Руководство по комплексному освоению подземного пространства крупных городов

Градостроительные основы современного городского подземного строительства. Принципы развития систем городских подземных сооружений и их взаимосвязь. Инженерно-геологические и экологические изыскания для проектирования и строительства подземных сооружений.

Рубрика Строительство и архитектура
Вид научная работа
Язык русский
Дата добавления 12.01.2017
Размер файла 4,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Состав мониторинга

8.1.10 Состав и объем мониторинга должны назначаться в зависимости от уровня ответственности сооружений, их конструктивных особенностей, категории сложности инженерно-геологических условий, способа возведения подземного сооружения, плотности окружающей застройки и других условий.

8.1.11 В составе мониторинга необходимо предусматривать:

- сбор и анализ технических данных по конструкциям подземных и надземных частей зданий и сооружений;

- обследование существующих зданий и сооружений, в том числе подземных коммуникаций, попадающих в зону влияния нового строительства (приложения В и Г);

- разработку требований по допускаемым предельным деформациям зданий и сооружений;

- определение расчетных величин геотехнического прогноза, включая оценку влияния подземного строительства и производства работ на существующие здания и сооружения;

- разработку мероприятий по устранению негативных последствий подземного строительства.

8.1.12 Мониторинг целесообразно осуществлять с использованием комплексной автоматизированной программы, позволяющей оперативно выявлять все возникающие отклонения, устанавливать необходимые взаимосвязи и регулировать весь процесс в целом.

Общие требования к мониторингу

8.1.13 Выбор системы наблюдений производят в зависимости от целей и задач мониторинга, результатов расчетных прогнозов, скорости протекания процессов, точности измерений и продолжительности их во времени.

8.1.14 Точность систем наблюдений назначается в зависимости от величин расчетных прогнозов и должна обеспечивать достоверность получаемой информации, а также соответствовать требованиям согласованности в пространстве и во времени применяемых различных систем наблюдений.

8.1.15 Приборы и оборудование, используемые для наблюдений, должны быть сертифицированы и аттестованы в соответствии с требованиями Госстандарта России.

8.1.16 Точки измерений и частоту наблюдений необходимо назначать в зависимости от величин расчетных прогнозов, интенсивности изменений наблюдаемых величин, масштабов освоения подземного пространства, конструктивных особенностей зданий и сооружений.

Система мониторинга

8.1.17 На стадии проектирования до проведения мониторинга должны быть разработаны и определены:

- основные эксплуатационные требования к зданиям и сооружениям и окружающей среде;

- расчетный прогноз значений деформаций и усилий;

- программа наблюдений;

- системы наблюдений.

8.1.18 На стадии строительства должны выполняться:

- установка систем наблюдений;

- производство наблюдений.

8.1.19 Оценка принятых критериев выполнения эксплуатационных требований производится на основе результатов сравнения расчетных и наблюдаемых значений деформаций и усилий. В необходимых случаях производится разработка дополнительных мероприятий по обеспечению эксплуатационной надежности строящегося подземного сооружения и окружающих эксплуатируемых зданий.

Расчетный прогноз влияния строительства подземных сооружений на окружающую застройку

8.1.20 Состав и объем защитных мероприятий определяются на стадии проектирования подземного сооружения на основе использования результатов прогноза деформаций.

В проектах подземных сооружений необходимо предусматривать раздел по защите окружающей застройки с разработкой эффективных мер по предупреждению недопустимых деформаций зданий.

8.1.21 Расчет прочности и дополнительных деформаций зданий и сооружений при проведении вблизи них работ по строительству подземных сооружений, транспортных, коллекторных и коммуникационных тоннелей, подземных переходов и других объектов рекомендуется выполнять численными методами с использованием специальных программ, в том числе методом конечных элементов (МКЭ) с использованием нелинейных моделей грунтов и методом типовых кривых (МТК), которым устанавливается мульда вертикальных и горизонтальных смещений на поверхности массива.

При поэтапном строительстве подземного сооружения расчеты деформаций поверхности ведутся в соответствии с принятой технологией строительства последовательно для каждого этапа.

При наличии динамических воздействий на грунты оснований близрасположенных объектов прогнозирование деформаций производится по результатам опытных работ.

8.2 Инженерно-геологический мониторинг

8.2.1 В процессе изысканий в необходимых случаях следует выполнять мониторинг отдельных компонентов геологической среды, который может продолжаться в период строительства, а при необходимости и в период эксплуатации зданий и сооружений.

8.2.2 Мониторинг проводится в соответствии с заранее разработанным проектом и включает в себя:

- систему стационарных наблюдений за отдельными компонентами геологической среды;

- оценку результатов наблюдений и прогноз изменения геологической среды в связи со строительством.

8.2.3 Состав, объем и методы мониторинга должны назначаться в зависимости от инженерно-геологических и гидрогеологических условий площадки, способа возведения объекта строительства, его конструктивных особенностей и уровня ответственности, удаленности окружающей существующей застройки и в соответствии с результатами геотехнического прогноза.

8.2.4 Инженерно-геологический мониторинг на конкретной площадке строительства должен быть увязан с системой регионального геологического мониторинга (при наличии последнего).

