Реконструкция производственно-отопительной котельной поселка шахты "Кочегарка"
Определение количества потребителей и годового расхода теплоты. Система и принципиальная схема теплоснабжения. Тепловой расчет котлоагрегата и вспомогательного оборудования. Стоимость строительно-монтажных работ и годовых эксплуатационных расходов.
Рубрика | Строительство и архитектура |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.05.2013 |
Размер файла | 141,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Общая часть
1.1 Характеристика обьекта
1.2 Климатологические данные
1.3 Определение колличества потребителей теплоты. График годового расхода теплоты
1.4 Система и принципиальная схема теплоснабжения
1.5 Расчет тепловой схемы котельной
1.6 Подбор и размещение основного и вспомагательного оборудования
1.7 Тепловой расчет котлоагрегата
1.8 Аэродинамический расчет теплодутьевого тракта
2. Спецчасть. Разработка блочной системы подогревателей
2.1 Исходные данные водоснабжения
2.2 Выбор схемы приготовления воды
2.3 Расчет оборудования водоподогревательной установки
2.4 Расчет сетевой установки
3. Технико-экономическая часть
3.1 Исходные данные
3.2 Расчет договорной стоимости строительно-монтажных работ
3.3 Определение годовых эксплуатационных расходов
3.4 Определение годового экономического эффекта
4. ТМЗР. Монтаж секционных водонагревателей
4.1 Подготовительные работы
4.2 Заготовительные работы
4.3 Погрузочно-разгрузочные работы
4.4 Технология монтажа
4.5 Испытание и пуск водоподогревателя в работу
4.6 Оборудование и инструменты при монтаже
4.7 Техника безопасности при монтаже водоподогревателя
5. Автоматика. Автоматическое регулирование и теплотехнический контроль котлоагрегата КЕ-25-14с
6. Охрана труда в строительстве
6.1 Охрана труда при монтаже энергетического и технологического оборудования в котельной
6.2 Анализ и предотвращение появления потенциальных опасностей
6.3 Расчет стропов
7. Организация, планирование и управление строительством
7.1 Монтаж котлоагрегатов
7.2 Условия начала производства работ
7.3 Производственная калькуляция затрат труда и заработной платы
7.4 Расчет параметров календарного плана
7.5 Организация стройгенплана
7.6 Расчет технико-экономических показателей
8. Организация эксплуатации и энергоресурсосбережения
8.1 Организация эксплуатации теплогенерирующей установки с паровыми котлоагрегатами во время их работы и остановки
8.2 Энергосбережение в ТГУ при использовании твердого топлива
Список литературы
Введение
В наше сложное время, с больной кризисной экономикой строительство новых промышленных объектов сопряжено с большими трудностями, если вообще строительство возможно. Но в любое время, при любой экономической ситуации существует целый ряд отраслей промышленности без развития которых невозможно нормальное функционирование народного хозяйства, невозможно обеспечение необходимых санитарно-гигиенических условий населения. К таким отраслям и относится энергетика, которая обеспечивает комфортные условия жизнедеятельности населения, как в быту, так и на производстве.
Последние исследования показали экономическую целесообразность сохранения значительной доли участия крупных отопительных котельных установок в покрытии общего потребления тепловой энергии.
Наряду с крупными производственными, производственно-отопительными котельными мощностью в сотни тонн пара в час или сотни МВт тепловой нагрузки установлены большое количество котельных агрегатами до 1 мвт и работающих почти на всех видах топлива.
Однако как раз с топливом и существует самая большая проблема. За жидкое и газообразное топливо, которое поставляется на Украину в основном из России, у потребителей часто не хватает средств расплатиться. Поэтому и необходимо использовать местные ресурсы.
В данном дипломном проекте разрабатывается реконструкция производственно-отопительной котельной поселка шахты "Кочегарка", которая использует в качестве топлива местный добываемый уголь. В перспективе предусматривается перевод котлоагрегатов на сжигание газа от дегазации газовых выбросов шахты, которая находится на территории обогатительной фабрики. В существующей котельной установлены два паровых котлоагрегата КЕ-25-14, служившие для снабжения паром предприятия шахты кочегарка, и водогрейные котлы ТВГ-8 (2 котла) для отопления, вентиляции и горячего водоснабжения административно-бытовых зданий и жилого поселка.
В связи с сокращением добычи угля снизились производственные мощности угледобывающего предприятия, что привело к сокращению в потребности пара. Это вызвало реконструкцию котельной, которая заключается в использовании паровых котлов КЕ-25 не только для производственных целей, но и для производства горячей воды на отопление, вентиляцию и горячее водоснабжение в специальных теплообменниках.
1. Общая часть
1.1 Характеристика объекта
Проектируемая котельная находится в городе Горловке Донецкой области на территории шахты "Кочегарка".
Планировка, размещение зданий и сооружений на промплощадке обогатительной фабрики выполнены в соответствии с требованиями СНиП.
Размер территории промплощадки в границах ограждений - 12,66 га, площадь застройки 52194 м2.
Транспортная сеть района строительства представлена железными дорогами общего пользования и автодорогами местного значения.
Рельеф местности равнинный, с небольшими подъемами, в почве преобладает суглинок.
Источником водоснабжения является фильтровальная станция и канал Северский Донец-Донбасс. Предусмотрено дублирование водовода.
1.2 Климатологические данные
теплоснабжение котлоагрегат строительство расходы
Для данного района строительства расчетная зимняя температура наружного воздуха для проектирования отопления и вентиляции tзр=-23°С; =88%. Расчетная летняя температура tлр=27,6°С; р =44%. Средняя температура за отопительный период tоср=-1,8°С Продолжительность отопительного периода составляет 83 дня. [1]
Таблица 1.1 Продолжительность стояния температур наружного воздуха в течение отопительного периода.
Температура наружного воздуха, °С |
-29,9-25 |
-24,9-20 |
-19,9-15 |
-14,9-10 |
-9,9-5 |
-4,90 |
0,10 |
+5,1+8 |
|
Время стояния температур, ч. |
8 |
53 |
161 |
382 |
665 |
1038 |
1340 |
673 |
|
Всего, ч. |
8 |
61 |
222 |
604 |
1269 |
2307 |
3647 |
4320 |
Снеговая нормативная нагрузка - 50кг/м2.
Ветровая нормативная нагрузка - 45 кг/м2.
Глубина промерзания грунта по естественной поверхности земли - 1 м.
