Исследование влияния натуральных красителей на компоненты колбасных изделий
Ассортимент колбасных изделий. Получение антоциановых красителей из растительного сырья. Микробиологических и органолептических показателей колбасного фарша при использовании пищевого красителя из свеклы. Ветеринарно-санитарный контроль колбасных изделий.
Рубрика | Кулинария и продукты питания |
Вид | диссертация |
Язык | русский |
Дата добавления | 23.05.2018 |
Размер файла | 140,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Определение водосвязывающей способности колбасного фарша методом прессования. Метод основан на выделении воды испытуемым образцом при легком его прессовании, сорбции выделяющейся воды фильтровальной бумагой и определении количества отделившейся влаги по размеру площади пятна, оставляемого ею на фильтровальной бумаге. Достоверность результатов обеспечивается трехкратной повторностью определений.
2.2.3 Микробиологические методы исследования
С помощью методов микробиологического исследования определяют:
- общее количество микробов;
- наличие бактерий группы кишечной палочки;
- наличие бактерий из рода сальмонелл;
- наличие бактерий группы протея;
- наличие коагулазоположительных стафилококков;
- наличие клостридий перфрингенс (сульфит-восстановителей).
Отбор точечных проб для бактериологического анализа проводили по ГОСТ 9792-73.
Пробы хранили при температуре 6-8? 0С. Анализ проводили не позднее 4ч с момента отбора проб.
Определение общего количества микробов в 1 г продукта. Сущность метода заключается в способности мезмфильных аэробов и факультативных анаэробов расти на питательном агаре при температуре 37°+5°С с образованием колоний, видимых при пятикратном увеличении [10].
Питательный агар (МПА) расплавляли на водяной бане и охлаждали до температуры 45°?С.
Стерильные чашки Петри раскладывали на столе, подписали наименование анализируемого продукта, дату посева и количество посеянного продукта.
Из каждой пробы должно быть сделано не менее двух посевов, различных по объему и взятых с таким расчетом, чтобы на чашках выросло от 30 до 300 колоний. При этом на одну чашку Петри провели посев 0,1 г, а на другую - 0,01 г продукта.
Определение бактерий группы кишечной палочки в 1 г продукта. Сущность метода заключается в способности бактерий группы кишечной палочки расщеплять глюкозу и лактозу. При этом в средах "ХБ", Хейфеца и КОДА образуются кислые продукты, меняющие цвет индикаторов, а в среде "Кесслер" в поплавке образуется газ вследствие расщепления глюкозы.
Цель определения этой группы бактерий - проверка соблюдения режима при варке колбас.
При микробиологическом контроле колбасных изделий в производственных лабораториях можно ограничиваться обнаружением бактерий из группы кишечной палочки без их биохимической идентификации.
Определение бактерий из рода сальмонелл в 25 г продукта. Сущность метода заключается в определении характерного роста сальмонелл на элективных средах и установлении биохимических и серологических.
Определение коагулазоположительных стафилококков. Сущность метода заключается в определении морфологии, характера роста на питательных средах и в способности отдельных стафилококков ферментировать лецитиназу и коагулировать цитратную плазму крови кролика под воздействием фермента коагулазы.
Выводы по главе 2
1. Дана органолептическая оценка готовой продукции.
2. Определены физико-химические показатели готовой продукции.
3. Даны микробиологические методы исследования.
ГЛАВА III. ИССЛЕДОВАНИЯ ВЛИЯНИЯ НАТУРАЛЬНЫХ КРАСИТЕЛЕЙ НА КОМПОНЕНТЫ КОЛБАСНЫХ ИЗДЕЛИЙ
3.1 Основные процессы производства антоциановых красителей
Основными процессами при получении красителя из отходов производства фруктовых соков являются:
- хранение выжимок до экстракции;
- экстракция;
- концентрирование вытяжек;
- хранение концентрированных экстрактов.
Хранение выжимок вызывается производственной необходимостью. Изучались возможности применения сульфитации, сушки, внесения бензойнокислого натрия с целью консервирования вишневых выжимок для последующей переработки. Консервированные выжимки хранили в течение 6 месяцев и нерегулируемых температурных условиях. Анализ их после указанного срока показал полную непригодность бензойнокислого натрия как консерванта для вишневых выжимок. Выжимки становились бурыми и частично подвергались микробиологической порче. Сушеные выжимки тоже побурели, аналитически в них определено лишь 58% антоцианов от первоначального содержания, при последующей экстракции из них извлекалось не более половины, а при концентрировании весь экстракт становился коричневым.