8.2.5 Натурные наблюдения, выполняемые в процессе мониторинга, могут включать:

а) наблюдения за состоянием основания и массива грунта и гидрогеологической обстановкой-наблюдения за изменением физико-механических свойств грунтов; измерения напряжений и деформаций в грунтовом массиве; наблюдения за составом и режимом подземных вод; наблюдения за развитием неблагоприятных инженерно-геологических процессов (карст, суффозия, оползни, оседание поверхности и др.); наблюдения за состоянием температурного, электрического и других физических полей;

б) наблюдения за изменением окружающей природной среды при опасности загрязнения грунтов и подземных вод, при газовыделении, радиационном излучении и т.п. (геоэкологический мониторинг).

8.2.6 На основе полученных результатов натурных наблюдений уточняются прогнозы, касающиеся изменения физико-механических свойств грунтов, напряженно-деформированного состояния грунтового массива и гидрогеологического режима, активизации и развития неблагоприятных геологических и инженерно-геологических процессов.

По результатам мониторинга проектная организация может произвести корректировку проектного решения.

8.2.7 При выполнении инженерно-геологического мониторинга применяют следующие виды работ:

- для наблюдений за изменением состояния грунтового массива-бурение, полевые и лабораторные исследования грунтов, а также геофизические исследования (см. приложение Г);

- для контроля за изменением гидрогеологического режима, в том числе развитием депрессионной воронки или подтопления-устройство системы наблюдательных скважин.

8.2.8 Общие требования, предъявляемые к мониторингу:

- комплексность, заключающаяся в том, что все наблюдения должны производиться согласованно между собой в пространстве и во времени;

- установка всех точек наблюдений в наиболее характерных местах;

- частота наблюдений определяется интенсивностью и длительностью протекания наблюдаемых процессов;

- точность измерений должна обеспечивать достоверность получаемой информации и должна быть согласована с точностью расчетов;

- по результатам мониторинга должен быть составлен отчет.

8.3 Экологический мониторинг подземных вод

8.3.1 Основными задачами экологического мониторинга подземных вод на стадии рабочей документации или рабочего проекта являются:

- разработка системы оперативного контроля и своевременного обнаружения истощения и загрязнения подземных вод и подтопления территорий;

- оценка динамики гидрогеодинамических (истощение, подтопление), гидрогеохимических (химическое загрязнение) и гидрогеотермических (тепловое загрязнение) показателей;

- изучение и оценка закономерностей динамики миграции загрязняющих веществ в зоне аэрации и в подземных водах;

- составление прогноза характера течения процессов загрязнения и истощения подземных вод, подтопления и затопления территорий, активизации карстово-суффозионных процессов, оседания и просадки поверхности земли и т.д.;

- контроль и оценка эффективности природоохранных мероприятий.

8.3.2 Получаемая при экологическом мониторинге подземных вод гидрорежимная информация должна обеспечивать оценку: геоэкологического состояния подземных вод; условий взаимодействия подземных вод с окружающей средой; прогнозов режима подземных вод, в том числе и прогнозов геоэкологических процессов; состояния грунтов зоны аэрации; баланса подземных вод в естественных и нарушенных условиях; пространственно-временных закономерностей режима, фильтрационных и миграционных параметров подземных вод; характеристик зон техногенных нарушений в подземных водах.

8.3.3 Созданию плана размещения наблюдательных сетей должно предшествовать эколого-гидрогеологическое районирование, на базе которого и намечаются наблюдательные точки мониторинга подземных вод.

8.3.4 По целевому назначению экологический мониторинг подземных вод предусматривает создание четырех видов наблюдательных сетей: 1) наблюдательных сетей в зоне влияния очагов техногенеза; 2) наблюдательных сетей в пределах всей стройплощадки; 3) наблюдательных сетей на сопредельных территориях для вычленения влияния внешних факторов загрязнения; 4) фоновых наблюдательных скважин.

8.3.5 В состав режимной сети для гидрохимических наблюдений, изучения и контроля загрязнения подземных вод входят скважины специализированной наблюдательной сети и пункты гидрохимического опробования по эксплуатационным скважинам. Наблюдения за режимом температуры подземных вод проводятся в скважинах гидрогеотермической сети.

8.3.6 Продолжительность функционирования наблюдательной сети должна быть определена из конкретных природных условий и характера и степени воздействия объекта на экологическое состояние подземных вод. При необходимости наблюдения могут быть продолжены в течение всего периода эксплуатации.

8.3.7 Гидрогеоэкологическое прогнозирование осуществляется на основе геофильтрационных и геомиграционных моделей. Размеры моделируемой области геофильтрации и геомиграции не должны ограничиваться строительной площадкой и должны определяться размером области возможного влияния объекта на изменение уровней и загрязнение подземных и поверхностных вод. В область влияния должны быть включены располагающиеся по соседству со строительной площадкой водоохранные зоны рек, зеленые насаждения, парки, пруды, жилые массивы, площадки отдыха и другие природные и социальные объекты.

8.3.8 При выборе положения нижней границы области влияния в гидрогеологическом разрезе необходимо учитывать сложность геологического строения и гидрогеологических условий территории, глубину и размеры подземного сооружения.

8.3.9 Границы области возможного влияния объекта строительства на подземные и поверхностные воды в плане и разрезе, методика проведения прогнозных расчетов должны определяться и уточняться на стадии разработки проектной документации специалистами или организацией, специализирующейся на выполнении прогнозных гидрогеоэкологических расчетов.

8.3.10 Для разработки моделей используются картографические материалы, которые получены в результате анализа и обработки материалов инженерно-геологических и геоэкологических изысканий, а также следующие фондовые материалы:

- геологическое строение площадки;

- буровые колонки скважин с указанием водопроявлений;

- гранулометрический состав водовмещающих отложений;

- коэффициенты фильтрации водовмещающих отложений, полученные лабораторными способами и при проведении опытно-фильтрационных работ;

- результаты геофизических исследований;

- данные режимных наблюдений за уровнем подземных вод;

- химический состав подземных и поверхностных вод.