Основанием для фундаментов служат суглинки. Условное расчетное давление на суглинок - 0,24МПа - (2,4кгс/см2). Грунтовые воды встречаются на глубине 2,5 7,5 м от поверхности земли.
1.3 Определение количества потребителей теплоты. График годового расхода теплоты
Расчетные расходы теплоты промышленными предприятиями определяются по удельным нормам теплопотребления на единицу выпускаемой продукции или на одного работающего по видам теплоносителя (вода, пар). Расходы теплоты на отопление, вентиляцию и технологические нужды приведены в таблице 1.2. тепловых нагрузок.
Годовой график расхода теплоты строится в зависимости от продолжительности стояния наружных температур, которая отражена в таблице 1.2. данного дипломного проекта.
Максимальная ордината годового графика расхода теплоты соответствует расходу тепла при наружной температуре воздуха -23 С.
Площадь, ограниченная кривой и осями ординат, дает суммарный расход теплоты за отопительный период, а прямоугольник в правой части графика - расход теплоты на горячее водоснабжение в летнее время.
На основании данных таблицы 1.2. рассчитываем расходы теплоты по потребителям для 4-х режимов: максимально-зимний (tр. о. = -23C;); при средней температуре наружного воздуха за отопительный период; при температуре наружного воздуха +8C; в летний период.
Расчет ведем в таблице 1.3. по формулам:
- тепловая нагрузка на отопление и вентиляцию, МВт
QОВ=QРОВ*(tвн-tн)/(tвн-tр.о.)
- тепловая нагрузка на горячее водоснабжение в летний период, МВт
QЛГВ=QРГВ*(tг-tхл)/(tг-tхз)*
где: QРОВ- расчетная зимняя тепловая нагрузка на отопление и вентиляцию при расчетной температуре наружного воздуха для проектирования системы отопления. Принимаем по табл. 1.2.
tВН - внутренняя температура воздуха в отапливаемом помещении, tВН =18С
QРГВ - расчетная зимняя тепловая нагрузка на горячее водоснабжение (табл. 1.2);
tн - текущая температура наружного воздуха, °С;
tр.о. - расчетно отопительная температура наружного воздуха,
tг - температура горячей водя в системе горячего водоснабжения,tг=65°С
tхл, tхз - температура холодной воды летом и зимой,tхл =15°С,tхз =5°С;
- поправочный коэффициент на летний период, =0,85
Таблица 1.2 Тепловые нагрузки
Вид тепловой нагрузки |
Расход тепловой нагрузки, МВт |
Характеристика теплоносителя |
||
Зимой |
Летом |
|||
1. Отопление и вентиляция |
15,86 |
- |
Вода 150/70 С Пар Р=1,4 МПа |
|
2. Горячее водоснабжение |
1,36 |
По расчету |
||
3. Технологические нужды |
11,69 |
1,24 |
Пар Р=1,44МПа |
|
ВСЕГО |
28,91 |
1,24 |
- |
Таблица 1.3 Расчет годовых тепловых нагрузок
№ п/п |
Вид нагрузки |
Обозначение |
Значение тепловой нагрузки при температуре МВт |
||||
tр.о=-23 С |
tсро.п.=-1,8С |
tр.о=8С |
Летний |
||||
1. |
Отопление и вентиляция |
QОВ |
15,86 |
7,66 |
3,87 |
- |
|
2. |
Горячее водоснабжение |
QГВ |
1,36 |
1,36 |
1,36 |
0,963 |
|
3. |
Итого |
QОВ+ГВ |
17,22 |
9,02 |
5,23 |
0,963 |
|
4. |
Технология |
QТЕХ |
11,69 |
11,69 |
1,24 |
1,24 |
|
5. |
Всего |
Q |
28,91 |
20,71 |
6,47 |
2,203 |
1.4 Система и принципиальная схема теплоснабжения
Источником теплоснабжения является реконструируемая котельная шахты. Теплоноситель - пар и перегретая вода. Питьевая вода используется только для систем горячего водоснабжения. Для технологических нужд используется пар Р=0,6 МПа. Для приготовления перегретой воды с температурой 150-70С предусматривается сетевая установка, для приготовления воды с t=65°С - установка горячего водоснабжения.
Система теплоснабжения - закрытая. Вследствие отсутствия непосредственного водоразбора и незначительной утечки теплоносителя через неплотности соединений труб и оборудования закрытые системы отличаются высоким постоянством количества и качества циркулируемой в ней сетевой воды.
В закрытых водяных системах теплоснабжения воду из тепловых сетей используют только как греющую среду для нагревания в подогревателях поверхностного типа водопроводной воды, поступающей затем в местную систему горячего водоснабжения. В открытых водяных системах теплоснабжения горячая вода к водоразборным приборам местной системы горячего водоснабжения поступает непосредственно из тепловых сетей.
На промплощадке трубопроводы теплоснабжения прокладываются по мостам и галереям и частично в непроходных лотковых каналах типа Кл. Трубопроводы прокладывают с устройством компенсации за счет углов поворотов трассы и П-образных компенсаторов.
Трубопроводы приняты из стальных электросварных труб с устройством теплоизоляции.
На листе 1 графической части дипломного проекта показан генплан промплощадки с разводкой тепловых сетей к объектам потребления.
1.5 Расчет тепловой схемы котельной
Принципиальная тепловая схема характеризует сущность основного технологического процесса преобразования энергии и использования в установке теплоты рабочего тела. Она представляет собой условное графическое изображение основного и вспомогательного оборудования, объединенного линиями трубопроводов рабочего тела в соответствии с последовательностью его движения в установке.
Основной целью расчета тепловой схемы котельной является:
- определение общих тепловых нагрузок, состоящих из внешних нагрузок и расходов тепла на собственные нужды, и распределением этих нагрузок между водогрейной и паровой частями котельной для обоснования выбора основного оборудования;
- определение всех тепловых и массовых потоков, необходимых для выбора вспомогательного оборудования и определения диаметров трубопроводов и арматуры;
- определение исходных данных для дальнейших технико-экономических расчетов (годовых выработок тепла, годовых расходов топлива и др.).
Расчет тепловой схемы позволяет определить суммарную теплопроизводительность котельной установки при нескольких режимах ее работы. Тепловая схема котельной приведена на листе 2 графической части дипломного проекта. Исходные данные для расчета тепловой схемы котельной приведены в таблице 1.4, а сам расчет тепловой схемы приведен в таблице 1.5.