Наилучшее сохранение антоцианов было в сульфитированных образцах. Потери их за 6 мес хранения не превышали 11%. О хорошем качестве красителя в сульфитированных выжимках можно судить по сравнительным спектограммам антоцианов свежих, сушеных и сульфитированных выжимок. Однако, несмотря на хорошие данные по цвету красителя рекомендовать этот способ для производства нет достаточных оснований. Весьма затруднительным оказался процесс десульфитации полученных экстрактов, связанный с подогревом. Выход антоцианов в готовом экстракте, полученном из сульфитированных выжимок, не превышал 30-40%. Исходя из этого можно заключить, что для выделения красителя следует перерабатывать свежие выжимки, а в| крайнем случае их сульфитировать.
ВНИИПП и СПT (Москва) выявлено, что наиболее приемлемые сроки получения красителя из отходов черноплодной рябины - первые трое суток после переработки ягод. В более продолжительные сроки отходы плесневеют. Экстракт из таких отходов имеет темно-бурую окраску с привкусом плесени, низким содержанием антоцианов [27,31,36,37].
Установлено, что для хранения отходом черноплодной рябины с целью получения красителя можно рекомендовать консервирование отходов cернистой (0,1%) и сорбиновой (0,1%) кислотами (срок хранения 6 месяцев) либо хранение в холодильнике при температуре минус 5-12°C, либо предварительную сушку (до 12 месяцев).
Экстракция антоцианов. Известно, что выход вещества зависит от применяемого растворителя, температуры и продолжительности процесса. Аналитической практикой доказано, что наилучшим растворителем антоцианов является 0,1 %-ный НCI в метаноле. Однако в условиях пищевых производств использование этого летучего ядовитого растворителя затруднено. В практике получили распространение вода, этиловый спирт в сочетании с разными добавками кислот для регулирования рН среды и стабилизации красителя.
Предложено экстрагировать антоцианы из виноградных выжимок 0,5-1%-ным раствором соляной кислоты в течение 20 ч или раствором сернистой кислоты и ее солей (метабисульфита калия) в концентрации 0,2-0,4. Концентрация сернистого ангидрида в растворителе должна быть 0,6%, а в его смеси с выжимками - 0,3%.
При экстракции красящих веществ из смеси гибридных сортов винограда с применением растворов SO2 и HCl при 20°С и гидромодуле 1 при удалении семян из выжимок перед экстракцией увеличивается концентрация красящих веществ в экстракте в 1,13 раза. Концентрация достигает равновесной величины за 4 ч и практически не изменяется при последующем настаивании на выжимках в течение 24 ч. Оптимальная концентрация SO2 составляет 0,15-1,2%, HCL = 0,5 что обеспечивает извлечение 80-90 % красящих веществ от равновесного их содержания. Рекомендуют экстрагировать красящие вещества также водным раствором винной и лимонной кислот.
Добавка кислот, способствующая снижению рН, по данным всех исследователей повышает выход красителя.
По данным Скориковой в любом из испытанных растворителей (вода, спирт с добавками неорганических и органических кислот) переход антоцианов в раствор наименьший при нейтральной реакции среды (извлекается только 30-40%), а с повышением кислотности среды экстрагирующая способность увеличивается. Поэтому лучшее извлечение антоцианов получается при 0,5 % HCl и создается низкое значение рН среды. Дальнейшее увеличение концентрации до 1-1,5 % результатов не улучшает. Добавки винной и лимонной кислот менее эффективны. При использовании спирта лучший эффект получен при экстракции 0,5 % процентным раствором соляной кислоты в 10 %-ном этиловом спирте.
По данным Самвелян и Гаспарян, проверявшим степень экстрагируемости красящих веществ из винограда с добавлением кислот, степень извлечения красных пигментов из винограда находится в обратной зависимости от pН сока: чем ниже значение рН, тем больше степень извлечения красящих веществ [27,31,36,37]. Однако при одинаковом pН среды извлечение антоцианов протекает лучше при введении лимонной кислоты, чем винной, если при внесении в мезгу лимонной кислоты комплекс красящих веществ красного вина входит 12 антоцианов, то при добавлении винной кислоты - всего 8.
