Структурно-кинетические закономерности и механизм термораспада полифункциональных нитро- и азидосоединений
Исследование структурно-кинетических закономерностей и механизма термораспада широкого полифункциональных нитро- и азидосоединений на базе алканов, азолов, аза-, пяти-, шести-, восьмичленных гетероциклов и каркасных структур в конденсированном состоянии.
Рубрика | Химия |
Вид | автореферат |
Язык | русский |
Дата добавления | 27.02.2018 |
Размер файла | 747,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Таблица 4.3
Кинетические параметры термораспада каркасных нитраминов XXVII
Соединение |
Тпл,С |
Условия распада |
Т, С |
Еa,кДжмоль |
lg A |
k200C105,с-1 |
S200C,ДжмольК |
||
XXVII.1(HNIW,CL-20) |
250-252 |
раствор в ДНБ*тв. фаза, -форма*раствор в ДБФтв. фаза, -форма |
150-195183-211160-190170-200 |
171,7222,0169,2216,9 |
16,3020,5015,9819,79 |
227,86,74206,47,21 |
50,1135,548,9121,9 |
41,711,3 |
|
XXVII.2 |
200 |
раствор в ДБФтв. фаза |
150-180165-185 |
162,9176,7 |
15,2315,39 |
181,07,82 |
34,637,6 |
27,0 |
|
XXVII.3 |
268 |
раствор в ДБФтв. фаза,-форматв. фаза, -форма |
150-190190-210170-190 |
166,6188,4188,8 |
15,6816,6616,77 |
195,97,408,60 |
43,262,064,1 |
16,013,7 |
|
XXVII.4a,R = H |
215 |
раствор в ДБФтв. фаза |
150-170160-175 |
153,2169,2 |
14,3714,94 |
288,718,82 |
18,129,0 |
16,4 |
|
XXVII.4b,R = NO |
220 |
раствор в ДБФтв. фаза |
150-200180-210 |
154,1179,2 |
14,2415,68 |
172,98,10 |
15,643,2 |
21,5 |
|
XXVII.4с,R = COCH3 |
268 |
раствор в ДБФтв. фазатв. фаза по k1тв. фаза по k2 |
160-200180-220200-220200-220 |
171,2183,8182,640,6 |
15,3415,4815,320,21 |
27,81,581,505,35 |
36,739,436,3-253,0 |
13,3 |
|
XXVII.4d,R=CH2N(NO2)CH3 |
285 |
раствор в ДБФгазовая фаза |
160-210180-220 |
157,0154,1 |
14,2013,49 |
74,930,8 |
14,61,3 |
||
XXVII.5,TEX |
307 |
раствор в ДБФгазовая фазатв. фаза |
210-250240-250210-225 |
167,5163,3196,8 |
13,5014,1015,44 |
1,1012,00,05 |
1,512,938,6 |
6,2 |
* [Корсунский Б.Л. и сотр., 1999]
Молекула каркасного нитрамина XXVII.1 включает в себя два пятичленных и один шестичленный динитродиазациклы, которые образуют жесткий тетрациклический остов с шестью нитрогруппами. Если в нем и существуют угловые и торсионные напряжения, то они, вероятно, не велики.
Замена двух нитраминных фрагментов в соединении XXVII.1 на окса-функции слабо влияет на скорость распада структурных изомеров XXVII.2 и ,-формы XXVII.3 (табл. 4.3). Для понимания их реакционной способности необходимо знание строения этих соединений.
Рентгеноструктурный анализ [Гатилов Ю.В. и др., 2005] показал, что средние длины связи N-NO2 в молекулах XXVII.2,3,5 [1.419(16) Е] близки к таковым для соединения XXVII.1 и больше длин связей в пятичленных [1.38(2) Е] и шестичленных [1.37(3) Е] 1,3-1,4 - динитродиазациклах. Поэтому скорость распада соединений XXVII.1-3, в целом, больше (табл. 4.3), чем у индивидуальных 1,3-пяти- и 1,4-шестичленных динитродиазацикланов (табл. 4.1 и 4.2). Кроме этого средняя длина С-С связи [1.565(3) Е] превышает длину связи [1.546(2) Е] в циклопентане. Избранные длины С-С и N-NO2 связей приведены в табл. 4.4.
Таблица 4.4
Избранные длины С-С и N-NO2 связей, Е, молекул XXVII.2, 3, 5
Связь |
2 |
3 |
3 |
5 |
Связь |
2 |
3 |
3 |
5 |
|
* С-С |
1.574(5) |
1.568(3) |
1.561(3) |
1.578(3) |
***N-NO2 |
1.421(4) |
1.421(3) |
1.448(5) |
1.390(3) |
|
** С-С |
1.555(5) |
1.558(4) |
1.558(6) |
1.553(3) |
****N-NO2 |
1.421(4) |
1.438(3) |
1.396(5) |
- |
* - соединяющая два пятичленных цикла в каркасе; ** - общая связь в пятичленном и шестичленном циклах; *** - в шестичленном цикле; **** - в пятичленном цикле
Все аминные атомы азота молекул XXVII.2, 3, 5 в отличие от молекул XXVII.1 имеют пирамидальное строение. В молекуле XXVII.1 -модификации один из аминных атомов азота шестичленного цикла идеально плоский, остальные атомы азота - пирамидальные. Средняя СВУ шестичленных циклов в молекулах XXVII.2, 3, 5 равна 345.2, а в пятичленных - 337.6. В пяти исследованных нитраминах XXVII.1 аминные атомы азота более планарны, средние СВУ равны 355.0 и 346.7 для шестичленных и пятичленных циклов, соответственно [Nielsen A.T. и др., 1998].