Таблица 1.4 Исходные данные для расчета тепловой схемы отопительно-производственной котельной с паровыми котлами КЕ-25-14с для закрытой системы теплоснабжения.
№№ пп |
Наименование величин |
Обозначение |
Ед. изм. |
Расчетные режимы |
Примечание |
||||
Максимально зимний |
При средней температуре наиболее холодного периода |
При температуре наружного воздуха в точке излома температурного графика |
Летний |
||||||
01 |
Температура наружного воздуха |
tн |
C |
-24 |
-10 |
- |
- |
I |
|
02 |
Температура воздуха внутри отапливаемых зданий |
tвн |
C |
18 |
18 |
18 |
18 |
||
03 |
Максимальная температура прямой сетевой воды |
t1макс |
C |
150 |
- |
- |
- |
||
04 |
Минимальная температура прямой сетевой воды в точке излома температурного графика |
t1.изл |
C |
- |
- |
70 |
- |
||
05 |
Максимальная температура обратной сетевой воды |
t2макс |
C |
70 |
- |
- |
- |
||
06 |
Температура деаэрированной воды после деаэратора |
Tд |
C |
104,8 |
104,8 |
104,8 |
104,8 |
||
07 |
Энтальпия деаэрированной воды |
iд |
КДж/кг |
439,4 |
439,4 |
439,4 |
439,4 |
Из таблиц насыщенного пара и воды при давлении 1.2Мпа |
|
08 |
Температура сырой воды на входе в котельную |
T1 |
C |
5 |
5 |
5 |
15 |
||
09 |
Температура сырой воды перед химводоочисткой |
TЗ |
C |
25 |
25 |
25 |
25 |
||
10 |
Удельный объем воды в системе тепловодоснабжения в т. на 1 МВт суммарного отпуска тепла на отопление, вентиляцию и горячее водоснабжение |
qсист |
Т/ МВт |
30,1 |
30,1 |
30,1 |
30,1 |
Для промышленных предприятий |
|
Параметры пара, вырабатываемого котлами (до редукционной установки) |
|||||||||
11 |
Давление |
P1 |
МПа |
1,4 |
1,4 |
1,4 |
1,4 |
Из таблиц насы- |
|
12 |
Температура |
1 |
C |
195 |
195 |
195 |
195 |
щенного пара и |
|
13 |
Энтальпия |
i1 |
КДж/кг |
2788,4 |
2788,4 |
2788,4 |
2788,4 |
воды при давлении 1,4 МПа |
|
Параметры пара после редукционной установки: |
|||||||||
14 |
Давление |
P2 |
МПа |
0,7 |
0,7 |
0,7 |
0,7 |
Из таблиц насы- |
|
15 |
Температура |
2 |
C |
165 |
165 |
165 |
165 |
щенного пара и |
|
16 |
Энтальпия |
i2 |
КДж/кг |
2763 |
2763 |
2763 |
2763 |
воды при давлении 0,7 МПа |
|
Параметры пара, образующегося в сепараторе непрерывной продукции: |
|||||||||
17 |
Давление |
P3 |
МПа |
0,17 |
0,17 |
0,17 |
0,17 |
Из таблиц насы- |
|
18 |
Температура |
3 |
C |
115,2 |
115,2 |
115,2 |
115,2 |
щенного пара и |
|
19 |
Энтальпия |
i3 |
КДж/кг |
2700 |
2700 |
2700 |
2700 |
воды при давлении 0,17 Мпа |
|
Параметры пара, поступающего в охладитель выпара из деаэратора: |
|||||||||
20 |
Давление |
P4 |
МПа |
0,12 |
0,12 |
0,12 |
0,12 |
Из таблиц насы- |
|
21 |
Температура |
4 |
C |
104,8 |
104,8 |
104,8 |
104,8 |
щенного пара и |
|
22 |
Энтальпия |
i4 |
КДж/кг |
2684 |
2684 |
2684 |
2684 |
воды при давлении 0,12 Мпа |
|
Параметры конденсатора после охладителя выпара: |
|||||||||
23 |
Давление |
P4 |
МПа |
0,12 |
0,12 |
0,12 |
0,12 |
Из таблиц насы- |
|
24 |
Температура |
4 |
C |
104,8 |
104,8 |
104,8 |
104,8 |
щенного пара и |
|
25 |
Энтальпия |
i5 |
КДж/кг |
439,4 |
439,4 |
439,4 |
439,4 |
воды при давлении 0,12 Мпа |
|
Параметры продувочной воды на входе в сепаратор непрерывной продувки: |
|||||||||
26 |
Давление |
P1 |
Мпа |
1,4 |
1,4 |
1,4 |
1,4 |
Из таблиц насы- |
|
27 |
Температура |
1 |
C |
195 |
195 |
195 |
195 |
щенного пара и |
|
28 |
Энтальпия |
i7 |
КДж/кг |
830,1 |
830,1 |
830,1 |
830,1 |
воды при давлении 1,4 Мпа |
|
Параметры продувочной воды на выходе из сепаратора непрерывной продувки: |
|||||||||
29 |
Давление |
P3 |
Мпа |
0,17 |
0,17 |
0,17 |
0,17 |
Из таблиц насы- |
|
30 |
Температура |
3 |
C |
115,2 |
115,2 |
115,2 |
115,2 |
щенного пара и |
|
31 |
Энтальпия |
i8 |
КДж/кг |
483,2 |
483,2 |
483,2 |
483,2 |
воды при давлении 0,17 Мпа |
|
32 |
Температура продувочной воды после охлаждения продувочной воды |
tпр |
C |
40 |
40 |
40 |
40 |
||
33 |
Температура конденсата от блока подогревателей сетевой воды |
tкб |
C |
80 |
80 |
80 |
80 |
Принимается |
|
34 |
Температура конденсата после пароводяного подогревателя сырой воды |
t2 |
C |
165 |
165 |
165 |
165 |
Принимается |
|
35 |
Энтальпия конденсата после пароводяного подогревателя сырой воды |
i6 |
КДж/кг |
697,1 |
697,1 |
697,1 |
697,1 |
Из таблиц насыщенного пара и воды при давлении 0,7 Мпа |
|
36 |
Температура конденсата, возвращаемого с производства |
tкп |
C |
80 |
80 |
80 |
80 |
||
37 |
Величина непрерывной продувки |
П |
% |
4,6 |
4,6 |
4,6 |
4,6 |
Принимается из расчета химводоочистки |
|
38 |
Удельные потери пара с выпаром из деаэратора питательной воды в т на 1т деаэрированной воды |
dвып |
т/т |
0,002 |
0,002 |
0,002 |
0,002 |
Принимается по рекомендациям ЦКТИ |
|
39 |
Коэффициент собственных нужд химводоочистки |
Кснхво |
- |
1,2 |
1,2 |
1,2 |
1,2 |
||
40 |
Коэффициент внутрикотельных потерь пара |
Кпот |
- |
0,02 |
0,02 |
0,02 |
0,02 |
Принимается |
|
41 |
Расчетный отпуск тепла из котельной на отопление и вентиляцию |
Qмаксов |
МВт |
15,86 |
- |
- |
- |
Табл. 1.2. |
|
42 |
Расчетный отпуск тепла на горячее водоснабжение за сутки наибольшего водопотребления |
Qсргв |
МВт |
1,36 |
- |
- |
- |
Табл. 1.2. |
|
43 |
Отпуск тепла производственным потребителям в виде пара |
Дотр |
кг/с |
4,98 |
4,98 |
4,98 |
0,53 |
||
44 |
Возврат конденсата от производственных потребителей (80%) |
Gпотр |
=кг/с |
3,98 |
3,98 |
3,98 |
0,42 |
=0,8 |
Таблица 1.5 Расчет тепловой схемы отопительно-производственной котельной с паровыми котлами КЕ-25-14с для закрытой системы теплоснабжения.