Различные кислоты неодинаково влияют на стабильность окраски. В наших экспериментах безусловный стабилизирующий эффект дали лишь галловая и ортофосфорная кислоты. Все остальные способствовали деградации хризантемина. А в отношении красителя свеклы - бетанидина большинство кислот, кроме сорбиновой и фосфорновольфрамовой, показывают стабилизирующий эффект. Анализ показывает, что положительный или отрицательный эффект кислот в отношении стабильности пигментов связан не со способностью их к диссоциации, а со свойствами их аниона.
Для стабилизации антоцианов в процессе производства и дальнейшего хранения красителя испытывали добавки к растворителям небольших концентраций сернистой кислоты (0,1-0,2%), тиомочевины (0,2%), ферментного препарата глюкооксидазы (2-6 мг/кг).
Сернистая кислота в концентрации 0,05 и 0,1% спопобствует экстракции и стабилизирует антоцианы в большей мере, чем в концентрации 0,2%. Более полной стабилизации антоцианов можно добиться при совместном использовании тиомочевины и сернистой кислоты в концентрации 0,1%. Самые хорошие результаты получены при экстракции антоцианов 0,5%-ным солянокислым и 0,05 прорцентным сернистокислым водными растворами кислот с добавкой ферментного препарата глюкооксидазы из расчета 4 мг на 1 кг выжимки. Эти растворители следует предпочитать при выборе экстрагента.
В отношении антоцианов неприемлемо существующее правило по предпочтению проведения процесса экстракции при высокой температуре, повышающей растворимость большинства химических соединений, т.к. антоцианы термолабильны. При высокой температуре ускоряется их деструкция, приводящая к образованию темно-коричневых полимеров. В связи с этим температура, как и продолжительность ее действия, должны строго ограничиваться
Небольшое содержание антоцианом в спирте и хорошая растворимость гликозидированных форм в водных и спиртовых растворителях дает возможность исключить высокотемпературные режимы. По данным Валуйко при термической обработке целого винограда с увеличением обработки от 1 до 10 мин (как в соке, так и в воде при 90-95°C) степень извлечения дубильных и красящих веществ повышается, причем красящие вещества извлекаются быстрее, чем дубильные.
По данным Скорикова, Шафтан экстракция горячим растворителем, по сравнению с холодным, значительно повышает содержание антоцианов в растворе. При заливке выжимок растворителем с температурой 50-60°C (средняя температура смеси получается 33-35°С) выход антоцианов при экстракции повышается на 15-16%. Дальнейшее же повышение температуры растворителя приводит к снижению интенсивности окраски вытяжек.
По рекомендациям различных исследователей продолжительность экстракции колеблется в больших пределах - 1,5-48 ч в зависимости от вида сырья и способа экстрагирования.
Андреев считает целесообразным проводить экстракцию виноградных выжимок 3 раза по 0,5 ч; Микеладзе и Рижемадзе для фруктовых выжимок - 3-4 дня; Руднев и Леонов - до 20 ч для виноградных выжимок. Такие значительные колебания в определении продолжительности экстракции могут быть обусловлены не только соображениями организационного порядка, но и влиянием вида плодов, климатических условий их культивирования. Так, при использовании выжимок разных сортов винограда один из них (сорт Каринья руж) после 20 ч экстракции 0,1 процентным метаноловым раствором HCl дал выход 99,8 %, а другой сорт (Армон) при 20°С через 41 ч - 85,9 %.
Однако для получения максимального выхода и более эффективного использования оборудования желательно иметь усредненные данные по оптимальной продолжительности экстракции для разных видов сырья. Такая работа проводилась нами совместно с Шафтан по вишневым выжимкам в диапазоне времени 3-96 ч при использовании в качестве растворителя 0,5 процентного раствора HCl при температуре 25 и 60°С.
Экстрагирование в течение 4 ч (при периодическом перемешивании) сопровождалось ростом процента экстракции (до 80 %), затем процесс замедлялся и после 17-24 ч настаивания экстракция практически прекращалась. Экстракция антоцианов при температуре 25°С шла в замедленном темпе с меньшим выходом (после 17ч-60 %, после 48ч - 75%).