Если в соединениях XXVII.1 в разных полиморфных модификациях нитрогруппы имеют псевдоаксиальные и псевдоэкваториальные положения, то в молекулах XXVII.3 (табл. 4.4) нитрогруппы в пятичленниках - и -форм занимают псевдоаксиальное положение. Внутримолекулярные различия в - и -формах сводятся к разным поворотам нитрогрупп в шести- и пятичленниках [торсионные углы равны, соответственно, -1.6(3), 25(3) и -30.2(5), 36.7(5)]. При переходе от XXVII.3 к изомеру XXVII.2 конфигурация аминных атомы азота не меняется: нитрогруппы в шестичленниках псевдоэкваториальны, а в пятичленниках - псевдоаксиальны.
Учитывая вышеизложенное и анализируя данные табл. 4.3, совместно с табл. 4.4, можно заключить, что реакционная способность молекул XXVII.2 и 3 зависит от длины наименее прочной связи N-NO2, на которую влияет конформация нитрогруппы. Такими в соединениях XXVII.3 и XXVII.3 являются связи псевдоаксиальная [d=1.438(3) Е] в пятичленнике и псевдоэкваториальная [d=1.448(5) Е] в шестичленнике, соответственно (табл. 4.4). В молекуле XXVII.2 реакционным центром может быть аминный азот как в пяти-, так и в шестичленнике.
Совершенно иная картина наблюдается, если нитрогруппу в пятичленном цикле соединения XXVII.3 заместить на R = H, NO, CH2N(NO2)CH3, COCH3 (табл. 4.3).
Когда R = H, скорость распада соединения XXVII.4a увеличивается, соответственно, в 1,5 и 2,2 раза по сравнению с нитрамином XXVII.3, что, скорее всего, обусловлено кислотным катализом NH-функцией (аналогия с соединениями I.3, I.5, табл. 1.1). Если R = NO, то скорость распада соединения XXVII.4b, практически, совпадает с таковой для соединения XXVII.3, поскольку при постоянстве всех структурных факторов энергия диссоциации связей N-NO и N-NO2 примерно одинакова. При R = CH2N(NO2)CH3 и COCH3 скорость распада нитраминов уменьшается в растворе, соответственно, в 2,6 и 7,0 раз по сравнению с соединением XXVII.3.
Последующая замена еще двух нитраминных групп в пятичленниках соединений XXVII.2 и XXVII.3 на окса-функции приводит к уменьшению скорости распада соединения XXVII.5, приблизительно, на два порядка (табл. 4.3), и она становится соизмеримой в растворе с таковой для соединения XXVI.4 (табл.4.2). Уменьшение скорости логично связать с уменьшением длины наименее прочной связи N-NO2 [1.390 (3)Е] в молекуле XXVII.5 (табл. 4.4), обусловленным псевдоэкваториальной нитрогруппой.
В заключение отметим, что для разных по строению нитросоединений (табл. 3.2, 4.1 и 4.3) отношение kр-р/kтв находится в пределах 0,5-100, где kр-р и kтв - константы скорости термораспада в растворе и твердой фазе, найденные при температуре на 20 ниже точки плавления, когда отсутствуют подплавление вещества в ходе распада [Буров Ю.М., 2006]. Судя по величине отношения kр-р/kтв, термораспад в твердой фазе протекает на дефектах кристаллов, размеры блоков которых, в среднем, не превышают 100 нм [Бон С., 1961; Назин Г.М., 2006]. При этом наблюдается тенденция увеличения kр-р/kтв с ростом молекулярной массы нитросоединения от 114 до 310 г/моль, что позволяет проводить предварительную оценку торможения реакции в твердой фазе:
lg (kр-р/kтв) = 0,0045Мм + 0,2855 (65)
r=0,967; n=14
Подобной тенденции в изменении kр-р/kтв от вариации температуры плавления соединений не наблюдается.
4.4 Восьмичленные циклические нитрамины
Кинетика термораспада восьмичленных циклических N-нитраминов, за исключением НМХ, в литературе практически не рассматривалась. Особенно это относится к нитраминам, содержащим другие потенциально реакционные группы. В связи с этим нами изучен термораспад широкой серии нитраминов XXVIII с несколькими потенциальными реакционными центрами
где R = H (4a), 4-NO2-C6H4 (4b), 5-нитротетразол-2-ил-метилен (4c), 5-нитротетразол-2-ил-этилен (4d), (CH2)2C(NO2)2CH3 (4e), (CH2)2C(NO2)3 (4f), CH2N3 (4g), (CH2)2N3 (4h), с целью выяснения взаимного влияния функциональных групп и их положения в молекуле на скорость и активационные параметры.