№№ пп |
Наименование величин |
Обозначение |
Ед. изм. |
Расчетная формула |
Расчетные режимы |
||||
Максимально зимний |
При средней температуре наиболее холодного периода |
При температуре наружного воздуха в точке излома температурного графика сетевой воды. |
Летний |
||||||
Р 01 |
Температура наружного воздуха в точке излома температурного графика сетевой воды |
tн.изл |
C |
tвн-0,354(tвн- tр.о.) |
- |
- |
18-0,354* *(18+24)= =3,486 |
- |
|
Р 02 |
Коэффициент снижения расхода тепла на отопление и вентиляцию в зависимости от температуры наружного воздуха |
Ков |
- |
(tвн- t'н)/ (tвн- tр.о) |
1 |
(18-(-10))/(18-(-23))=0,67 |
(18-0,486)/ /(18-(-24))= =0,354 |
- |
|
Р 03 |
Расчетный отпуск теплоты на отопление и вентиляцию |
Qов |
МВт |
Qмаксов*Ков |
15,86 |
15,86*0,67= 10,62 |
5,61 |
- |
|
Р 04 |
Значение коэффициента Ков в степени 0,8 |
К 0.8ов |
- |
1 |
0,73 |
0,436 |
- |
||
Р 05 |
Температура прямой сетевой воды на выходе из котельной |
tI |
C |
18+64,5* *К 0.8ов+64,5*Ков |
150 (см 03) |
18+64,5*0,73+67,5*0,67= 110,3 |
70 (см 04) |
70 |
|
Р 06 |
Температура обратной сетевой воды |
t2 |
C |
t1-80*Ков |
70 |
56,7 |
54,7 |
42,7 |
|
Р 07 |
Суммарный отпуск теплоты на отопление, вентиляцию и горячее водоснабжение в зимних режимах |
Qов+гв |
МВт |
Qов+ Qсргв |
17,22 |
11,98 |
6,97 |
0,936 |
|
Р 08 |
Расчетный расход сетевой воды в зимних режимах |
Gсет |
кг/с |
Qов+гв*103/(t1-t2)*C |
51.37 |
94.13 |
65.56 |
- |
|
Р 09 |
Отпуск теплоты на горячее водоснабжение в летнем режиме |
Qлгв |
МВт |
- |
- |
- |
0,963 |
||
Р 10 |
Расчетный расход сетевой воды в летнем режиме |
Gлсет |
кг/ч |
Qлгв*103/(t1-t2)*C |
- |
- |
- |
9,2 |
|
Р 11 |
Объем сетевой воды в системе водоснабжения |
Gсист |
Т |
qсис*Qдmax |
519,53 |
519,53 |
519,53 |
519,53 |
|
Р 12 |
Расход подпиточной воды на восполнение утечек в теплосети |
Gут |
кг/с |
0,005*Gсист*1/3,60 |
0,72 |
0,72 |
0,72 |
0,72 |
|
Р 13 |
Количество обратной сетевой воды |
Gсет.обр. |
кг/с |
Gсет- Gут |
21,24 |
92,21 |
60,08 |
7,64 |
|
Р 14 |
Температура обратной сетевой воды перед сетевыми насосами |
tз |
C |
t2*Gсет.обр+Т*Gут/ Gсет |
70,5 |
56,7 |
42,2 |
43,1 |
|
Р 15 |
Расход пара на подогреватели сетевой воды |
Дб |
кг/с |
Gсет*(t1-t3)/ (i2/4,19-tкб)* 0,98 |
7,14 |
9,13 |
2,93 |
0,48 |
|
Р 16 |
Количество конденсата от подогревателей сетевой воды |
Gб |
кг/с |
Дб |
7,14 |
9,13 |
2,93 |
0,43 |
|
Р 17 |
Паровая нагрузка на котельную за вычетом расхода пара на деаэрацию и на подогрев сырой воды, умягчаемой для питания котлов, а также без учета внутрикотельных потерь |
Д |
кг/с |
Дпотр+Дб+Дмаз |
4,98+7,14= 12,12 |
4,98+9,13= 14,11 |
4,98+2,93= 7,91 |
0,53+0,43= 0,96 |
|
Р 18 |
Количество конденсата от подогревателей сетевой воды и с производства |
Gк |
кг/с |
Gб+ Gпотр |
7,19+3,98= 11,12 |
9,13+3,98= 13,11 |
2,93+3,98= 6,91 |
0,43+0,42= 0,85 |
|
Р 19 |
Количество продувочной воды, поступающей в сепаратор непрерывной продувки |
Gпр |
кг/с |
n/100*Д |
0,6 |
0,7 |
0,39 |
0,05 |
|
Р 20 |
Количество пара на выходе из сепаратора непрерывной продувки |
Д'пр |
кг/с |
0,148*Gпр |
0,148*0,6= 0,089 |
0,148*0,70= 0,104 |
0,148*0,39= 0,060 |
0,148*0,05= 0,007 |
|
Р 21 |
Количество продувочной воды, на выходе из сепаратора непрерывной продувки |
G'пр |
кг/с |
G'пр- Дпр |
0,6-0,089= 0,511 |
0,70-0,104= 0,596 |
0,32-0,060= 0,33 |
0,05-0,007= 0,043 |
|
Р 22 |
Внутрикотельные потери пара |
Дпот |
кг/с |
0,02*Д |
0,02*1212* 0,24 |
0,02*14,11= 0,28 |
0,02*7,91= 0,16 |
0,02*0,96= 0,02 |
|
Р 23 |
Количество воды на выходе из деаэратора |
Gд |
кг/с |
Д+ Gпр+ Пут |
13,44 |
15,53 |
9,02 |
2,07 |
|
Р 24 |
Выпар из деаэратора |
Двып |
кг/с |
dвып*Gд |
0,002*13,44= 0,027 |
0,002*15,53= 0,03 |
0,002*9,02= 0,018 |
0,002*2,07= 0,004 |
|
Р 25 |
Количество умягченной воды, поступающей в деаэратор |
Gхво |
кг/с |
(Дпотр-Gпотр) +G'пр+Дпот + Двып +Gут |
