив и наличия дешевых ресурсов природного газа и угля осуществлялась глубокая переработка нефти.

Структура использования нефти в мировой экономике, % мас.

Показатель нефтепереработки

Тип НПЗ

НГП

УПН

ГПН

БОП

Тип остатка

Мазут

Гудрон

Тяжелый гудрон

Нет остатка

Выход остатка, % на нефть средней сортности

40…55

20…30

10…15

0

Глубина переработки нефти, % мас.

45…60

70…80

85…90

100

Транспорт

52

в т. ч. автомобильный

40

Электро- и теплоэнергетика (котельно-печное топливо)

35

Нефтехимия

8,0

4. Классификация товарных нефтепродуктов

Нефтеперерабатывающая промышленность вырабатывает исключительно большой ассортимент (более 500 наименований) газообразных, жидких и твердых нефтепродуктов. Требования к ним весьма разнообразны и диктуются постоянно изменяющимися условиями применения или эксплуатации того или иного конкретного нефтепродукта. Поскольку требования как к объему производства, так и к качеству товаров диктуют их потребители, то принято классифицировать нефтепродукты по их назначению, т. е. по направлению их использования в отраслях народного хозяйства.

В соответствии с этим различают:

1. Моторные топлива.

2. Энергетические топлива

3. Нефтяные масла.

4. Углеродные и вяжущие материалы.

5. Нефтехимическое сырье.

6. Нефтепродукты специального назначения.

Моторное топливо в зависимости от принципа работы двигателей подразделяют на:

1.1. Бензины (авиационные и автомобильные).

1.2. Реактивное топливо.

1.3. Дизельное топливо.

Энергетические топлива подразделяют на:

2.1. Газотурбинные.

2.2. Котельные и судовые

Нефтяные масла подразделяют на смазочные и несмазочные. Смазочные масла подразделяют на:

3.1. Моторные для поршневых и реактивных двигателей.

3.2. Трансмиссионные и осевые, предназначенные для смазки автомобильных и тракторных гипоидных трансмиссий (зубчатых передач различных типов) и шеек осей железнодорожных вагонов и тепловозов.

3.3. Индустриальные масла предназначены для смазки станков, машин и механизмов различного промышленного оборудования, работающих в разнообразных условиях и с различной скоростью и нагрузкой. По значению вязкости их подразделяют на легкие (швейное, сепараторное, вазелиновое, приборное, веретенное, велосит и др.), средние (для средних режимов скоростей и нагрузок) и тяжелые (для смазки кранов, буровых установок, оборудования мартеновских печей, прокатных станов и др.).

3.4. Энергетические масла (турбинные, компрессорные и цилиндровые) -- для смазки энергетических установок и машин, работающих в условиях нагрузки, повышенной температуры и воздействия воды, пара и воздуха. Несмазочные (специальные) масла предназначены не для смазки, а для применения в качестве рабочих жидкостей в тормозных системах, в пароструйных насосах и гидравлических устройствах, в трансформаторах, конденсаторах, маслонаполненных электрокабелях в качестве электроизолирующей среды (трансформаторное, конденсаторное, гидравлическое, вакуумное), а также такие как вазелиновое, медицинское, парфюмерное, смазочно-охлаждающие жидкости и др.

Углеродные и вяжущие материалы включают:

4.1. Нефтяные коксы.

4.2. Битумы.

4.3. Нефтяные пеки (связующие, пропитывающие, брикетные, волокнообразующие и специальные).

Нефтехимическое сырье. К этой группе можно отнести:

5.1. Арены (бензол, толуол, ксилолы, нафталин и др.).

5.2. Сырье для пиролиза (нефтезаводские и попутные нефтяные газы, прямогонные бензиновые фракции, алкен содержащие газы и др.).

5.3. Парафины и церезины. Вырабатываются как жидкие (получаемые карбамидной и адсорбционной депарафинизацией нефтяных дистиллятов), так и твердые (получаемые при депарафинизации масел). Жидкие парафины являются сырьем для получения белкововитаминных концентратов, синтетически жирных кислот и поверхностно-активных веществ.

Нефтепродукты специального назначения подразделяют на:

6.1. Термогазойль (сырье для производства технического углерода).

6.2. Консистентные смазки (антифрикционные, защитные и уплотнительные).

6.3. Осветительный керосин.

6.4. Присадки к топливам и маслам, деэмульгаторы.