8.3.11 По материалам геоэкологических исследований должен быть составлен отчет.

Список использованных источников

1. СНиП 2.01.07-85*. Нагрузки и воздействия.

2. СНиП 2.03.11-85. Защита строительных конструкций от коррозии

3. СНиП 2.02.01-83*. Основания зданий и сооружений.

4. СНиП 2.02.03-85. Свайные фундаменты.

5. СНиП 2.05.03-84*. Мосты и трубы.

6. СНиП 2.06.07-87. Подпорные стены, судоходные шлюзы рыбопропускные и рыбозащитные сооружения.

7. СНиП 52-01-2003. Бетонные и железобетонные конструкции. Основные положения.

8. СНиП 2.06.14-85. Защита горных выработок от подземных и поверхностных вод.

9. СНиП 2.06.15-85. Инженерная защита территорий от затопления и подтопления.

10. СНиП II-23-81*. Стальные конструкции.

11. СНиП II-22-81. Каменные и армокаменные конструкции.

12. СНиП 3.02.03-84. Подземные и горные выработки.

13. СП 13-102-2003. Правила обследования несущих строительных конструкций зданий и сооружений.

14. ГОСТ 27751-88. Надежность строительных конструкций и оснований. Основные положения по расчету.

15. ГОСТ 286-82. Трубы керамические канализационные. Технические условия.

16. ГОСТ 1839-80. Трубы и муфты асбестоцементные для безнапорных трубопроводов. Технические условия.

17. ГОСТ 539-80. Трубы и муфты асбестоцементные напорные. Технические условия.

18. ГОСТ 20054-82. Трубы бетонные безнапорные. Технические условия.

19. ГОСТ 9583-75*. Трубы чугунные напорные, изготовленные методами центробежного и полунепрерывного литья. Технические условия.

20. ГОСТ 51613-2000. Трубы напорные из непластифицированного поливинилхлорида. Технические условия.

21. ВСН 35-95. Инструкция по технологии применения полимерных фильтрующих оболочек для защиты подземных частей зданий и сооружений от подтопления грунтовыми водами.

22. ВСН 53-86(р). Правила оценки физического износа жилых зданий.

23. Инструкция по инженерно-геологическим и геоэкологическим изысканиям в г. Москве.- М.: Москомархитектура, 2004.

24. Инструкция по проектированию и устройству свайных фундаментов зданий и сооружений в г. Москве.-М.: Москомархитектура, 2001.

25. Инструкция по технологии и механизации строительства противофильтрационных диафрагм и монолитных несущих стен методом «стена в грунте». РСН 316-79. НИИСП.- Киев, 1980.

26. МГСН 6.01-03. Бестраншейная прокладка коммуникаций с применением микротоннелепроходческих комплексов и реконструкция трубопроводов с применением специального оборудования.

27. МГСН 2.07-01. Основания, фундаменты и подземные сооружения.

28. МГСН 1.01-99. Нормы и правила проектирования, планирования и застройки.

29. МГСН 2.08-01. Защита от коррозии бетонных и железобетонных конструкций жилых и общественных зданий.

30. МГСН 2.09-03. Защита от коррозии бетонных и железобетонных конструкций транспортных сооружений.

31. Руководство по проектированию дренажей зданий и сооружений - М.: Москомархитектура, 2000.

32. Рекомендации по размещению инженерных сооружений и объектов культурно-бытового назначения в подземном пространстве крупных городов и предложения по их номенклатуре.-М.: ЦНИИП градостроительства, 1970.

33. Рекомендации по обследованию и мониторингу технического состояния эксплуатируемых зданий, расположенных вблизи нового строительства или реконструкции.- М.: Москомархитектура, 1998.

34. Реконструкция и капитальный ремонт жилых и общественных зданий. Справочник производителя работ.- М.: Стройиздат, 2001.

35. Рекомендации по проектированию и устройству оснований и фундаментов при возведении зданий вблизи существующих в условиях плотной застройки в г. Москве.- М.: Москомархитектура, 1999.

36. Руководство по проектированию подпорных стен сооружений и противофильтрационных завес, устраиваемых способом «стена в грунте».-М.: НИИОСП им. Н.М. Герсеванова, 1977.

37. Руководство по проектированию подпорных стен и стен подвалов для промышленного и гражданского строительства.- М.: Стройиздат, 1984.

38. Проектирование железобетонных сборно-монолитных конструкций. Справочное пособие к СНиП.- М.: Стройиздат, 1991.

39. Рекомендации по проектированию гидроизоляции подземных частей зданий и сооружений.- М.: ЦНИИпромзданий, 1996.

40. Руководство по расчету противофильтрационных завес и фильтрационной прочности оснований грунтовых плотин.- Л.: ВНИИГ, 1985.

41. Руководство по составлению схем комплексного использования подземного пространства крупных и крупнейших городов.- М.: Стройиздат, 1978.

42. Руководство по проектированию свайных фундаментов. НИИОСП.-М.: Стройиздат, 1980.

43. Рекомендации по струйной технологии сооружения противофильтрационных завес, фундаментов, подготовке оснований и разработке мерзлых грунтов.- М.: НИИОСП, 1989.