2,498 |
2,64 |
2,44 |
0,96 |
|
Р 26 |
Количество сырой воды, поступающей на химводоочистку |
Gс.в |
кг/с |
Кс.н.хво*Gхво |
1,2*2,498= 3,2 |
1,2*2,64= 3,17 |
1,2*2,44= 2,93 |
1,2*0,96= 1,15 |
|
Р 27 |
Расход пара для подогрева сырой воды |
Дс |
кг/с |
Gсв*(Т 3-Т 1)*С/(i2-i6)*0.98 |
0.13 |
0.13 |
0.12 |
0.024 |
|
Р 28 |
Количество конденсата от подогревателей сырой воды, поступающей в деаэратор |
Gс |
кг/с |
Дс |
0,13 |
0,13 |
0,12 |
0,024 |
|
Р 29 |
Суммарный вес потоков, поступающих в деаэратор (кроме греющего пара) |
G |
кг/с |
Gк+Gхво+Gс+Дпр-Двып |
13,89 |
15,95 |
10,07 |
2,01 |
|
Р 30 |
Доля конденсата от подогревателей сетевой воды и с производства в суммарном весе потоков, поступающих в деаэратор |
Gк/ G |
0,8 |
0,82 |
0,68 |
0,4 |
|||
Р 31 |
Удельный расход пара на деаэратор |
dд |
кг/кг |
Рис.11 [ ] |
0,0525 |
0,052 |
0,056 |
0,0753 |
|
Р 32 |
Абсолютный расход пара на деаэратор |
Д*g |
кг/с |
dд* G |
0.75 |
||||
Р 33 |
Расход пара на деаэратор питательной воды и для подогрева сырой воды |
- |
кг/с |
(Дg+Дс)* |
0,75+0,13= 0,88 |
0,82+0,13= 0,95 |
0,56+0,12= 0,88 |
0,15+0,024= 0,179 |
|
Р 34 |
Паровая нагрузка на котельную без учета внутрикотельных потерь |
Д*' |
кг/с |
Д+(Дg+Дс) |
12,12+0,88= 13,00 |
14,11+0,9= 15,06 |
7,91+0,68= 8,59 |
0,96+0,179= 1,13 |
|
Р 35 |
Внутрикотельные потери пара |
Дпот |
кг/с |
Д' * (Кпот/(1-Кпот)) |
0,26 |
0,3 |
0,17 |
0,023 |
|
Р 36 |
Суммарная паровая нагрузка на котельную |
Д*сум |
кг/с |
Д'+Дпот |
13,26 |
15,36 |
8,76 |
1,153 |
|
Р 37 |
Количество продувочной воды, поступающей в сепаратор непрерывной продувки |
Gпр |
кг/с |
n/100*Dсум |
0,61 |
0,71 |
0,42 |
0,055 |
|
Р 38 |
Количество пара на выходе из сепаратора непрерывной продувки |
Dпр |
кг/с |
Gпр*(i7*0,98-i8)/ (i3-i8) |
0,091 |
0,104 |
0,06 |
0,008 |
|
Р 39 |
Количество продувочной воды на выходе их сепаратора непрерывной продувки |
G'пр |
кг/с |
Gпр-Dпр |
0,519 |
0,606 |
0,36 |
0,047 |
|
Р 40 |
Количество воды на питание котлов |
Gпит |
кг/с |
Dсум+Gпр |
13,87 |
16,07 |
9,18 |
1,208 |
|
Р 41 |
Количество воды на выходе из деаэратора |
Gg |
кг/с |
Gпит+Gут |
14,59 |
17,157 |
9,90 |
1,93 |
|
Р 42 |
Выпар из деаэратора |
Dвып |
кг/с |
dвып*Gg |
0,029 |
0,034 |
0,02 |
0,004 |
|
Р 43 |
Количество умягченной воды, поступающее в деаэратор |
Gхво |
кг/с |
(Dпотр-Gпотр)-G'пр+ Dпот+Dвып+Gут |
2,72 |
2,48 |
0,98 |
||
Р 44 |
Количество сырой воды, поступающей на химводоочистку |
Gс.в |
кг/с |
Kс.н.хво*Gхво |
1,2*2,57= 3,08 |
1,2*2,72= 3,24 |
1,2*2,48= 2,98 |
1,2*0,98= 1,12 |
|
Р 45 |
Расход пара для подогрева сырой воды |
Dc |
кг/с |
Gс.в.*(T3-T1)*C/ (i2-i8)*0,98 |
0,068 |
0,14 |
0,12 |
0,02 |
|
Р 46 |
Количество конденсата поступающего в деаэратор от подогревателей сырой воды |
Gc |
кг/с |
Dc |
0,068 |
0,14 |
0,12 |
0,02 |
|
Р 47 |
Суммарный вес потоков поступающих в деаэратор (кроме греющего пара) |
G |
кг/с |
Gk+Gхво+Gc+Dпр-Dвып |
13,9 |
16,04 |
9,78 |
1,96 |
|
Р 48 |
Доля конденсата от подогревателей |
кг/с |
Gk/ G |
11,12/13,90= 0,797 |
13,11/16,04= 0,82 |
0,736 |
0,486 |
||
Р 49 |
Удельный расход пара на деаэратор |
dg |
кг/кг |
Рис.11 |
0,0525 |
0,052 |
0,056 |
0,0753 |
|
Р 50 |
Абсолютный расход пара на деаэратор |
Dg |
кг/с |
dg* G |
0,765 |
0,835 |
0,55 |
0,15 |
|
Р 51 |
Расход пара на деаэрацию питательной воды и подогрев сырой воды |
- |
кг/с |
(Dg+Dc) |
0,833 |
0,975 |
0,67 |
0,17 |
|
Р 52 |
Паровая нагрузка на котельную без учета внутрикотельных потерь |
Д 1 |
кг/с |
D+(Dg+Dc) |
12,12+0,87= 12,9 |
14,11+0,87= 15,07 |
7,91+0,67= 8,58 |
0,96+0,17= 1,13 |
|
Р 53 |
Суммарная паровая нагрузка на котельную |
Dсум |
кг/с |
Д 1+Dпот |
13,21 |
15,385 |
8,75 |
1,153 |
|
Р 54 |
Процент расхода пара на собственные нужды котельной (деаэрация подогрев сырой воды) |
Кс.н. |
% |
(Дg+Дс)/Dсум*100 |
6,3 |
6,34 |
7,66 |
14,74 |
|
Р 55 |