6.5. Элементная сера

6.6. Водород и др

Классификация нефтей

Химическая, генетическая, технологическая, промышленная, товарные и др.На ранних этапах развития нефтяной промышленности определяющим показателем качества нефти считалась плотность. В зависимости от плотности нефти подразделяли на легкие (с1515 < 0,828), утяжеленные (с1515=0,828 - 0,884) и тяжелые (с1515р > 0,884). В легких нефтях содержится больше бензиновых фракций, относительно мало смол и серы. Из нефтей этого типа вырабатываются смазочные масла высокого качества.

Тяжелые нефти характеризуются высоким содержанием смол; чтобы получить из них масла, необходимо применять специальные методы очистки - обработку избирательными растворителями, адсорбентами и т. п. Однако тяжелые нефти - наилучшее сырье для производства битумов.

Химическая классификация.

(предложена Грозненским нефтяным научно-исследовательским институтом (ГрозНИИ).

По преимущественно содержание в нефти одного или нескольких классов углеводов. 6 типов:парафиновые,парафино-циклановые, циклановые, парафино-нафтено-ароматические, нафтено-ароматическиеароматические.

В парафиновых нефтях (типа узеньской, жетыбайской) все фракции содержат значительное количе-ство алканов: бензиновые -- не менее 50 %, а масляные -- 20 % и более. Асфальтенов и смол мало.В парафино-циклановых нефтях и их фракциях преобладают алканы и циклоалканы, аренов мало. Для циклановых нефтей характерно высокое (до 60 % и более) содержание циклоалканов во всех фракциях. Они содержат количество твердых парафинов, смол и асфальтенов. К циклановым относят нефти Эмбы (доссорская и макатская).В парафино-нафтено-ароматических нефтях содержатся примерно в равных количествах углеводы всех трех классов, твердых парафинов не более 1,5 %. Количество смол и асфальтенов достигает 10%.Нафтено-ароматические нефти характеризуются преобладающим содержанием цикланов и аренов, особенно в тяжелых фракциях. Алканы содержатся в небольшом количестве только в легких фракциях. В состав этих нефтей входит около 15-20 % смол и асфальтенов.

Ароматические нефти характеризуются преобладанием аренов во всех фракциях и высокой плотностью. К ним относят прорвинскую в Казахстане.

Более точную характеристику нефтей содержит химическая классификация нефтей, предложенная Горным бюро США. В основу классификации положена связь между плотностью и углеводородным составом нефтей. Исследованию подвергаются фракция, перегоняющаяся при атмосферном давлении в интервале 250-275°С (характерная фракция легкой части нефти), и фракция, перегоняющаяся при остаточном давлении 5,3 кПа в пределах 275-300°С (характерная фракция тяжелой части нефти). Определив плотность обеих характерных фракций, легкую и тяжелую части нефти относят к одному из трех классов соответственно границам, установленным для нефтей различных типов .

Таблица 1 Нормы для классификации нефтей, предложенной Горным бюро США

Фракции

Плотность фракций нефти

парафинового основания

промежуточного основания

нафтенового основания

250-275 °С (при атмосферном давлении)

< 0,8251

0,8251-0,8597

> 0,8597

275-300 °С (при 5,3кПа)

< 0,8762

0,8762-0,9334

> 0,9334

Далее на основе данных о характерных фракциях определяют, к какому из семи классов должна быть отнесена нефть. Недостатки этой классификации - в известной условности границ плотностей характерных фракций и в том, что обозначения отдельных классов не отражают действительного состава нефти.

ТАБЛИЦА 2 Химическая классификация нефтей, предложенная Горным бюро США

№№

Основание (класс) нефти

Основание легкой части нефти

Основание тяжелой части нефти

1

Парафиновое

Парафиновое

Парафиновое

2

Парафино-промежуточное

Парафиновое

Промежуточное

3

Промежуточно-парафиновое

Промежуточное

Парафиновое

4

Промежуточное

Промежуточное

Промежуточное

5

Промежуточно-нафтеновое

Промежуточное

Нафтеновое

6

Нафтено-промежуточное

Нафтеновое

Промежуточное

7

Нафтеновое

Нафтеновое

Нафтеновое

Технологическая классификация нефтей в нашей стране действует с 1967 г. Нефти подразделяют на: классы - по содержанию серы в нефти, бензине, реактивном и дизельном топливе; типы - по выходу фракций до 350°С; группы - по потенциальному содержанию базовых масел; подгруппы -по индексу вязкости базовых масел; виды - по содержанию парафина в нефти.