44. Рекомендации по применению георадиолокационных исследований в комплексе геотехнических работ (Для практических исследователей-геотехников, аспирантов, студентов геофизических и геотехнических специальностей).- М.: Компания Спутник+, 2000.

45. Рекомендации по обследованию и оценке технического состояния крупнопанельных и каменных зданий.- М.: ЦНИИСК, 1988.

46. Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83).- М.: Стройиздат, 1986.

47. Пособие к МГСН 2.07-01. Обследование и мониторинг при строительстве и реконструкции зданий и подземных сооружений.- М.: Москомархитектура, 2004.

48. Пособие к МГСН 2.09-03. Защита от коррозии бетонных и железобетонных конструкций транспортных сооружений.- М.: Москомархитектура, 2004.

49. Пособие по химическому закреплению грунтов инъекцией в промышленном и гражданском строительстве (к СНиП 3.02.1-83).-М.: Стройиздат, 1986.

50. СТ СЭВ 2440-80. Защита от коррозии в строительстве. Конструкции бетонные и железобетонные. Классификация агрессивных сред.

51. Справочник проектировщика. Сложные основания и фундаменты.- М.: Издательство литературы по строительству, 1969.

52. Справочник проектировщика. Основания, фундаменты и подземные сооружения.- М.: Стройиздат, 1985.

53. Подземная урбанистика // Горная энциклопедия.- Т. 4.-М.: Советская энциклопедия, 1989.

54. Проектирование подпорных стен и стен подвалов. Справочное пособие к СНиП.-М.: Стройиздат, 1990.

55. Общие положения к техническим требованиям по проектированию жилых зданий высотой более 75 м.-М.: Москомархитектура, 2002.

56. НТД-89. Основания и фундаменты. Справочное пособие научно-технических достижений.- М.: ВНИИНТПИ, 1990.

57. Смородинов М.И., Федоров С.И. Устройство сооружений и фундаментов способом «стена в грунте».- М.: Стройиздат, 1986.

58. Азаренкова З.В. Высокоскоростные пригородные сообщения.-М.: Стройиздат, 2003.

59. Голубев Г.Е. Подземная урбанистика.- М.: Стройиздат, 1979.

60. Голубев Г.Е. Многоуровневые транспортные услуги.- М.: Стройиздат, 1981.

61. Голубев Г.Е. Автомобильные стоянки и гаражи в застройке городов.-М.: Стройиздат, 1983.

62. Колемен Я., Вайда З. Город под землей (пер. с венгерского).-М.: Стройиздат, 1985.

63. Меркин В.Е., Маковский Л.В. Прогрессивный опыт и тенденции развития современного тоннелестроения.- М.: ТИМР, 1997.

64. Волков В.П., Наумов С.Н., Пирожкова А.Н., Храпов В.Г. Тоннели и метрополитены.- М.: Транспорт, 1975.

65. Маковский Л.В. Городские подземные транспортные сооружения.- М.: Стройиздат, 1985.

66. Маковский Л.В. Проектирование автодорожных и городских тоннелей.-М.: Транспорт, 1993.

67. Маковский Л.В., Лушников А.В. Эффективная технология строительства тоннелей мелкого заложения // Транспортное строительство.-1984.-№3.-с. 19-21.

68. Власов С.Н., Ходиш В.А., Черняховский С.Э. Применение экранов из труб при строительстве тоннелей // Транспортное строительство.-1980.-№5.-с. 51-53.

69. Самойлов В.П. Строительство городских тоннелей требует большого внимания (мировой опыт и проблемы развития специализированной техники) // Механизация строительства.-1989.-№8.-с. 15-17.

70. Самойлов В.П. Механизация строительства канализационных тоннелей и коллекторов // Подземное пространство мира.-1995.-№1.-с. 23-27.

71. Власов С.Н. Микропроходка - новое направление в коммунальном тоннелестроении // Метро.-1993.-№1.-с. 54-58.

72. Васюков П.А., Демешко Е.А., Кривошеев, Торгалов В.В. Опыт метростроения по сооружению тоннелей способом продавливания.- М.: Оргтрасстрой, 1978.

73. Левченко А.Н., Лернер В.Т., Петренко Е.В., Петренко И.Е. Организация освоения подземного пространства. Свершения и надежды.- М.: ТИМР, 2002.

74. Лернер В.Г., Петренко Е.В. Систематизация и совершенствование технологий строительства подземных объектов.- М.: ТИМР, 1999.

75. Смородинов М.И. Строительство заглубленных сооружений. Справочное пособие.-М.: Стройиздат, 1993.

76. Шилин А.А., Зайцев М.В., Золотарев И.А., Ляпидевская О.Б. Гидроизоляция подземных и заглубленных сооружений при строительстве и ремонте.- Тверь: издательство «Русская торговая марка», 2003.

77. Шевяков В.П., Жолудов B.C. Защита от коррозии промышленных зданий и сооружений.- М.: Редакция газеты «Архитектура», 1995.

78. Абрамов С.К. Подземные дренажи в промышленном и гражданском строительстве.- М.: Издательство литературы по строительству, 1967.

79. Современные методы инженерных изысканий в строительстве.- М.: МГСУ, 2001.

80. Ильичев В.А., Коновалов П.А., Никифорова Н.С. Прогноз деформаций зданий вблизи котлованов в условиях тесной городской застройки Москвы // «ОФМГ».-2004.- №4.-с. 17-21.

81. Ильичев В.А. Геотехнические проблемы в подземном строительстве // «ОФМГ».-2004.- №4.-с. 2-4.