Исследование показало, что распад большинства соединений в расплаве и растворе протекает с ускорением и сходен с таковым для нитраминов XXV и XXVI. Кинетические и термодинамические параметры термораспада приведены в табл. 4.5.
Термораспад соединений XXVIII.4с и XXVIII.4d может лимитироваться как разрывом N-NO2 связи, так и раскрытием тетразольного цикла. Такая же проблема существует в определении реакционного центра при термораспаде соединения XXVIII.4e. В соединениях XXVIII.4f-h наблюдается заметное уменьшение энергии активации и увеличение скорости разложения. Для соединения XXVIII.4f, где имеются N-NO2 и -C(NO2)3 группы, предпочтителен мономолекулярный гомолиз по связи C-NO2.
Таблица 4.5
Кинетические и термодинамические параметры распада нитраминов XXVIII
Соеди- нение |
Условия распада |
ДТ, C |
Еa, кДж/моль |
lgA |
k200C·105, с-1 |
S200C, Дж/мольК |
|
XXVIII.1, HMX |
расплав* раствор в ДНБ* раствор в ДБФ |
271-314 171-215 180-225 |
220,6 188,1 193,8 |
19,70 16,0 16,76 |
2,2 1,8 2,3 |
120,2 49,3 63,9 |
|
XXVIII.2 |
раствор в ДНБ раствор в ДБФ |
190-225 190-225 |
190,1 188,4 |
16,37 16,22 |
2,4 2,6 |
56,4 53,5 |
|
XXVIII.3 |
раствор в ДНБ раствор в ДБФ |
200-230 195-225 |
184,6 186,8 |
15,37 15,57 |
0,9 0,9 |
37,3 41,1 |
|
XXVIII.4a |
расплав раствор в ДНБ раствор в ДБФ |
180-225 195-230 190-225 |
186,7 188,0 187,1 |
15,80 15,87 15,81 |
1,5 1,3 1,4 |
45,5 46,8 45,7 |
|
XXVIII.4b |
раствор в ДБФ |
195-225 |
186,2 |
15,65 |
1,2 |
42,6 |
|
XXVIII.4c |
раствор в ДНБ раствор в ДБФ |
195-225 195-220 |
183,8 185,0 |
15,92 15,70 |
2,5 1,9 |
47,8 43,6 |
|
XXVIII.4d |
раствор в ДБФ |
195-220 |
185,3 |
15,6 |
1,4 |
41,7 |
|
XXVIII.4e |
расплав раствор в ДБФ |
190-220 195-225 |
179,5 182,8 |
15,33 15,66 |
3,2 3,0 |
36,5 42,8 |
|
XXVIII.4f |
раствор в ДНБ раствор в ДБФ |
160-185 150-190 |
170,0 168,2 |
15,97 15,82 |
158,0 176,9 |
48,7 45,9 |
|
XXVIII.4g |
расплав раствор в ДНБ |
155-175 150-175 |
161,3 162,1 |
14,14 14,58 |
53,7 48,0 |
13,7 22,1 |
|
XXVIII.4h |
расплав раствор в ДНБ |
160-180 150-180 |
162,7 163,4 |
14,63 14,69 |
46,3 44,4 |
23,1 24,2 |
|
XXVIII.5, HNDZ |
расплав** раствор в ДБФ раствор в ДНБ |
170-210 175-205 180-205 |
162,0 164,1 165,1 |
14,50 14,65 14,70 |
41,7 33,9 30,0 |
20,6 23,5 24,4 |
|
XXVIII.6 |
раствор в ДНБ раствор в ДБФ |
160-185 160-180 |
152,1 153,0 |
14,44 14,42 |
442,0 336,0 |
19,5 19,1 |
|
XXVIII.7 |
расплав раствор в ДБФ |
170-190 175-195 |
154,2 151,2 |
14,26 13,83 |
179,4 136,4 |
16,0 7,8 |
* - [Максимов Ю.Я., 1967]; ** - [Назин Г.М. и др., 2000]
В случае соединений XXVIII.4g-h на глубине превращения 7-10% единственным газообразным продуктом термораспада является молекулярный азот. Поэтому можно считать, что реакционный центр расположен на азидной группе, что хорошо согласуется с активационными параметрами термораспада азидной группы в азидонитраминах IV. Для соединения XXVIII.4f, где имеются N-NO2 и -C(NO2)3 группы, в растворе при повышенных температурах 180-190С распад протекает в две стадии.