Нефть малосернистая (I класс) содержит не более 0,5% серы, при этом в бензиновой фракции - не более 0,15%, в реактивно-топливной - не более 0,1%, в дизельной - не более 0,2%. Однако, если сернистые соединения сосредоточены в тяжелых остатках, а дистиллятные топливные фракции содержат серу в количествах, не превышающих норм, установленных для I класса, то и сама нефть должна быть отнесена к малосернистой. Если же содержание серы в каком-либо одном или нескольких дистиллятных топливах превышает указанные пределы, то нефть относится к сернистой. Нефть сернистая (II класс) содержит, от 0,51 до 2,0% серы, при этом в бензиновой фракции - не более 0,15%, в реактивно-топливной - не более 0,25%, в дизельной - не более 1,0%. Если одно или несколько дистиллятных топлив будут содержать серу в большем количестве, то нефть относится к высокосернистой. Если дистиллятные топлива из высокосернистой нефти по содержанию серы отвечают требованиям, предъявляемым к топливам из сернистой нефти, то даже при содержании серы в нефти более 2% ее следует отнести к сернистой.Нефть высокосернистая (III класс) содержит более 2% серы.По выходу светлых фракций, перегоняющихся до 350°С, нефти делятся на три типа (Т1 Т2, Т3), а по суммарному содержанию дистиллятных и остаточных базовых масел -- на четыре группы (М1 М2, М3, М4). В зависимости от значения индекса вязкости базовых масел различают две подгруппы (И1, И2).

Виды. Если в нефти содержится не более 1,5% парафина и если из этой нефти можно без депарафинизации получить реактивное топливо и зимнее дизельное топливо с пределами перегонки 240-350°С и температурой застывания не ниже 45°С, а также базовые масла, то такую нефть относят к малопарафинистой (вид П1). Однако если какой-либо из упомянутых продуктов без депарафинизации получить нельзя, то нефть относят к п а р а ф и н истой (вид П2).

Из парафинистых нефтей (вид П2), содержащих 1,5-6,0% парафина, без депарафинизации должны вырабатываться реактивное и летнее дизельное топлива (фракция 240-350°С, температура застывания не ниже 10°С). Масла из этих нефтей получают в результате депарафинизации.

Высокопарафинистые нефти (вид П3) содержат более 6% парафина. Из них даже летнее дизельное топливо можно получить только после депарафинизации.

Если из парафинистой нефти дизельное летнее топливо можно получить, только подвергнув фракцию депарафинизации, то нефть следует относить к классу П3. И наоборот, если для выработки летнего дизельного топлива из нефти, содержащей больше 6% парафина, депарафинизации не требуется, то такая нефть относится к классу П2.

Таблица 3 Технологическая классификация нефтей

Класс

Содержание серы, % (масс.)

Тип

Выход фракций до 350°С, % (масс.)

Группа

Потенциальное содержание базовых масел, % (масс.)

Подгруппа

Индекс вязкости базовых масел

Вид

Содержание алканов в нефти, %(масс.)

в нефти

в бензине н.к.-

200 °С

в реактивном топливе (120-240 °С)

в дизельном топливе (240-350 °С)

в расчете на нефть

в расчете на мазут >350°С

I

<0,50

<0,15

<0,1

<0,2

T1

>45

Mi

>25

И1

>85

П1

<1,50

II

0,51--2,0

<0,15

<0,25

<1,0

Т2

30-44,9

М2

15--25

>45

III

>2,0

>0,15

>0,25

> 1,0

Т3

<30

М3

15-25

30-45

И2

40-85

П2

1,51-6,0

М4

< 15

<30

П3

>6,0

5. Техническая классификация

Для оценки товарных качеств подготовленных на промыслах нефтей подразделяют (классифицируют):-- по содержанию общей серы на четыре класса (1-4);-- по плотности при 20 °С на пять типов (0-4);-- по содержанию воды и хлористых солей на 3 группы (1-3);-- по содержанию сероводорода и легких меркаптанов на 3 вида (1-3).Поставка и приём нефтиОсновные объёмы сырой нефти, поставляемой на переработку, поступают на НПЗ от добывающих объединений по магистральным нефтепроводам. Небольшие количества нефти, а также газовый конденсат, поставляются по железной дороге. В государствах-импортёрах нефти, имеющих выход к морю, поставка на припортовые НПЗ осуществляется водным транспортом. Принятое на завод сырьё поступает в соответствующие емкости товарно-сырьевой базы (рис.1), связанной трубопроводами со всеми технологическими установками НПЗ. Количество поступившей нефти определяется по данным приборного учёта, или путём замеров в сырьевых емкостях

Подготовка нефти к переработке (электрообессоливаниеСырая нефть содержит соли, вызывающие сильную коррозию технологического оборудования. Для их удаления нефть, поступающая из сырьевых емкостей, смешивается с водой, в которой соли растворяются, и поступает на ЭЛОУ - электрообессоливащую установку (рис.2).