Количество работающих котлов |
Nк.р. |
Шт. |
Dсум/Dкном |
2 |
2 |
2 |
1 |
|
Р 56 |
Процент загрузки работающих паровых котлов |
Кзат |
% |
Dсум/Dкном*Nк.р.* *100% |
95,17 |
110,84 |
63 |
16,6 |
|
Р 57 |
Количество воды, пропускаемое помимо подогревателей сетевой воды (через перемычку между трубопроводами прямой и обратной сетевой воды) |
Gсет.п. |
кг/с |
Gсет*(tmax1-t1)/ /(tmax1-t3) |
0 |
40,22 |
49,52 |
7,03 |
|
Р 58 |
Количество воды пропускаемое через подогреватели сетевой воды |
Gсет.б. |
кг/с |
Gсет- Gсет.п. |
51,37 |
94,13-40,22= 53,91 |
66,56-49,52= 17,04 |
9,20-7,03= 2,17 |
|
Р 59 |
Температура сетевой воды на входе в пароводяные подогреватели |
t4 |
C |
[t1max(i6-tк.б.с.)+ t3(i2-i6)]/(i2- tк.б.с.) |
81,6 |
71,2 |
57,4 |
58,6 |
|
Р 60 |
Температура умягченной воды на выходе из охладителя продувочной воды |
Т 4 |
C |
T3+G'пр/Gхво*(i8/c --tпр) |
33,6 |
32,1 |
31,1 |
37,2 |
|
Р 61 |
Температура умягченной воды поступающей в деаэратор из охладителя пара |
Т 5 |
C |
T4+Dвып/Gхво*(i4-i5)/c |
37,8 |
35,6 |
34,4 |
39,2 |
1.6 Подбор и размещение основного и вспомагательного оборудования
На основании результатов полученных при расчете тепловой схемы котельной (таб. 1.5) производим выбор основного и вспомогательного оборудования.
Выбор паровых котлоагрегатов. Выбор типа, количества и единичной производительности котлоагрегатов зависит главным образом от расчетной тепловой производительности котельной, где они будут установлены; от вида теплоносителя, отпускаемого котельной.
На основании вышеизложенного и в связи с тем, что для технологических потребностей необходим пар, в котельной установлены два паровых котлоагрегата КЕ-25-14 единичной производительностью по пару D =6,94кг/с, что в сумме дает 13,88 кг/с. А из расчета тепловой схемы максимальная суммарная паровая нагрузка котельной Dсум=15,377 кг/с (табл.1.5 п.53), что позволяет использовать котлоагрегаты КЕ-25-14 с небольшой перегрузкой в один из режимов.
Подбор сетевых насосов. Сетевые насосы выбирают по расходу сетевой воды. Расход сетевой воды принимаем из табл. 1.5 позиция.
GЗ СЕТ=93,13 кг/с = 338,87 т/ч
Необходимая производительность сетевых насосов, приведенная к плотности В=1000кг/м3, м/ч
GСН=GЗ СЕТ/В 70=338,87/0,978=346,49
Напор сетевых насосов выбирается из условия преодоления гидравлического сопротивления теплотрассы при расчетном максимальном расходе воды, сопротивления котельной и соединительных трубопроводов с 10%-м запасом.
HC P=1,1 Н (1.2)
Иэ данных гидравлического расчета тепловой сети
Н = 0,7 МПа
Тогда
HC P=1,1*0,7=0,77 МПа
К установке принимаем блок сетевых насосов БСН-1801420, состоящий из 2-х насосов Д 400/80, один из которых резервный, электродвигатель А 02_82_2, N=100кВт, n=3000-1, Q=400м 3/ч, H=0,650,85 Мпа
Подбор питательных насосов. В котельных с паровыми котлами устанавливаются питательные насосы числом не менее двух с независимым приводом.
Питательные насосы подбирают по производительности и напору.
Производительность всей котельной, кг/с
QПИТ=1,1*DСУМ (1.3)
где DСУМ -суммарная паропроизводительность котельной
из табл.1.5 п.53: DСУМ=15,377 кг/с
QПИТ=1,1*15,377 = 16,91 кг/с=60,89 т/ч
Напор, который должны создавать питательные насосы для паровых котлоагрегатов, МПа
НПИТ=1,15*(Рб-Рд)+НСЕТ (1.4)
где Рб - наибольшее возможное избыточное давление в котлоагрегате, Рб =1,3 МПа
Рд - избыточное давление в деаэраторе, Рд=0,12МПа
НСЕТ - сопротивление всасывающего и нагнетающего трубопроводов.
Принимаем НСЕТ=0,15МПа
ННАС= 1,15(1,3-0,12)+0,15 = 1,51 МПа
Из табл. 15.3 [3] принимаем к установке 2 питательных насоса ПЭ-65-40, один из которых резервный: электродвигатель А 2-92-2, подача 65 м 3/ч напор 4,41 МПа, частота вращения 3000-1.
Подбор конденсатного насоса. Конденсатные насосы перекачивают конденсат из баков, куда он поступает с производства или из пароводяных подогревателей, в деаэратор.