ВЫВОДЫ
1. Впервые раскрыты структурно-кинетические закономерности и определены активационные параметры для лимитирующей стадии термораспада в конденсированной фазе полифункциональных нитро-, нитрамино- и азидосоединений на основе различных базовых структур: алифатических, полиазотистых ароматических пятичленных гетероциклов (1,2,4-, 1,2,3-триазолов и 1,2,3,4-тетразолов), насыщенных пяти-, шести-, восьмичленных и каркасных гетероциклов. Внутри каждой базовой структуры найдены зависимости между реакционной способностью и константами заместителей, а в случае насыщенных гетероциклов - конформацией нитраминной группы, которые позволяют проводить целенаправленный синтез соединений с заданными параметрами по термостабильности, а также оценивать безопасность изготовления и применения энергоемких соединений. Выявлено влияние молекулярной массы на отношение констант скорости распада в растворе и твердой фазе для циклических нитросоединений, что необходимо учитывать при прогнозе их реакционной способности в твердой фазе.
2. Показано, что термораспад вторичных диалкил- и алкилпикрилнитраминов лимитируется гомолизом N-NO2 связи. Разложение нитраминокислот протекает быстрее их эфиров. Впервые предложен механизм термораспада нитраминокислот, объясняющий увеличение скорости и образование продуктов распада. Для нитраминов с г-тетразольными функциями возможен альтернативный механизм с первичным разрывом N2-N3 связи в цикле. Скорость распада нитраминов коррелирует с * Тафта.
3. Введение азидогруппы в молекулу алкилнитрамина или нитроалкана приводит к смене реакционного центра. Распад инициируется на азидогруппе и протекает со скоростью на 1-2 порядка больше с выделением N2 и образованием нитрена. Впервые установлен механизм стабилизации нитрена при распаде полифункциональных алкилазидонитраминов. Найдено, что скорость и энергия активации коррелируют с расчетной длиной наименее прочной связи N1-N2 и стерическими константами Es (V).
4. Впервые установлено, что термораспад в-мононитроэтилацетатов в газовой фазе протекает квазигетеролитически с первичным разрывом связи С-О нитроалкил с образованием нитроэтилена и соответствующей кислоты. Скорость распада слабо зависит от рКа кислоты.
5. Впервые показано, что термораспад 3-нитропроизводных 1,2,4-триазола в зависимости от природы заместителя R в положении 1 цикла протекает по разным механизмам. Если R=Н, CH2NO2, то распад соединений происходит по механизму основного катализа с первичной ионизацией N-H или С-Н связи. Впервые предложен механизм автопротолиза, объясняющий образование продуктов распада. Для R=CH2NO2 в растворе фенилбензоата возможен первичный гомолиз -H2C-NO2 связи. В обоих случаях лимитирующая стадия распада согласуется с первичным актом фрагментации под действием электронного удара. При R=C2H5 распад в газовой фазе лимитируется гомолитическим разрывом C-NO2 связи. Когда R=CH3 и в положении 3 и 5 цикла NO2, первичной стадией распада является передача протона метильной группы на кислород нитрогруппы с последующим окислением-восстановлением до 3-нитро-5-амино-1,2,4-триазола. В случае R=CH2CH2-Tetr-NO2 распад лимитируется раскрытием тетразольного цикла по механизму, свойственному 2,5-замещенным тетразолам.
6. Впервые показано, что полифункциональные динитрометильные производные триазолов и тетразола разлагаются гомолитически с первичным разрывом связи С-NO2 в динитрометильной группе. Увеличение объема азольного цикла или введение объемных заместителей (Cl, Br, I) в динитрометильную группу увеличивает реакционную способность соединения. Наличие азидогруппы в триазольном цикле в этом случае не влияет на скорость и механизм термораспада, в то время как присутствие метильной группы или атома фтора в динитрометильной группе инициирует термораспад на азоте азидогруппы. Впервые найдено, что термораспад 2-замещенных 5,5-динитро-1,3-диоксанов протекает с первичным разрывом связи N-NO2. Термораспад C,N-дизамещенных гем-динитроэтилнитраминов при постоянстве стерического окружения гем-тринитроэтильной группы лимитируется гомолизом связи С-NO2 и описывается корреляционным уравнением Тафта. Для всех замещенных гем-динитрометильных соединений установлена корреляция между скоростью (энергией активации) и стерическими константами Еs (V), позволяющая прогнозировать не только термостабильность неизученных соединений, но и смену механизма.
7. Термораспад пяти-, шести-, восьмичленных циклических и каркасных нитраминов в кинетическом отношении имеет много общего с алкилнитраминами и лимитируется, в основном, гомолизом связи N-NO2. Скорость распада зависит от оптимальной конформации цикла и нитраминной группы. Полуэмпирические квантово-химические расчеты показали, что моноциклические пятичленные нитрамины менее термостабильны, чем бициклические. Экспериментально установлено, что для твердой фазы это выполняется, а в растворах не наблюдается. Сочетание нитраминной с гем-динитро- и оксо-группами не изменяет лимитирующей стадии в шести- и восьмичленных циклах. Однако азидная и гем-тринитроэтильная группы в восьмичленных и азидная в шестичленных нитраминах приводят к смене лимитирующей стадии. В случае 5-нитротетразольной функции в восьмичленных нитраминах возможен распад по двум направлениям: гомолиз N-NO2 и N2-N3 связи в цикле. Впервые установлена корреляция между константой скорости, активационными параметрами и длиной наименее прочной N-NO2 связи, найденной методом РСтА.