По сообщению Кленка и Маурера также при контакте с мезгой интенсивность окраски возрастает до некоторого предела за 7-9 ч, затем падает.
Наиболее современным способом экстракции является непрерывный, так как он значительно сокращает продолжительность процесса, обеспечивает поточность работы производства и позволяет максимально извлечь антоцианы из сырья.
Kак указывалось выше, Андреев определил, что удовлетворительная степень извлечения (примерно 85 %) при продолжительности экстракции в непрерывном процессе - 0,5 ч и кратности равной 3. Те же данные получены Скориковой в опытах по имитированию в лабораторных условиях непрерывной экстракции вишневых выжимок при смене подогретого до 600С растворителя. При первой экстракции оптимальное соотношение выжимок и растворителя - 1:1, при повторной - 0,5:1.
Концентрирование. Экстракция антоцианов из выжимок сопровождается большим разбавлением антоцианов, содержание их в водных или водно-спиртовых растворах находится в пределах 100-500 мг%. В таком виде их неудобно использовать, хранить и транспортировать. В практике производства в настоящее время принят способ концентрирования вытяжек под вакуумом при температуре 50-70°С. Существенными недостатками этого метода являются большие потери антоцианов (до 40-50%) при концентрировании, необходимость выполнения этой операции в кислотоупорной вакуум-выпарной установке, большой расход тепла, загрязненность концентрата балластными веществами (белками, сахарами и т.д.). Последние при хранении способствуют протеканию меланоидиновых процессов, полимеризации, а так же других нежелательных окислительно-восстановительных реакций, вызывающих образование объемистых осадков, изменение естественной окраски.
На Кишиневском консервном комбинате и Краснодарском витаминкомбинате получали концентрат энокрасителя. Опыты показали, что концентрировать его до высокого содержания красителя в растворе затруднено и нежелательно: при уваривании под вакуумом появляются уваренные тона, красящие вещества коагулируют, выпадают в осадок, становятся нерастворимыми. Это ведет к большой потере красителя (до 60-63 %) от первоначального содержания.
Учитывая, вышеизложенное, нами предложен новый способ получения антоцианового красителя без применения тепловой обработки с одновременной очисткой от балластных веществ (Скорикова, Шафтан). В основу нового способа положено свойство антоцианов образовывать комплексные соединения с ионами некоторых металлом.
Поскольку антоцианы близки по химической структуре и отличаются друг от друга лишь по степени окисленности пириллиевого радикала и положению гликозидирования, оказалось возможным выделять различные антоцианы из вишневых, виноградных, черничных, ежевичных и других плодовых и ягодных отходов сокового производства,а также из дикорастущих ягод.
Осаждение антоцианов эфиром или пикриновой кислотой из разбавленного раствора не экономично. Наиболее приемлемым методом является осаждение их солями металлов. На основании санитарных и экономических соображений из осадителсй были выбраны Са и Вa и изучены их свойства. В качестве контрольных изучали соединения антоцианов с К, Na, Pb.
Предварительные опыты по изучению светопоглощения раствора мекоцианина, выделенного из вишни, при различных значениях рН среды показали, что в сильно кислой среде антоцианы не образуют соединений с металлами. По мере подщелачивания происходит уменьшение характерного для антоцианов максимума при 520 ммк вплоть до полного его исчезновения при pН, близком к 5; затем появляется максимум в области 580-590 ммк. Это результат образования соединения антоцианов с натрием. Полученное соединение весьма неустойчиво и постепенно преобразуется в другую, более стойкую форму, имеющую максимум поглощения и области 420 ммк. Теоретическое обоснование появлению промежуточных форм в этих пределах pН дано Куном.
Наиболее полное извлечение антоцианов из осадков достигается в сильно кислой водно-спиртовой среде (60:40).
Очистка антоцианового концентрата сводится к фильтрации и удчлению металлов. В случае использования в качестве осадителя Ва(ОН)2, удаление последнего из раствора легко достигается осаждением Na2SO4. В результате реакции в растворе остается NaС1, в осадок выпадает BaSO4, практически нерастворимый в водно-спиртовой смеси. Присутствие NaCI способствует стабилизации антоцианов в концентратах.