Производительность конденсатного насоса, м3/ч(кг/с)
QК НАС= К(табл.1.5. п.18)=13,11 кг/с=47,2 м3/ч
Напор развиваемый конденсатным насосом, МПа
Нкон=2,3 Мпа
По табл. 15.6. [3] принимаем к установке 2 насоса Кс-50-55-1 один из которых резервный: электродвигатель 4А 160М 4, подача 50м 3/ч, напор 5,5 МПа, частота вращения 1450-1.
Подбор подпиточных насосов. Для восполнения утечки воды из закрытых систем теплоснабжения устанавливают подпиточные насосы.
Подача подпиточного насоса принимается из табл.1.5
Gподп=0,72 кг/с=2,592 м3/ч
Давление, создаваемое подпиточным насосом, должно обеспечить невскипание воды на выходе из котельной
Нпод=0,4 МПа
По табл.15.6. [3] принимаем к установке 2 подпиточных насоса Кс-12-50 один из которых резервный: электродвигатель 4А 100 2, подача 12 м 3/ч напор 0,5 МПа, частота вращения 2900 -1
Подбор деаэратора. В новых производственных и производственно-отопительных котельных с паровыми котлоагрегатами предусматривается установка атмосферных деаэраторов типа ДА.
Подбираем деаэратор по его производительности, т/ч(кг/с)
GД=17,157 кг/с=61,76 т/ч (табл.1.5п. 41)
Принимаем к установке деаэратор DА-100(табл. 3):
производительность, т/ч - 100
давление, МПа - 0,12
емкость деаэраторного бака, м3 - 25
поверхность охладителя выпара, м2 - 8
1.7 Тепловой расчет котлоагрегата
Котел KЕ-25-14c предназначен для производства насыщенного пара, идущего на технологические нужды промышленных предприятий, в системы отопления, вентиляции и горячего водоснабжения.
Топочная камера котла шириной 272 мм полностью экранирована (степень экранирования Нл/ ст =0,8) трубами d=51х 2,5мм. Трубы всех экранов приварены к верхним и нижним камерам d219x8мм. Топочная камера по глубине разделена на два объемных блока. Каждый из боковых экранов (правый и левый) переднего и заднего топочных блоков образует самостоятельный циркуляционный контур. Верхние камеры боковых экранов в целях увеличения проходного сечения на входе в пучок расположены ассиметрично относительно оси котла. Шаг труб боковых и фронтового экранов - 55 мм, шаг труб заднего экрана - 100 мм, трубы заднего экрана выделяют из топочного объема камеру догорания, на наклонном участке труб уложен слой огнеупорного кирпича толщиной 65мм. Объем топочной камеры -61,67 м3.
Для улучшения циркуляционных характеристик фронтового экрана на нем устанавливаются три рециркуляцинные трубы d89х 4мм. Площадь лучевоспринимающей поверхности нагрева - 92,10м2.
Третьим блоком котла является блок конвективного пучка с двумя барабанами (верхним и нижним) внутренним диаметром 1000 мм. Длина верхнего барабана 7000 мм, нижнего - 5500 мм. Толщина стенки барабана котла - 13 мм, материал - сталь 16 ГС. Ширина конвективного пучка по осям крайних труб 2320 мм. В таком пучке отсутствуют пазухи для размещения пароперегревателя, что существенно улучшает омывание конвективного пучка.
Конвективный пучок выполнен из труб d51x2,5 мм. Поперечный шаг в пучке составляет 110 мм, продольный - 90 мм. Площадь поверхности нагрева конвективного пучка равна 417,8 м2. Первые три ряда труб на входе в пучок имеют шахматное расположение с поперечным шагом S =220 мм. Удвоение величины шага по сравнению с остальными рядами позволяет увеличить проходное сечение на входе в пучок, частично перекрытое потолком потолочной камеры.
Хвостовые поверхности состоят из одноходового по воздуху воздухоподогревателя с поверхностью нагрева 228 м2, обеспечивающего нагрев воздуха до 180 °С и установленного следом за ним по ходу газов чугунного экономайзера с поверхностью нагрева 646 м2.
Для сжигания каменных и бурых углей под котлом устанавливается механическая топка ТЧЗ-2,7/5.6. Активная площадь зеркала горения равна 13,4 м2. Решетка приводится в движение при помощи привода ПТ-1200, обеспечивающего 8 ступеней регулирования скорости движения в приделах 2,8 - 17,6 м/ч. Дутьевой короб под решеткой разделен на четыре воздушные зоны. Подача воздуха регулируется при помощи поворотных заслонок на воздуховодах. Котельная установка оборудована системой возврата уноса и острого дутья. Выпадающий в конвективном пучке унос оседает в четырех зольниках и возвращается в топочную камеру для дожигания при помощи воздушных эжекторов по прямым трубкам d76 мм через заднюю стенку, восемь сопл острого дутья d2 мм расположены в задней стенке топки на высоте 1400 мм от решетки.
Исходные данные и выбор коэффициента избытка воздуха
Ведем расчет котлоагрегата применительно к условиям проектируемого объекта: уголь марки ГР со следующими характеристиками
СР=55,2%, НР=3,8%, ОР=5,8%, WР=1,0%, SР=3,2%, АР=23%, NP=8%, QPH=22040КДж/кг, VГ=40%,
Величины коэффициента избытка воздуха за каждой поверхностью нагрева определяем последовательно
n=i+ (1.3)
где i - коэффициент избытка воздуха предыдущего газохода
- нормативный присос воздуха
Таблица 1.6 Коэффициенты избытка воздуха
№ п/п |
Газоход |
Коэффициент избытка воздуха за топкой. |
n |
||
1 |
Топка |
1,35 |
0,1 |
1,35 |
|
2 |
Конвективный пучок |
0,1 |
1,45 |
||
3 |
Воздухоподогреватель |
0,08 |
1,53 |
||
4 |
Водяной экономайзер |
0,1 |
1,63 |
Расчет объемов и энтальпий воздуха и продуктов сгорания
Расчет теоретического объема воздуха
V0=0,0889*(Ср+0,375*Sрогр+к)+0,265*Нр-0,0333*Ор
V0=0,0889*(55,2+0,375*3,2)+0,265*3,8-0,0333*5*8=5,83 м 3/кг
Расчет теоретических обьемов продуктов сгорания при =1 м 3/кг
VORO2=1,866*(CP+0,375Sрогр+к)/100=1,866*(55,2+0,375*3,2)/100=1,0524
VONO2=0,79*V+0,08*Np=0,79*5,83+0,008*1=4,612
VOH2O=0,111НР+0,0124WР+0,0161V0=0,111*3,8+0,0124*8+0,0161*5,83=0,6148
Таблица 1.7 Характеристики продуктов сгорания
№ |
Величина |
Ед. изм. |
Газоходы |
||||
1 |
3 |
4 |
5 |
6 |
7 |
||
1 |
Коэффициент избытка воздуха за топкой |
Т |
1,35 |
||||
2 |
Нормативный присос |
0,1 |
0,1 |
0,08 |
0,1 |
Подобные документы
Характеристика теплоснабжения жилого района г. Барнаул. Определение годового расхода теплоты. Расчет температур воды на выходе из калориферов систем вентиляции. Гидравлический расчет и монтажная схема водяной тепловой сети. Подбор сетевых насосов.