8. Впервые методом РСтА определено строение 3-нитро-1,2,4-триазолил-1-нитрометана, 5-нитро-1,2,3,4-тетразолил-2-нитрометана, 5-ацетиламино-3-нитро-1,2,4-триазола. Установлены основные типы напряжений в этих соединениях.
Автор выражает глубокую признательность учителю и наставнику д.х.н., профессору Р.С. Степанову за всестороннюю поддержку и помощь при выполнении настоящей работы, обсуждение результатов и ценные критические замечания.
Основные публикации по диссертации
1. Степанов Р.С., Круглякова Л.А., Бука Э.С. Кинетика термического разложения замещенных алкил- и арилазидов // Кинетика и катализ. 1986. Т. 27. Вып. 2. С. 479-482.
2. Степанов Р.С., Круглякова Л.А., Степанова М.А. Структурно-кинетические закономерности термического распада некоторых нитропроизводных 1,2,4-триазола // Химия азотистых гетероциклов. - Тез. докл. участников межинститутского коллоквиума 18 окт.1995г. Черноголовка. 1995. С. 38.
3. Степанов Р.С., Круглякова Л.А. Упругость паров и термическое разложение 1-этил-3-нитро-1,2,4-триазола. // Кинетика и катализ. 1996. Т.37. № 3. С. 339.
4. Степанов Р.С., Круглякова Л.А., Степанова М.А. Термическое разложение нитропроизводных 1,2,4-триазола ниже точки плавления. // ЖОХ. 1997. Т. 67. Вып. 2. С. 324-328.
5. Степанов Р.С., Круглякова Л.А. Кинетика и механизм образования нитроэтилена из нитроэтиловых эфиров алифатических карбоновых кислот // ЖОрХ. 1997. Т. 33. Вып. 10. С. 1476-1478.
6. Круглякова Л.А., Рогозин М.В., Степанов Р.С. Кинетические закономерности и механизм термического распада каркасных нитраминов // Успехи химии органических соединений азота: Труды научно-технической конференции. С.-Пб.: Теза. 1997. С. 18.
7. Степанов Р.С., Круглякова Л.А., Голубцова О.А. Термическое разложение нитрометилнитротриазола, катализируемое основаниями // Прикладные аспекты совершенствования химических технологий и материалов: Материалы Всеросс. науч.-практ. конференции. Часть1: Перспективные технологии синтеза лекарственных средств. Достижения в области химии и технологии взрывчатых веществ. Бийск. БТИ АлтГТУ им. И.И.Ползунова: Изд-во АлтГТУ. 1998. С. 51-54.
8. Степанов Р.С., Круглякова Л.А., Пехотин К.В. Кинетика и механизм термораспада октогена с добавками купферонатов металлов // Физика горения и взрыва. 1999. Т. 35. № 3. С.52-56.
9. Stepanov R.S., Kruglyakova L.A., Pekhotin K.V. Kinetics and Mechanism of Thermal Decomposition of HMX with Metal Cupferonate Additives // Combustion, Explosion and Shock Waves. 1999. Vol. 35. № 3. P. 261-265.
10. Stepanov R.S., Kruglyakova L.A. Thermal Decomposition of Polyfunctional Azidocompounds // Energetic Materials: Modelling of Phenomena, Experimental Characterization, Environmental Engineering. 30th International Annual Conference of ICT. 1999. Karlsruhe, FRG. P. 47/1-47/8.
11. Степанов Р.С., Рогозин М.В., Круглякова Л.А., Степанова М.А. Кинетические закономерности термораспада 4,10-диазатетрацикло [5.5.0.05,903,11] додекана // Кинетика и катализ. 1999. Т. 40. № 1. С. 58-60.
12. Степанов Р.С., Астахов А.М., Круглякова Л.А., Голубцова О.А. Кинетика и механизм термического разложения некоторых производных 5-динитрометил-2-метилтетразола // ЖОХ. 2000. Т. 70. Вып. 6. С. 999-1001.
13. Astaсhov А.M., Vasiliev A.D., Golubtsova O.A., Kruglyakova L.A., Stepanov R.S. 3-Nitro-1-nitromethyl-1,2,4-1H-triazole // Acta Crystallographica. 2000. C 56. P. 999-1000.
14. Степанов Р.С., Круглякова Л.А., Пехотин К.В. Влияние солей пропионитрилнитрамина на термическое разложение октогена // Физика горения и взрыва. 2000. Т. 36. № 5. С. 74-77.