Процесс обессоливания осуществляется в электродегидраторах - цилиндрических аппаратах со смонтированными внутри электродами. Под воздействием тока высокого напряжения (25 кВ и более), смесь воды и нефти (эмульсия) разрушается, вода собирается внизу аппарата и откачивается. Для более эффективного разрушения эмульсии, в сырьё вводятся специальные вещества - деэмульгаторы. Температура процесса - 100-120°С.

6. Первичная переработка нефти

К первичным относят процессы разделения нефти на фракции, когда используются ее потенциальные возможности по ассортименту, количеству и качеству получаемых продуктов и полупродуктов -- перегонка нефти.

Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ - атмосферно-вакуумная трубчатка. Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевиках трубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.

АВТ разделена на два блока - атмосферной и вакуумной перегонки

1. Атмосферная перегонка

Атмосферная перегонка предназначена для отбора светлых нефтяных фракций - бензиновой, керосиновой и дизельных, выкипающих до 360°С, потенциальный выход которых составляет 45-60% на нефть. Остаток атмосферной перегонки - мазут.

Процесс заключается в разделении нагретой в печи нефти на отдельные фракции в ректификационной колонне - цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки), через которые пары движутся вверх, а жидкость - вниз. Ректификационные колонны различных размеров и конфигураций применяются практически на всех установках нефтеперерабатывающего производства, количество тарелок в них варьируется от 20 до 60. Предусматривается подвод тепла в нижнюю часть колонны и отвод тепла с верхней части колонны, в связи с чем температура в аппарате постепенно снижается от низа к верху. В результате сверху колонны отводится бензиновая фракция в виде паров, а пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, мазут остаётся жидким и откачивается с низа колонны.

2. Вакуумная перегонка

Вакуумная перегонка предназначена для отбора от мазута масляных дистиллятов на НПЗ топливно-масляного профиля, или широкой масляной фракции (вакуумного газойля) на НПЗ топливного профиля. Остатком вакуумной перегонки является гудрон.

Необходимость отбора масляных фракций под вакуумом обусловлена тем, что при температуре свыше 380°С начинается термическое разложение углеводородов (крекинг), а конец кипения вакуумного газойля - 520°С и более. Поэтому перегонку ведут при остаточном давлении 40-60 мм рт. ст., что позволяет снизить максимальную температуру в аппарате до 360-380°С.

Разряжение в колонне создается при помощи соответствующего оборудования, ключевыми аппаратами являются паровые или жидкостные эжекторы

Продукты первичной переработки нефти

Наименование

Интервалы кипения

Где отбирается

Где используется

(в порядке приоритета)

Рефлюкс стабилизации

Пропан, бутан, изобутан

Блок стабилизации

Газофракционирование, товарная продукция, технологическое топливо

Стабильный прямогонный бензин (нафта)

н.к.*-180

Вторичная перегонка бензина

Смешение бензина, товарная продукция

Стабильная легкая бензиновая

н.к.-62

Блок стабилизации

Изомеризация, смешение бензина, товарная продукция

Бензольная

62-85

Вторичная перегонка бензина

Производство соответствующих ароматических углеводородов

Толуольная

85-105

Вторичная перегонка бензина

Ксилольная

105-140

Вторичная перегонка бензина

Сырьё каталитического риформинга

85-180

Вторичная перегонка бензина

Каталитический риформинг

Компонент керосина

180-240

Атмосферная перегонка

Смешение керосина, дизельных топлив

Дизельная

240-360

Атмосферная перегонка

Гидроочистка, смешение дизтоплив, мазутов

Мазут

360-к.к.**

Атмосферная перегонка (остаток)

Вакуумная перегонка, гидрокрекинг, смешение мазутов

Вакуумный газойль

360-520

Вакуумная перегонка

Каталитический крекинг, гидрокрекинг, товарная продукция, смешение мазутов.

Гудрон

520-к.к.

Вакуумная перегонка (остаток)

Коксование, гидрокрекинг, смешение мазутов.

Различают перегонку с однократным, многократным и постепенным испарением.

При перегонке с однократным испарением нефть нагревают до определенной температуры и отбирают все фракции, перешедшие в паровую фазу.