курсовая работа [704,2 K], добавлен 05.05.2011Планировка района теплоснабжения, определение тепловых нагрузок. Тепловая схема котельной, подбор оборудования. Построение графика отпуска теплоты. Гидравлический расчет магистральных трубопроводов и ответвлений, компенсаторов температурных деформаций.
курсовая работа [421,6 K], добавлен 09.05.2012Разновидности централизованного теплоснабжения зданий. Тепловые нагрузки района города. Построение графиков расхода теплоты. Регулирование отпуска теплоты, определение расчетных расходов теплоносителя. Выбор трассы. Механический расчет теплопроводов.
курсовая работа [1,4 M], добавлен 17.05.2016Структура и состав сметной стоимости строительства. Виды сметной документации. Методы определения сметной стоимости строительно-монтажных работ. Определение сметной стоимости строительно-монтажных работ по разделу "Полы и основания" ресурсным методом.
курсовая работа [66,7 K], добавлен 08.12.2014Система и принципиальная схема теплоснабжения. Определение годового экономического эффекта. Монтаж секционных водонагревателей. Автоматическое регулирование и теплотехнический контроль. Охрана труда в строительстве. Стройгенплан.
дипломная работа [213,1 K], добавлен 13.09.2006Расчет максимальных часовых расходов теплоты на отопление и вентиляцию здания. Определение расходов сетевой воды теплоснабжения. Расчет теплообменного аппарата системы отопления. Определение количества секций подогревателя горячего водоснабжения.
курсовая работа [240,6 K], добавлен 06.12.2022Теплотехнический расчет наружных ограждений, определение толщины утепляющего слоя. Определение потерь теплоты помещениями. Расчет удельной отопительной характеристики здания. Проектирование системы отопления, определение годовых расходов теплоты.
курсовая работа [728,0 K], добавлен 22.01.2014Разработка объектных моделей организационно-технологических зависимостей. Распределение сметной стоимости объектов по плановым периодам. Расчет соотношения объемов строительно-монтажных работ, мощности строительной организации. Планирование объемов работ.
курсовая работа [49,7 K], добавлен 15.02.2013Определение номенклатуры и объемов работ. Выбор способов производства строительно-монтажных работ, основных машин и механизмов. Расчет объема земляных работ. Монтаж конструкций, выполнение стыков и узлов. Технико-экономические показатели стройгенплана.
дипломная работа [1,0 M], добавлен 24.01.2016Описание здания и строительных конструкций. Теплотехнический расчет наружных ограждений. Расчет нагревательных приборов. Определение потерь тепла помещениями и удельной отопительной характеристики здания. Расчет годовых расходов теплоты на отопление.
курсовая работа [221,0 K], добавлен 11.11.2013Определение расходов тепла на отопление, вентиляцию и горячее водоснабжение, выбор способа регулирования тепловой нагрузки, расчет диаметров магистральных трубопроводов котельной для разработки системы централизованного теплоснабжения жилых районов.
курсовая работа [402,0 K], добавлен 07.01.2011Конструктивные решения здания. Подсчет количества монтажных элементов. Выбор методов ведения работ. Определение затрат труда и машинного времени на возведение здания. Стоимость строительно-монтажных работ. Приемы безопасности при монтаже конструкций.
курсовая работа [636,2 K], добавлен 18.05.2013Соблюдение строительных норм и правил при выполнении строительно-монтажных работ. Сущность качества строительной продукции. Способы контроля качества строительно-монтажных работ. Приемка объекта в эксплуатацию. Принятые предельные отклонения-допуски.
контрольная работа [23,5 K], добавлен 24.07.2011Разработка проекта отопительной котельной для частного жилого дома с хозяйственными постройками деревни Нагорье Вологодского района. Особенности расчета тепловых потерь здания, подбора основного и вспомогательного оборудования и газопроводов котельной.
дипломная работа [2,4 M], добавлен 20.03.2017Расчет температур первичного теплоносителя и построение графиков в координатах -Q0, годового графика расхода тепла и воды. Продольный профиль главной линии тепловой сети. Расчетное количество подпиточной воды. Конструктивные элементы тепловых сетей.
курсовая работа [433,9 K], добавлен 24.11.2012Производство земляных работ на строительной площадке, составление картограммы, решение транспортной задачи. Выбор средств механизации. Определение объемов монтажных работ с определением трудоемкости и механоемкости монтажных работ и состава звеньев.
курсовая работа [524,5 K], добавлен 15.12.2016Перечень и объемы строительно-монтажных работ, группировка их в технологические этапы. Выбор методов производства основных строительно-монтажных работ, основных строительных машин и механизмов. Определение трудоемкости работ и потребности в машино-сменах.
курсовая работа [41,3 K], добавлен 11.02.2014Разработка проекта строительных работ производственного здания цеха. Расчет параметров сборных железобетонных конструкций. Технология выполнения монтажных и земельных работ. Определение затрат труда и потребности в материально-технических ресурсах.
курсовая работа [986,1 K], добавлен 18.03.2013Определение объемов монтажных и сопутствующих работ. Выбор кранов по техническим параметрам. Определение трудоемкости работ и затрат средств механизации. Составление календарного графика. Выбор транспортных средств. Проект объектного генерального плана.
курсовая работа [783,4 K], добавлен 06.02.2013Характеристика системы водоснабжения. Потребность в строительных конструкциях, деталях, материалах и полуфабрикатах. Трудоемкость и затраты средств механизации при производстве строительно-монтажных работ. Методы производства строительно-монтажных работ.
курсовая работа [146,4 K], добавлен 28.03.2013