15. Stepanov R.S., Kruglyakova L.A., Pekhotin K.V. Effect of Propionitrile Nitramine Salts on the Thermal Decomposition of HMX // Combustion, Explosion and Shock Waves. 2000. Vol. 36. № 5. P. 618-621.
16. Степанов Р.С., Круглякова Л.А., Астахов А.М. Влияние строения на скорость термораспада 2,2,2-тринитроэтил-N-нитраминов // ЖОрХ. 2001. Т. 37. Вып. 12. С. 1874.
17. Vasiliev A.D., Astaсhov A.M., Golubtsova O.A., Pekhotin K.V., Rogozin M.V., Kruglyakova L.A., Stepanov R.S. 5-Nitro-2-nitromethyl-2H-1,2,3,4-tetrazole. // Acta Crystallographica. 2001. C 57. P. 1101-1102.
18. Степанов Р.С., Астахов А.М., Круглякова Л.А., Нефедов А.А. Термическое разложение вторичных нитроаминов с 1,2,4-триазольными и тетразольными заместителями // ЖОХ. 2002. Т. 72. Вып. 8. С.1375-1377.
19. Степанов Р.С., Астахов А.М., Круглякова Л.А, Пехотин К.В. Кинетика и механизм термического разложения в-цианоэтил-Н-нитроаминов // ЖОХ. 2002. Т. 72. Вып. 8. С.1338-1340.
20. Васильев А.Д., Астахов А.М., Рогозин М.В., Кекин Ю.В., Круглякова Л.А., Степанов Р.С. Кристаллическая и молекулярная структура 1-нитро-имидазолидин-2-она // Журнал структурной химии. 2002. Т. 43. № 1. С. 196-199.
21. Голубцова О.А., Пехотин К.В., Круглякова Л.А., Астахов А.М., Степанов Р.С. Термическое разложение нитрометильных производных нитрогетероциклов // Современные проблемы технической химии. Материалы докладов Всероссийской научно-технической конференции (26-28 сентября 2002 года). Казань. 2002. Часть 2. С. 23-26.
22. Степанов Р.С., Круглякова Л.А., Голубцова О.А., Астахов А.М. Термическое разложение 3-нитро-1-нитрометил-1,2,4-1H-триазола в растворе // ХГС. 2003. № 5. С. 699-703.
23. Васильев А.Д., Астахов А.М., Задов В.Е., Молокеев М.С., Биндарович О.В., Круглякова Л.А., Степанов Р.С. Кристаллическая и молекулярная структура 5-ацетиламино-3-нитро-1,2,4-триазола // Журнал структурной химии. 2003. Т. 44. № 5. С. 967-971.
24. Stepanov R.S., Kruglyakova L.A., Аstaсhov А.М. Geminal Trinitrocompounds Thermal Decomposition under Non-Isothermic Conditions // Proc. VI. Seminar “New Trends in Research of Energetic Materials”, April 22-24, 2003, Pardubice, Czech Republic. P. 362-366.
25. Степанов Р.С., Круглякова Л.А., Астахов А.М., Пехотин К.В. Влияние формиатов и оксалатов металлов на скорость распада октогена // Физика горения и взрыва. 2004. Т.40. № 5. С. 86-90.
26. Stepanov R.S., Kruglyakova L.A., Astachov A. M., Pekhotin K.V. Effect of Metal Formates and Oxalates on HMX Decomposition // Combustion, Explosion and Shock Waves. 2004. Vol. 40. № 5. P. 576-579.
27. Степанов Р.С., Круглякова Л.А., Астахов А.М. Термическое разложение гем-динитроэтилнитроаминов // ЖОХ. 2004. Т. 74. Вып. 10. С. 1669-1673.
28. Степанов Р.С., Круглякова Л.А., Астахов А.М., Голубцова О.А. Кинетика и механизм термического разложения 2-замещенных 5,5-динитро-1,3-диоксанов // ЖОХ. 2004. Т. 74. Вып. 10. С. 1702-1705.
29. Stepanov R.S., Kruglyakova L.A., Astachov A.M. Geminal Dinitrocompoundes Thermal Decomposition under Non-Isothermal Conditions // Proc. 7th International Seminar New Trends in Research of Energetic Materials. 2004. Pardubice. Czech Republic. P. 659-666.
30. Степанов Р.С., Круглякова Л.А., Кекин Ю.В., Астахов А.М. Влияние хлористого водорода и оксида азота на термическое разложение паров метилнитрамина // Журнал физической химии. 2004. Т. 78. № 5. С. 955-956.
31. Stepanov R.S., Kruglyakova L.A., Rogozin M.V., Astachov A.M. Influence of Structure on the Thermal Decomposition Rate of Some Cage Nitramines // Energetic Materials Structure and Properties. 35th International ICT-Conference. 2004. Karlsruhe. FRG. P. 59/159/13.
32. Stepanov R.S., Kruglyakova L.A., Аstaсhov А.М. Structure-kinetic laws of thermal decomposition of six-membered cyclic N-nitramines // Proc. VIII. Seminar “New Trends in Research of Energetic Materials”, April 19-21, 2005. Pardubice, Czech Republic. P. 816-824.