Перегонка нефти с многократным испарением производится с поэтапным нагреванием нефти, и отбиранием на каждом этапе фракций нефти с соответствующей температурой перехода в паровую фазу.

Перегонку нефти с постепенным испарением в основном применяют в лабораторной практике для получения особо точного разделения большого количества фракций. Отличается от других методов перегонки нефти низкой производительностью.

Перегонка нефти с однократным, многократным и постепенным испарением

При перегонке с однократным испарением нефть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре парожидкостная смесь покидает подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одна и та же. Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая.

Перегонка с многократным испарением состоит из двух или более однократных процессов перегонки с повышением рабочей температуры на каждом этапе.

Если при каждом однократном испарении нефти происходит бесконечно малое изменение ее фазового состояния, а число однократных испарений бесконечно большое, то такая перегонка является перегонкой с постепенным испарением.

Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая по сравнению с перегонкой с многократным и постепенным испарением. О плохой четкости разделения при однократном испарении нефти можно судить по графику, где изображены кривые разгонки фракций 40-285°С. 1 - исходная фракция (обобщенная); 2, 3 и 4 - легкие фракции паровой фазы; 5 и 6 - тяжелые фракции жидкой фазы. Температурные пределы выкипания полученных продуктов мало отличаются друг от друга.

Если для нефтяной фракции построить кривые разгонки с однократным и многократным испарением (рис. 2), то окажется, что температура начала кипения фракций при однократном испарении (линия 2 на рисунке) выше, а конца кипения ниже, чем при многократном испарении (линия 1). Если высокой четкости разделения фракций не требуется, то метод однократного испарения экономичнее. К тому же при максимально допустимой температуре нагрева нефти 350 -- 370°С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением.

Для отбора из нефти фракций, выкипающих выше 350 -- 370°С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расходования топлива на нагрев сырья.

Принципиальная схема для промышленной перегонки нефти приведена на рис. 3. Исходная нефть прокачивается насосом через теплообменники 4, где нагревается под действием тепла отходящих нефтяных фракций и поступает в огневой подогреватель (трубчатую печь) 1. В трубчатой печи нефть нагревается до заданной температуры и входит в испарительную часть (питательную секцию) ректификационной колонны 2. В процессе нагрева часть нефти переходит в паровую фазу, которая при прохождении трубчатой печи все время находится в состоянии равновесия с жидкостью. Как только нефть в виде парожидкостной смеси выходит из печи и входит в колонну (где в результате снижения давления дополнительно испаряется часть сырья), паровая фаза отделяется от жидкой и поднимается вверх по колонне, а жидкая перетекает вниз. Паровая фаза подвергается ректификации в верхней части колонны, считая от места ввода сырья. В ректификационной колонне размещены ректификационные тарелки, на которых осуществляется контакт поднимающихся по колонне паров со стекающей жидкостью (флегмой). Флегма создается в результате того, что часть верхнего продукта, пройдя конденсатор-холодильник 3, возвращается в состоянии на верхнюю тарелку и стекает на нижележащие, обогащая поднимающиеся пары низкокипящими компонентами.

Для ректификации жидкой части сырья в нижней части ректификационной части колонны под нижнюю тарелку необходимо вводить тепло или какой-либо испаряющий агент 5. В результате легкая часть нижнего продукта переходит в паровую фазу и тем самым создается паровое орошение. Это орошение, поднимаясь с самой нижней тарелки и вступая в контакт со стекающей жидкой фазой, обогащает последнюю высококипящими компонентами. В итоге сверху колонны непрерывно отбирается низкокипящая фракция, снизу - высококипящий остаток.

Испаряющий агент вводится в ректификационную колону с целью повышения концентрации высококипящих компонентов в остатке от перегонки нефти. В качестве испаряющего агента используются пары бензина, лигроина, керосина, инертный газ, чаще всего - водяной пар.

Испаряющий агент вводится в ректификационную колону с целью повышения концентрации высококипящих компонентов в остатке от перегонки нефти. В качестве испаряющего агента используются пары бензина, лигроина, керосина, инертный газ, чаще всего - водяной пар. В присутствии водяного пара в ректификационной колонне снижается парциальное давление углеводородов, а следовательно их температура кипения. В результате наиболее низкокипящие углеводороды, находящиеся в жидкой фазе после однократного испарения, переходят в парообразное состояние и вместе с водяным паром поднимаются вверх по колонне. Водяной пар проходит всю ректификационную колонну и уходит с верхним продуктом, понижая температуру в ней на 10-20°С. На практике применяют перегретый водяной пар и вводят его в колонну с температурой, равной температуре подаваемого сырья или несколько выше (обычно не насыщенный пар при температуре 350-450°С под давлением 2-3 ат).