82. Ильичев В.А., Коновалов П.А., Никифорова Н.С. Исследование влияния строящихся заглубленных сооружений на деформации близрасположенных зданий // «ОФМГ»- 2002.- №4.

83. Димитров Стефчо. Подземна урбанизирована среда (на болгарском языке).-София: Техника, 1984.

84. Ивахнюк В.А. Строительство и проектирование подземных и заглубленных сооружений.- М.: Ассоциация строительных Вузов, 1999.

85. Труды международной конференции «Подземный город: геотехника и архитектура». Россия, Санкт-Петербург: 8-10 сентября 1998.

86. Труды юбилейной научно-практической конференции «Подземное строительство России на рубеже XXI века. Итоги и перспективы».-М.: Тоннельная ассоциация России: 15-16 марта 2000 г.

87. Юркевич П., Чеканов П. Использование технологии «jet-grouting» на строительстве многофункционального комплекса «Царев сад» в Москве // Подземное пространство мира.-2001.-№5-6.

88. Петрухин В.П., Шулятьев О.А., Мозгачёва О.А. Мониторинг состояния зданий в процессе выполнения работ по компенсационному нагнетанию.-Санкт-Петербург: Труды международной конференции «Геотехника. Оценка состояния оснований и сооружений», 2001.

ПРИЛОЖЕНИЕ А (рекомендуемое)

Оценка технического состояния зданий по внешним признакам

Категория состояния здания

Общие признаки, характеризующие состояние конструкций

Потребность в ремонте или усилении конструкций

Физический износ здания в целом,%

1

2

3

4

I. нормальное

Неисправность основных несущих конструкций (фундаментов, стен, перекрытий, перегородок, крыши, оконных и дверных заполнений, покрытий полов) и инженерного оборудования отсутствует или имеются незначительные неисправности, не препятствующие нормальной эксплуатации здания

Выполняются требования действующих норм проектной документации. Необходимость ремонтных работ отсутствует, нормальная эксплуатация обеспечивается техническим обслуживанием

До 10

II. удовлетворительное

Незначительные повреждения несущих и ограждающих конструкций. На отдельных участках имеются отдельные раковины, выбоины, волосяные трещины. Имеют место незначительные дефекты, связанные с неравномерной осадкой здания. Сдвигов и повреждений перекрытий, лестниц, сводов нет.

С учетом фактических свойств материалов удовлетворяются требования действующих норм, относящиеся к предельным состояниям I группы; требования норм II группы могут быть нарушены, но обеспечиваются нормальные условия эксплуатации. Требуется текущий ремонт с устранениями локальных повреждений без усиления конструкций

До 20

III. неудовлетворительное

Несущие и ограждающие конструкции (фундаменты, стены, перекрытия, перегородки) имеют значительные повреждения при ограниченном распространении. Смещение плит перекрытий на опорах не более 1/10 глубины заделки, но не более 2 см. Образование вертикальных трещин между продольными и поперечными стенами. Оконные и дверные заполнения, крыша, покрытия полов, инженерное оборудование, имеют значительные неисправности при массовом их распространении. Снижение несущей способности конструкций до 25%

Нарушены требования действующих норм, но отсутствует опасность обрушения и угроза безопасности людей. Для обеспечения нормальной эксплуатации требуется капитальный ремонт с усилением и восстановлением несущей способности поврежденных конструкций. Эксплуатация здания возможна со значительными ограничениями

До 40

IV. предаварийное

Несущие и ограждающие конструкции здания (фундаменты, стены и перекрытия) имеют значительные повреждения при массовом их распространении. Развиты значительные сквозные трещины конструкций, в том числе от неравномерных деформаций. Смещение плит перекрытий на опорах более 1/10 глубины заделки. Снижение несущей способности конструкции до 40-50%

Существующие повреждения свидетельствуют об опасности пребывания людей и возможности обрушения отдельных конструкций здания. Требуются немедленные страховочные мероприятия (разгрузка конструкций, устройство временной крепи и т.п.). Эксплуатация здания должна быть прекращена для проведения капитального ремонта (реконструкции) здания с восстановлением (усилением) поврежденных конструкций

До 70

V. аварийное

Несущие и ограждающие конструкции здания (фундаменты, стены и перекрытия) не способны выполнять заданные функции из-за высокой степени их повреждений. Снижение несущей способности конструкций свыше 40-50%

Существующие повреждения свидетельствуют о необходимости эвакуации людей из здания и возможности его обрушения. Эксплуатация здания должна быть немедленно прекращена. Требуется проведение охранно-поддерживающих мероприятий. Необходимо проведение детального обследования конструкций о целесообразности выполнения капитального ремонта (реконструкции) или сноса здания

Свыше 70

ПРИЛОЖЕНИЕ Б (рекомендуемое)

Определение дополнительных осадок зданий от влияния водопонижения или дренажа

1. Деформации оснований существующих зданий при временном или постоянном (дренаж) водопонижении вблизи них следует определять от влияния возникающих дополнительных эффективных напряжений в грунте, вызванных снятием взвешивающего действия воды.

2. Дополнительные эффективные напряжения в грунте уwдоп, кПа, определяют по формуле

уwдоп = (г-гsb) · hw,(1)

где г-удельный вес грунта, кН/м3;

гsb = (гs-гw)/(1 + e)-удельный вес грунта во взвешенном состоянии, кН/м3;

гs- удельный вес частиц грунта, кН/м3;

гw- удельный вес воды, кН/м3;

е - коэффициент пористости;

hw - понижение уровня подземных вод, м.