33. Степанов Р.С., Круглякова Л.А., Астахов А.М. Влияние структуры на скорость термического разложения шестичленных циклических нитраминов // Проблемы энергетических материалов: Сб. трудов Всероссийской научно-технической конференции «Успехи в специальной химии и химической технологии», посвященной 70-летию ИХТФ РХТУ им. Д.И.Менделеева и 100-летнему юбилею профессора К.К.Андреева, Ч. 1, - М.: РХТУ им. Д.И.Менделеева, 2005. С. 163-167.
34. Stepanov R.S., Kruglyakova L.A., Rogozin M.V., Аstaсhov А.М. Influence of structure on the thermal decomposition rate of five-membered cyclic N-nitramines // Energetic Materials: Performance and Safety. 36th International ICT-Conference. 2005. Karlsruhe. FRG. P. 112/1112/13.
35. Степанов Р.С., Круглякова Л.А., Астахов А.М. Термическое разложение полинитро-соединений в неизотермических условиях // Физика горения и взрыва. 2006. Т. 42. № 1. С. 73-77.
36. Stepanov R.S., Kruglyakova L.A., Аstaсhov А.М. Thermal Decomposition of Polynitro Compounds under Nonisothermal Conditions // Combustion, Explosion, And Shock Waves. 2006. Vol. 42. No. 1. P. 63-67.
37. Степанов Р.С., Круглякова Л.А., Астахов А.М. Термораспад некоторых восьмичленных циклических нитраминов // ЖОХ. 2006. Т. 76. Вып. 3. С. 525-526.
38. Степанов Р.С., Круглякова Л.А., Астахов А.М. Термораспад некоторых производных 1,3-динитро-1,3-диаза-5,7-диоксациклооктана // ЖОХ. 2006. Т. 76. Вып. 10. С. 1703-1704.
39. Stepanov R.S., Kruglyakova L.A., Аstaсhov А.М. Thermal Decomposition Kinetics of Some Eight-Membered Cyclic N-Nitramines // Energetic Materials: Insensitivity, Ageing, Monitoring. 37th International ICT-Conference. 2006. Karlsruhe. FRG. P. 42/142/7.
40. Степанов Р.С., Круглякова Л.А., Астахов А.М. Термическое разложение некоторых пятичленных циклических N-нитраминов // ЖОХ. 2006. Т. 76. Вып. 12. С. 2061-2062.
41. Степанов Р.С., Круглякова Л.А., Астахов А.М. Кинетика термораспада некоторых N-нитраминов с двумя конденсированными пятичленными циклами // ЖОХ. 2006. Т.76. Вып. 12. С. 2063.
42. Stepanov R.S., Kruglyakova L.A., Аstaсhov А.М. Thermal Decomposition of Azidonitramines // Central European Journal of Energetic Materials. 2007. No. 4 (1-2). P. 151-156.
43. Степанов Р.С., Круглякова Л.А., Астахов А.М. Влияние строения шестичленных циклических N-нитраминов на скорость и механизм их термораспада // ЖОХ. 2007. Т. 77. Вып. 7. С. 1211-1217.
44. Stepanov R.S., Kruglyakova L.A., Аstaсhov А.М. Thermal Decomposition Kinetics and Mechanism of 5-gem-Dinitromethyl Substituted 2-Methyl-1,2,3-Triazoles // Energetic Materials: Characterisation and Performance of Advanced Systems. 38th International ICT-Conference. 2007. Karlsruhe. FRG. P. 62/162/8.
45. Степанов Р.С., Круглякова Л.А., Астахов А.М. Термораспад производных 3-нитро-1-динитрометил-1,2,4-триазола в растворе // ЖОрХ. 2007. Т. 43. Вып. 3. С. 473.
46. Степанов Р.С., Круглякова Л.А., Астахов А.М. Структурно-кинетические закономерности термораспада гем-тринитрометилазолов в жидкой фазе // ЖОХ. 2007. Т. 77. Вып. 11. С. 1881-1886.
Размещено на Allbest.ru
...Подобные документы
Литературный обзор по присадкам к моторным маслам. Технико-экономическое обоснование выбранного направления исследования, методики синтеза комплексных полифункциональных присадок. Возможность уменьшения расхода присадок при производстве моторных масел.
дипломная работа [1,1 M], добавлен 11.08.2011Получение ацетиленовых сульфонов и их химические свойства. Присоединение N-нуклеофилов, спиртов, карбоновых кислот, тиолов и галогенов. Алкилирование, гидролиз и восстановление. Анализ химической реакции синтеза 4-нитро-2-(фенилэтинилсульфонил)анилина.
курсовая работа [1,6 M], добавлен 01.11.2012Фотохромные соединения, сферы их применения. Биологическая активность фотохромных соединений, их использование как лекарственных средств защиты против паразитов. Особенности синтеза 4-нитро-2Н-бензимидазол-1,3-диоксида и изучение его фотохромных свойств.