Влияние водяного пара заключается в следующем:

• интенсивно перемешивается кипящая жидкость, что способствует испарению низкокипящих углеводородов;

• создается большая поверхность испарения тем, что испарение углеводородов происходит внутрь множества пузырьков водяного пара.

В случае применения в качестве испаряющего агента инертного газа происходит большая экономии тепла, затрачиваемого на производство перегретого пара, и снижение расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, т.к. сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил широкого применения при перегонке нефти из-за громоздкости подогревателей газа и конденсаторов парогаовой смеси (низкого коэффициента теплоотдачи) и трудности отделения отгоняемого нефтепродукта от газового потока.

Удобно в качестве испаряющего агента использовать легкие нефтяные фракции - лигроино-керосино-газойлевую фракцию, т.к. это исключает применение открытого водяного пара при перегонке сернистого сырья, вакуума и вакуумсоздающей аппаратуры, и, в то же время, избавляет от указанных сложностей работы с инертным газом. Чем ниже температура кипения испаряющего агента и больше его относительное количество, тем ниже температура перегонки. Однако чем легче испаряющий агент, тем больше его теряется в процессе перегонки. Поэтому в качестве испаряющего агента рекомендуется применять лигроино-керосино-газойлевую фракцию.

В результате перегонки нефти при атмосферном давлении и температуре 350-370°С остается мазут, для перегонки которого необходимо подобрать условия, исключающие возможность крекинга и способствующие отбору максимального количества дистилляторов. Самым распространенным методом выделения фракций из мазута является перегонка в вакууме. Вакуум понижает температуру кипения углеводородов и тем самым позволяет при 410-420°С отобрать дистилляты, имеющие температуры кипения до 500°С (в пересчете на атмосферное давление). Нагрев мазута до 420°С сопровождается некоторым крекингом углеводородов, но если получаемые дистилляторы затем подвергаются вторичным методам переработки, то присутствие следов непредельных углеводородов не оказывает существенного влияния. При получении масляных дистилляторов разложение их сводят к минимуму, повышая расход водяного пара, снижая перепад давления в вакуумной колонне и др. Существующие промышленные установки способны поддерживать рабочее давление в ректификационных колоннах 20 мм рт. ст. и ниже.

Показателем летучести чистых углеводородов является давление их насыщенных паров при данной температуре или температура кипения при атмосферном давлении. Чем больше разница в температурах кипения углеводородов, тем легче разделить их обычной перегонкой. Однако если углеводороды отличаются по химическому строению, то можно использовать специальные виды перегонки, изменяющие летучесть этих углеводородов. Летучесть (u1) может быть определена как отношение мольных долей углеводородов в паровой и жидкой фазах:

u1=y1/х1 ,

где y1 и х1 -- мольные доли углеводорода соответственно в паровой и жидкой фазах

Легкость разделения углеводородов перегонки зависит от их относительной летучести. Относительная летучесть двух углеводородов (a) определяется соотношением их летучестей (u1 и u2), т. е.

a= u1/u2= y1х2/y2х1.

Согласно законам Рауля и Дальтона y1=P1x1/p и y2=P2x2/p, где P1 и P2 - давление насыщенных паров углеводородов, x1 и x2 - мольные доли углеводородов в жидкой фазе, p - общее давление в системе. Отсюда

a=P1x1/px1: P2x2/px2= P1/P2.

Таким образом, относительная летучесть углеводородов в идеальном растворе равняется отношению давлений насыщенных паров чистых компонентов при температуре кипящей смеси, и чем ближе она к единице, тем сложнее разделить эти углеводороды перегонкой.Если вводимый для увеличения разницы в летучести разделяемых углеводородов третий компонент менее летуч, чем исходные углеводороды, то его называют растворителем и вводят сверху ректификационной колонны и выводят снизу вместе с остатком. Такая ректификация называется экстрактивной. Растворитель должен иметь достаточно высокую температуру кипения, чтобы компоненты, полученные с растворителем в виде одной фазы, можно было легко отделить от него при помощи перегонки. Он должен хорошо растворять разделяемые компоненты, чтобы не требовалось чрезмерно большого отношения растворитель/смесь и не образовывалось двух жидких фаз (расслаивание) на тарелке. При экстрактивной ректификации моноциклических ароматических углеводородов в качестве растворителя применяют фенол, крезолы, фурфурол, анилин и алкилфталаты. Если добавляемое вещество более летуче, чем исходные компоненты, то его вводят в ректификационную колонну вместе с сырьем и выводят из нее вместе с парами верхнего продукта. Такую ректификацию называют азеотропной. В этом случае вводимое вещество образует азеотропную смесь с одним из компонентов сырья. Это вещество называют уводителем.