3. Дополнительную осадку определяют методом послойного суммирования по формуле

(2)

где в - безразмерный коэффициент, равный 0,8;

уwдоп - см. формулу (1);

hi, Ei - толщина, м, и модуль деформации, кПа, i-го слоя грунта;

n - число слоев грунта в пределах сжимаемой толщи.

3. За нижнюю границу сжимаемой толщи должна приниматься меньшая из двух величин-глубина кровли нижележащего водоупора или глубина, на которой величина дополнительных эффективных напряжений (включая напряжения от собственного веса существующих сооружений) равна 20% величины вертикальных напряжений от собственного веса грунта.

ПРИЛОЖЕНИЕ В (рекомендуемое)

Методы и аппаратура, применяемые при обследовании конструкций при мониторинге

Таблица В1

Ориентировочная оценка прочности бетона путем простукивания поверхности молотком

Результаты одного удара средней силы молотком массой 0,4-0,8 кг

Прочность бетона, МПа

Непосредственно по поверхности бетона

По зубилу, установленному «жалом» на бетон

На поверхности бетона остается слабый след, вокруг которого могут откалываться тонкие лещадки

Неглубокий след, лещадки не откалываются

Более 20

На поверхности бетона остается заметный след, вокруг которого могут откалываться тонкие лещадки

От поверхности бетона откалываются тонкие лещадки

20 ... 10

Бетон крошится и осыпается, при ударе по ребру откалываются большие куски

Зубило проникает в бетон на глубину до 5 мм, бетон крошится

10 ... 7

Остается глубокий след

Зубило забивается в бетон на глубину более 5 мм

Менее 7

Таблица В2

Ориентировочная оценка прочности раствора швов кирпичной кладки

Марка раствора

Характерные признаки повреждения раствора шва при испытании лезвием ножа

0-2

Раствор легко рыхлится ножом, высыпается, выдувается

4-10

Раствор легко режется ножом

25

Раствор режется с трудом, крошится

50

Раствор крошится, но не режется

Более 50

На поверхности шва при движении лезвия ножа остается светлый или темный след

Таблица В3

Методы и аппаратура неразрушающего контроля строительных конструкций

№ пп.

Методы

Аппаратура

Диапазон измерений

Область применения

1

2

3

4

5

1

Упругого отскока и пластической деформации

Приборы типа КМ, ОМШ, приборы ЦНИИСК, молотки Шмидта (модели N, NR, ND, L, LR, LB, М, Р, РТ, РМ) и др.

10-70 МПа

Определение прочности бетона

2

Ударного импульса

DIGISchmidt, ОНИКС-2-3, ИПС-МГУ и др.

2-100 МПа

Определение прочности бетона, кирпича, штукатурки, композитов

3

Ультразвуковой метод

Бетон-22, УК-14ПМ, УК-1401, УФ-10П, А-1220, А-1230, УП-2М и др.

2-100 МПа

Определение прочности бетона и оценка трещиноватости изделий из бетона

То же

Ультразвуковой толщиномер А-1220

50-500 мм

Измерение толщины железобетонных изделий при одностороннем доступе к ним

То же

Ультразвуковой томограф А-1230

На глубину до 1 м

Для визуализации внутренней структуры железобетонных изделий при одностороннем доступе к ним. Позволяет обнаружить пустоты с объемом до 30 см3 и расслоения площадью до 10 см2

4

Магнитный метод и методы, основанные на электромагнитных излучениях

Приборы типа «ИЗС», «Поиск-2.3»

До 120 мм

Для определения толщины защитного слоя бетона и положения арматурных стержней в железобетонных изделиях, оценки диаметра арматуры

5

Электростатические, термоэлектрические и диэлектрические методы

Дефектоскоп вихретоковый ВДЛ-5М

Предельные размеры выявляемых трещин: глубина-0,25 мм, ширина-0,02 мм

Поиск микротрещин, выходящих на поверхность металлов в конструкциях, деталях, сварных швах

6

Методы контроля натяжения арматуры предварительно напряженных конструкций

Накладные динамометры и частотомеры ПРД-5, ПРД-У, ЭМИН-2, ЭМИН-3, ПИН, ДП-500, ДН-ЛИИЖТ, ИНА-3, ИНА-5П, ЭСИН-1Д, ИПН-6, ИПН-7, ИРД-У, ПИН

50-200 МПа

Для контроля при изготовлении предварительно напряженных конструкций

7

Методы измерения механических напряжений и колебаний

ИНК-2, ВИСТ-2

Напряжения: 50-200 МПа;

амплитуды колебаний (для частот 10-60 Гц): 0,01-3 мм;

виброскорости: 0,01-200 мм/с

Для определения механических напряжений в элементах стержневой, проволочной и прядевой арматуры преднапряженных железобетонных изделий и конструкций; параметров виброколебаний различного назначения

8

Методы измерения влагосодержания конструкций

Влагомер универсальный «ВИМС-1»

Диапазон измерений влажности:

бетон-1-20%;

кирпич-1-15%;

древесина-2-60%

Для измерения влагосодержания различных материалов: бетона, кирпича, песка, древесины, асфальта и др.

9

Методы многоканальных регистраторов тепловых процессов

Приборы: «Терем-1», «Терем-2», «Терем-2РРПК» и др.