курсовая работа [10,9 M], добавлен 27.05.2014Изучение закономерностей роста вязкости в процессе отверждения полиуретанов в связи с исследованием кинетики начальной стадии этого процесса. Процесс формирования трехмерных сетчатых структур при образовании полиуретанов из полифункциональных олигомеров.
статья [322,9 K], добавлен 03.03.2010Природа и внутреннее строение ферментов. Рассмотрение кинетических закономерностей односубстратных ферментативных реакций, осложненных ингибированием. Исследование кинетики реакции окисления сукцината натрия в фумарат натрия под действием сукционимидазы.
курсовая работа [407,3 K], добавлен 13.10.2011Обоснование возможности уменьшения расхода индивидуальных присадок при производстве моторных масел на основе пакетов присадок, причины возникновения этого эффекта. Разработка пакетов присадок КП-2 и КП-3. Механизм протекания процесса карбонатации.
дипломная работа [926,6 K], добавлен 11.10.2011Классификация дисперсных систем по структурно-механическим свойствам. Возникновение объемных структур в различных дисперсных системах. Анализ многообразия свойств в дисперсных системах. Жидкообразные и твердообразные тела. Тиксотропия и реопексия.
реферат [228,7 K], добавлен 22.01.2009Общие представления о алканах и их строение, физические свойства. Содержание алканов в нефтях. Основные методики исследования алканов. Применение алканов в органической геохимии. Образование алканов, приемы их использования при исследовании нефтей.
реферат [255,5 K], добавлен 04.05.2012Рассмотрение сублимационного способа печати тканей из химических волокон дисперсными красителями. Изучение взаимодействия 4-нитронафталевого ангидрида с алифатическими аминами и получение на основе 4-нитро-N-октил-нафталимида сублимирующихся красителей.
дипломная работа [1,1 M], добавлен 05.11.2012Источники алканов в природе: природный газ, минеральное углеводородное сырье. Последовательность соединений алканов - гомологический ряд. Порядок соединения атомов и структурная изомерия алканов. Рост количества изомеров с ростом числа углеродных атомов.
презентация [500,4 K], добавлен 14.02.2011Функции и классификация углеводов - полифункциональных соединений. Моносахариды - пентозы: рибоза, дезоксирибоза. Моносахариды - гексозы: глюкоза, фруктоза. Дисахариды: сахароза. Мальтоза (солодовый сахар). Полисахариды: крахмал, целлюлоза (клетчатка).
презентация [935,8 K], добавлен 17.03.2015Термический распад ПВХ как последовательная ионно-молекулярная реакция. Кинетические закономерности реакций термического дегидрохлорирования. Основные причины синергизма смеси солей цинка органической кислоты, а также их взаимодействие с моделью ПВХ.
статья [770,3 K], добавлен 22.02.2010Сущность алканов (насыщенных углеводородов), их основные источники и сферы применения. Строение молекул метана, этана, пропана и бутана. Особенности промышленных и лабораторных методов синтеза алканов. Механизм галогенирования, горения и пиролиза.
курсовая работа [2,8 M], добавлен 19.04.2012Общие сведения, распространение и значимость гетероциклических органических соединений. Особенности строения гетероциклов, их классификация и номенклатура. Шестичленные гетероциклы - азины и их аналоги. Взаимопревращение пятичленных гетероциклов.
контрольная работа [1,2 M], добавлен 05.08.2013Односторонняя реакция 2-го порядка и её стехиметрическое уравнение. Исследование кинетики реакции от начального момента времени. Односторонняя реакция 3-го порядка и её возможные кинетические варианты. Односторонняя реакция произвольного n-го порядка.
реферат [1,5 M], добавлен 29.01.2009Полиэтилен, его свойства, строение, механизм получения при высоком давлении. Физико-химические и кинетические закономерности полимеризации этилена. Влияние основных параметров на данный процесс. Описание технологической схемы производства полиэтилена.
реферат [397,9 K], добавлен 16.05.2012Преимущество электрохимического метода синтеза комплексных соединений. Выбор неводного растворителя. Принципиальная схема синтеза и конструкция электрохимической ячейки. Основные методы исследования состава синтезированных комплексных соединений.
курсовая работа [1,2 M], добавлен 09.10.2013Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.
статья [244,2 K], добавлен 22.02.2010Химически индуцированная поляризация ядер. Исследование механизма фотореакции и структуры короткоживущих радикалов в реакции 3,3’,4,4’-тетракарбоксибензофенона и гистидина. Расчет структур органических радикалов и значений констант СТВ гибридным методом.
курсовая работа [1,1 M], добавлен 30.05.2013Анализ истории и причин возникновения кинетических теорий, их место в философских проблемах химии. Представление о свободной энергии Гиббса. Изучение закона действующих масс, методов термодинамики, теории активных соударений. Концептуальная система химии.
реферат [70,8 K], добавлен 19.03.2015