Уводитель должен обеспечивать образование постоянно кипящей смеси (азеотропа) с одним или несколькими компонентами разгоняемой смеси. Уводитель образует азеотропную смесь вследствие молекулярных различий между компонентами смеси.

При азеотропной ректификации моноциклических ароматических углеводородов в качестве уводителей применяют метиловый и этиловый спирты, метилэтилкетон (МЭК) и другие вещества, образующие азеотропную смесь с парафино-нафтеновыми углеводородами разделяемой смеси.Уводитель должен иметь температуру кипения близкую к температуре кипения отгоняемого вещества. Это позволяет получить заметную разницу между температурой кипения азеотропа и других компонентов смеси. Уводитель должен также легко выделяться из азеотропной смеси. Парциональное и общее давления над идеальным раствором при данной температуре отличаются от величин, вычисленных по закону Рауля. Для оценки этого отклонения вводят поправочный коэффициент, который фактически является коэффициентом активности, т. е.

p1=j1P1x1.Коэффициент активности j является функцией физико-химических свойств всех остальных компонентов смеси и их концентраций. Для некоторых смесей в присутствии разделяющего агента компоненты из-за их различной растворимости по-разному отклоняются от законов идеальных растворов, поэтому их коэффициенты активности различны. Коэффициент активности каждого компонента увеличивается по мере увеличения концентрации от 0 до 100. Для реальных смесей относительная летучесть равна отношению давления насыщенных паров и коэффициентов активности:a=j1P1/j2P2.

7. Ректификация простых и сложных смесей осуществляется в колоннах периодического или непрерывного действия

Классическая схема колонны периодического действия, которые применяют на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения, рис. 4. Сырье поступает в перегонный куб 1 на высоту около 2/3 его диаметра, где происходит подогрев глухим паром. В первый период работы ректификационной установки отбирают наиболее летучий компонент смеси, например бензольную головку, затем, повышая температуру перегонки, компоненты с более высокой температурой кипения (бензол, толуол и т.д.).

Наиболее высококипящие компоненты остаются в кубе - кубовый остаток. После ректификации этот остаток охлаждают и откачивают. Куб вновь заполняется сырьем и ректификацию возобновляют. Периодичностью процесса обусловлены больший расход тепла и меньшая производительность установки. Далее на рисунке: 2 - ректификационная колонна, 3 - конденсатор-холодильник, 4 - аккуму-лятор, 5 - холодильник, 6 - насосы.

Установка непрерывного действия лишена многих указанных недостатков, рис. 5. Сырье через теплообменник 1 поступает в подогреватель 2 и далее на разные уровни ректификационной колонны 3. Нижние фракции разогревают в кипятильнике 4 и сбрасывают обратно в ректификационную колонну. При этом самая тяжелая часть выводится из кипятильника в низ колонны и вместе с жидким осадком на дальнейшую переработку тяжелых фракций. А легкие фракции сверху в конденсатор-холодильник 5, и далее из аккумулятора 6 частично назад в колонну для орошения, а частично - в дальнейшую переработку легких фракций.

...

Подобные документы

  • Индексация нефтей, ее связь с технологией их переработки. Физические основы подготовки и первичной переработки нефти. Факторы, определяющие выход и качество продуктов ППН. Краткие теоретические основы процессов вторичной переработки продуктов ППН.

    курсовая работа [5,0 M], добавлен 03.12.2010

  • Индексация нефтей для выбора технологической схемы и варианта ее переработки. Физические основы дистилляции нефти на фракции. Установки первичной перегонки нефти. Технологические расчеты процесса и аппаратов. Характеристика качества нефтепродуктов.

    курсовая работа [684,7 K], добавлен 25.04.2013

  • Задачи и цели переработки нефти. Топливный, топливно-масляный и нефтехимический варианты переработки нефти. Подготовка нефти к переработке, ее первичная перегонка. Методы вторичной переработки нефти. Очистка нефтепродуктов. Продукты переработки нефти.

    курсовая работа [809,2 K], добавлен 10.05.2012

  • Физико-химические свойства и области применения азотной кислоты. Обоснование технологической схемы переработки окислов азота в азотную кислоту. Расчеты материальных балансов процессов, тепловых процессов, конструктивные расчеты холодильника-конденсатора.