0-100 °С

Измерение, регулирование, регистрация и просмотр информации от термодатчиков при исследованиях температурных полей, теплозащитных свойств конструкций и сооружений

ПРИЛОЖЕНИЕ Г (рекомендуемое)

Современные методы и средства геофизических исследований при проведении мониторинга подземных сооружений и окружающей застройки

№ пп.

Методы

Аппаратура

Область применения и получаемые результаты

Вид съемки или измерений

1

2

3

4

5

1

Георадиолокационные исследования с использованием георадаров (в частотном диапазоне 16-2000 МГц)

Георадары «Гея», «Зонд» и «Геон» НИИП (ООО «Логис», г. Жуковский)

Установление геологического разреза, определение уровня подземных вод на глубинах от 0,5 до 30,0 м.

Площадная, линейная

Зонд-12 Фирма «Radar Inc» (г. Рига-республика Латвия)

Многоцелевого назначения

То же

«Грот» ИЗМИРАН

Переносной радиолокатор подповерхностного зондирования для определения глубины и места залегания подземных неоднородностей, разнообразных предметов, пустот, коммуникаций, фундаментов, границ раздела геологических слоев

То же

То же

17 ГРЛЗП НПП «Локас» (ВНИИРТ)

Выявление, прослеживание и картирование подземных объектов, коммуникаций (трубы, кабели, тоннели), пустот, проведение инженерно-геофизических изысканий для строительства зданий и подземных сооружений и диагностирования их технического состояния

То же

«Эпос» ИЗМИРАН

Радиолокатор большой мощности для подповерхностного зондирования на глубины 100-200 м, поиска различных неоднородностей, предметов и объектов

То же

SIR SVSTEM-200 (США)

Портативный цифровой радар для широкого круга задач геотехники, геологии, строительства и охраны окружающей среды

То же

Pulse EKKO-1000

Цифровой георадар нового поколения для обнаружения труб и кабелей, малоглубинной стратиграфии, построения изображения целых структур, неразрушающего тестирования

То же

НПГ-РА

Портативный геолокатор для обнаружения малоразмерных объектов, не содержащих металла, в приповерхностном слое грунта

То же

ГЕО-4

Многофункциональный прибор для подповерхностного зондирования на глубину 3-10 м (сверхширокополосный геолокатор)

То же

НПО «Геологоразведка»

Подземная георадиолокация в процессе проходки тоннелей для контроля состояния грунтов перед проходческим щитом

То же

2

Инженерная сейсморазведка

Многоканальные сейсморазведочные станции типа «Диоген», «Лакколит-24», «Бизон», «Дельта-Геон» и др.

Мониторинг состояния грунтов с определением характеристик грунтов по корреляционным зависимостям

То же

3

Метод высокочастотной электроразведки

Аппаратура типа «Навигатор» ООО «Геопроект»

Мониторинг состояния грунтов с оценкой их неоднородности, зон разуплотнения, выявлением пустот и провалов

То же

4

Радиоизотопный метод измерения плотности и влажности грунтов

Плотномеры ППГР-1, ВПГР-1, совмещенные влагоплотномеры типа ПИКА-15 и др.

Количественная оценка изменения плотности и влажности грунтов

Точечные измерения с любым интервалом по глубине

5

Методы сейсмоакустической эмиссии

Акустическая аппаратура для измерения эмиссии (спектроанализатор)

Мониторинг технического состояния наземных конструкций и фундаментов. Регистрация дефектов в конструкциях при их нагружении

Линейные измерения

6

Метод измерения уровней шумов от движения воды

Акустическая аппаратура для измерения уровня шумов при поисках разрыва трубопроводов (разработчик НПО «Спектр»)

Прослеживание водонесущих коммуникаций и обнаружение утечек, в том числе из теплосетей

Линейные измерения

7

Способ измерительных баз

Прибор «Эхо-1М»

Мониторинг технического состояния наземных и подземных конструкций. Определение приращений параметров дефектов в конструкциях. Определение длины забивных свай методом эхолокации

То же

8

Статическая и кинематическая геодезическая съемка в реальном времени с использованием спутниковой связи

Системы GHS, например, 4600 LS Suveyor, GPS-приемник 4800, Site Suveyor Si, GPS-приемники фирм «Garmin», «Ashtech» и др., спутниковые определители координат

Привязка наблюдений при мониторинге

Точечная или непрерывная с целью привязки сети геодезических измерений и контроля осадок поверхности грунта и подвижек сооружений

9

Способы, основанные на измерении мощности инфракрасного излучения

Аппаратура для измерения мощности инфракрасного излучения

Мониторинг состояния подземных сооружений и испытания конструкций. Определение напряженно-деформированного состояния несущих конструкций крепи горных выработок

Площадные измерения

10

Высокоточные способы измерений деформаций оснований и конструкций зданий и подземных сооружений с применением наклономеров и инклинометров

Прецизионный скважинный инклинометр НИ-3 и наклономерные датчики НИ-2 (разработчик ОИФЗ РАН)

Деформационный мониторинг состояния наземных и подземных конструкций, в том числе оседаний поверхности земли

Точечная или непрерывная система контроля вертикальных и горизонтальных деформаций

Размещено на Allbest.ru

...

Подобные документы

  • Состав, методы выполнения инженерных изысканий на стадиях проектирования сооружений. Инженерно-геологические, инженерно-геодезические, инженерно-гидрометеорологические, экологические, экономические, архитектурно-градостроительные и другие виды изысканий.

    учебное пособие [3,7 M], добавлен 03.12.2011

  • Подземные сооружения транспортного назначения, проектирование транспортных развязок в разных уровнях. Градостроительные, архитектурные и технические преимущества подземных комплексов. Проекты подземных и надземных многофункциональных переходов.

    презентация [12,1 M], добавлен 11.09.2013

  • Особенности строительства подземного объекта. Архитектурно-планировочные, конструктивные решения объекта. Геологические и гидрогеологические условия грунтов в районе строительства подземного объекта. Гидроизоляция объекта, вопросы безопасности и экологии.

    контрольная работа [28,4 K], добавлен 12.02.2015

  • Особенности и технология возведения подземных сооружений методами опускного колодца и кессона. Достоинства, недостатки и возможные сложности применяемых методов. Элементы кессона и оборудование для его опускания. Формы сечений опускных колодцев.

    реферат [965,9 K], добавлен 03.05.2013

  • Оценка инженерно-геологических и гидрологических условий площадки строительства. Расчет фундамента на естественном основании. Определение степени агрессивного воздействия подземных вод. Рекомендации по антикоррозийной защите подземных конструкций.

    курсовая работа [173,6 K], добавлен 05.06.2012

  • Инженерно-геологические условия для строительства административного здания. Геологическое и гидрогеологическое строение района. Орогидрография, рельеф и растительность. Анализ методики, объемов и качества работ. Характеристика инженерного сооружения.

    курсовая работа [89,1 K], добавлен 14.09.2011

  • Геофизические, гидрогеологические и инженерно-геологические характеристики территории строительства многоуровневой автостоянки. Цели и задачи инженерно-геологических изысканий, проведение буровых работ, сбор, обработка и анализ фактического материала.

    дипломная работа [2,2 M], добавлен 21.11.2016

  • Определение общего состояния строительных конструкций зданий и сооружений. Визуально-инструментальное обследование, инженерно-геологические изыскания. Определение физико-химических характеристик материалов конструкций. Диагностики несущих конструкций.

    курсовая работа [36,7 K], добавлен 08.02.2011

  • Расчёт стен протяженных сооружений: консольной, гравитационной подпорной и с анкерным (распорным) креплением. Проектирование сооружений круглой формы в плане; имеющих горизонтальную изгибную прочность, днища; технологических параметров опускных колодцев.

    курсовая работа [335,5 K], добавлен 11.02.2014

  • Технико-экономические показатели по генеральному плану. Экспликация зданий и сооружений. Инженерно-геологические условия строительства. Конструктивное решение дома. Теплотехнический расчет ограждающей конструкции. Спецификация заполнения проемов.

    курсовая работа [602,6 K], добавлен 28.12.2014

  • Классификация опускных колодцев. Циклы производства работ по их устройству. Кессоны для строительства глубоких фундаментов и заглубленных зданий. Состав работ нулевого цикла. Сущность технологии "стена в грунте" при возведении монолитных конструкций.

    реферат [870,0 K], добавлен 19.10.2014

  • Анализ инженерно-геодезических изысканий, применяемых для строительства ПГРС "Уренгой". Технология, современные технические средства и программное обеспечение по выполнению топографо-геодезических работ. Их экономическое обоснование и сметная стоимость.

    дипломная работа [1,6 M], добавлен 05.06.2013

  • Организация и календарное планирование строительства комплексов зданий и сооружений. Моделирование в организационно-технологическом проектировании. Сетевые графики строительства отдельных зданий и комплексов. Общие принципы проектирования стройгенпланов.

    методичка [580,6 K], добавлен 25.12.2010

  • Методика расчета объемов строительных конструкций и материалов опускного колодца, особенности выбора необходимого для него комплекта машин и механизмов. Анализ технико-экономических показателей и оценка оптимального варианта механизации монтажных работ.

    курсовая работа [320,1 K], добавлен 21.04.2010

  • Расчет толщины стенки колодца. Проверка условий погружения и всплытия. Определение требуемого количества арматуры. Объем работ по обратной засыпке пионерного котлована. Вычисление объемов земляных масс грунта при погружении стакана опускного колодца.

    курсовая работа [544,9 K], добавлен 15.12.2021

  • Характеристика способов возведения подземных сооружений в зависимости от гидрологических условий и глубины заложения: открытого, отпускного и "стена в грунте". Рассмотрение задачи эффективного теплосбережения при строительстве и реконструкции зданий.

    реферат [903,0 K], добавлен 27.04.2010

  • Типы и виды, область применения водозаборов систем водоснабжения Требования, предъявляемые к ним. Принципы искусственного пополнения запасов подземных вод. Особенности водопотребления в Республике Беларусь. Совершенствование технологий водопользования.

    презентация [492,1 K], добавлен 17.10.2014

  • Инженерно-геологические изыскания площадки, гидрогеологические условия строительства. Анализ опасных и вредных производственных факторов при организации монтажных работ на объекте. Расчет каркаса и конструирование прикрепления стойки к фундаменту.

    дипломная работа [2,6 M], добавлен 09.11.2016

  • Анализ дефектов зданий и сооружений. Формы контроля качества строительства. Государственный строительный надзор. Технический надзор заказчика и подрядчика, авторский надзор. Схема контроля качества строительства. Требования к качеству строительства.

    презентация [6,2 M], добавлен 26.08.2013

  • Значение правильной оценки грунтового основания, выбора типа и конструкции фундаментов для эксплуатационной надежности сооружений. Глубина заложения фундаментов. Инженерно-геологические условия строительной площадки. Конструктивные особенности сооружений.

    методичка [838,1 K], добавлен 22.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.