    курсовая работа [822,8 K], добавлен 03.12.2009

  • Основные виды сажи, их физические и химические свойства. Промышленные способы производства сажи, разложение углеводородов под воздействием высокой температуры. Характеристика сырья, его приемка и хранение на заводах. Продукты процессов сажеобразования.

    контрольная работа [28,0 K], добавлен 24.10.2011

  • Вязкоупругие свойства древесных волокон при получении топливных пеллет: релаксационные явления, температурные переходы компонентов древесины, межволоконное взаимодействие. Химические превращения компонентов древесины. Содержание теории прочности пеллет.

    реферат [288,8 K], добавлен 30.10.2014

  • Физико-химические константы углеводородов нефти, показатель преломления. Спектральные методы идентификации и анализа углеводородов и других компонентов нефти и газа. Молекулярная, инфракрасная и ультрафиолетовая спектроскопия. Значения волновых чисел.

    реферат [3,7 M], добавлен 06.10.2011

  • Сущность нефтеперерабатывающего производства. Разделение нефтяного сырья на фракции. Переработка фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов. Атмосферно-вакуумная перегонка нефти.

    презентация [157,1 K], добавлен 29.04.2014

  • Общая характеристика, распространение и физико-химические свойства фенолгликозидов. Способы получения фенольных соединений из растительного сырья этанолом и метанолом. Методы выделения идентификации, качественное определение и распространение вещества.

    презентация [1,5 M], добавлен 27.02.2015

  • Состав и структура нефти. Ее физические и химические свойства. Характеристика неуглеводороднных соединений. Расчет удельной теплоёмкости нефти. Порфирины как особые органические соединения, имеющие в своем составе азот. Методы классификация нефти.

    презентация [1,5 M], добавлен 04.05.2014

  • Краткая характеристика флавоноидов. Подготовка растительного сырья. Строение, физические и химические свойства природных флавоноидов. Методы их выделения и идентификации. Определение оптимальных условий экстрагирования рутина и кверцетина из сырья.

    дипломная работа [5,7 M], добавлен 03.08.2011

  • История создания технологии синтетического каучука. Получение мономеров для синтетических каучуков. Производство СК полимеризацией в растворе. Свойства изоперена, и его получение методом полимеризации. Поточная схема переработки нефти месторождения.

    курсовая работа [2,2 M], добавлен 23.12.2014

  • Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа [1,1 M], добавлен 18.01.2014

  • Способы выражения составов смесей и связь между ними. Перемешивание газонефтяных смесей различного состава. Газосодержание нефти и ее объемный коэффициент. Физико-химические свойства пластовых вод. Особенности гидравлического расчета трубопроводов.

    контрольная работа [136,9 K], добавлен 29.12.2010

  • Физико-химические свойства нефти. Методы осуществления перегонки, их достоинства и недостатки. Влияние технологических параметров на данный процесс. Характеристика и применение нефтепродуктов, полученных на установке атмосферно-вакуумной перегонки.

    курсовая работа [129,3 K], добавлен 05.03.2015

  • История открытия витамина Е. Строение токоферолов, их физическо-химические свойства. Биологическая активность витамина Е. Методы выделения токоферолов из природных объектов. Промышленные методы синтеза триметилгидрохинона из псевдокумола сульфированием.

    контрольная работа [26,7 K], добавлен 07.12.2013

  • Физико-химический метод разделения компонентов сложных смесей газов, паров, жидкостей и растворенных веществ, основанный на использовании сорбционных процессов в динамических условиях. Хроматографический метод. Виды хроматографии. Параметры хроматограммы.

    реферат [21,6 K], добавлен 15.02.2009

  • Процесс устранения нежелательных компонентов в газах с использованием химических методов. Каталитические и адсорбционные методы очистки. Окисление токсичных органических соединений и оксида углерода. Термические методы обезвреживания газовых выбросов.

    реферат [831,3 K], добавлен 25.02.2011

  • Углубляющие, облагораживающие и прочие химические способы переработки нефти. Сущность процесса термического и каталитического крекинга. Процесс переработки твёрдого топлива нагреванием без доступа кислорода (коксование). Каталитический риформинг.

    презентация [241,6 K], добавлен 20.12.2012

  • Физико-химические основы процессов окисления SO2 в системе двойного контактирования и абсорбции. Расчет значения констант равновесия и выхода продукции. Материальный и тепловой балансы процессов. Разработка технологической схемы получения серной кислоты.

    дипломная работа [207,8 K], добавлен 23.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.