Очистка концентрата от Са2+ обязательна, так как присутствие CaCl2, придает горький вкус продукту. Удаление его из концентрата так же, как и избытка натрия, производится на ионообменных смолах отечественного производства и других катионитах в водородной форме.
При использовании описанной технологии получается антоциановый концентрат, свободный от посторонних примесей, с содержанием антоцианов в пределах 2-5 %.
Хранение. Опытное хранение концентратов показывает, что стабильность их зависит не только от температуры хранения, но и от pН среды и присутствия металлом.
Деградация красителя при разных рН неодинакова. По истечении суток в растворах антоциана земляники с рН от 0,1 до 2 - не отмечены потери цвета, в интервале pН ±0,5- до I7 %, в интервале с рН от 5 до 7,8 - до 6%, выше pН 7,8 - распад их усиливается, при pН 9 - потери выше 30 %. После 45 суток храения усиленное разрушение пигмента наблюдалось в растворах с рН выше 4. При этом наилучшее сохранение отмечено при pН 2. При более продолжительном хранении лучшая стабильность пигмента также при pН 2.
Хризантемин (цианидин-моноглкжозид бузины) в условиях холодильного хранения сохраняется хорошо и течение года при рН 2, а в обе стороны от этого предела pН деградация хриэантемина усиливается, особенно при рН выше 3. При pН 2 хризантемин более стабилен, чем пеларгонидин - гликозид земляники.
Стабильность красителя черники (гликозиды дельфинидина) обнаруживает некоторые вариации в первые сроки хранения. Сразу после приготовления растворов в пределах рН 4-6 наблюдается некоторое увеличение интенсивности цвета растворов по сравнению с исходным, после 14 дней хранения этот эффект отмечен при рН 3-4, через 90 дней - при рН 1. Такое усиление окраски черничного красителя может быть следствием протекания ферментативных гидролитических процессов в растворах сырого антоциана, приготовленного холодным способом. Ферменты вначале проявили активность в области оптимума pН (5-6), а затем в более неблагоприятных условиях. После 210 дней хранения стабильность антоцианов черники в растворах в интервале кислых pН (до 4) была практически одинаковой (сохранилось до 40 % пигмента). Черничный краситель, хранящийся в виде растворов с pН выше 6, не стабилен, после 210 дней полностью деградирует. Самой плохой стабильностью отличается бетанидин свеклы. Сразу после изготовления образцов в растворах с pll ниже 6 пигмент был стабилгным, а через 2-3 мес хранения при температуре 20°С и средах с рН до 6 осталось его не более 20 %, при других - полностью деградировал.
В пределах рН, свойственным пищевым продуктам, по стабильности пигменты могут быть поставлены в такой ряд:
Свекла < Земляника < Черника < Вишня.
Пигменты оказались также весьма чувствительными к присутствию разных ионов металлов в растворах. Ионы металлов попадают в пищевые продукты естественным путем с плодами и вследствие загрязнения сырья при обработке плодов в садах, с водой, из материала оборудования и тары. Антоцианы образуют с большинством ионов металлов хелаты. Это явление сопровождается смещением поглощения света и, как следствие, изменением окраски. Изучено влияние различных ионов металлов в концентрации от 5 до 200 мг/л, а по меди и железу - от 5 до 200 мг/л на стабильность окраски хризантемина (из бузины) и бетанидина свеклы.
При хранении растворов хризантемина в условиях температуры 0-5°С влияние всех ионов металлов на изменение цвета было отрицательным. Исключение составил катион марганца в сочетании с сульфат ионов в концентрации 150 мг/л. В его присутствии окраска даже усилилась. В других концентрациях он давал меньший эффект. В условиях температуры 20°С растворы хризантемина с ионами щелочно-земельных металлов не отличались от контрольных, катионы кобальта и никеля при этих условиях давали даже небольшой положительный эффект.
По другому на присутствие ионов металлов реагирует бетанидин. Катионы бария, стронция, алюминия, марганца, никеля способствовали сохранению этого пигмента в растворах при небольших сроках хранения на холоде. При длительном хранении в условиях температуры 20°С нейтральным оказался ион бария, остальные способствовали деградации бетанидина. Следует отметить характерное свойство катионом бария углублять окраску растворов бетанидина. Весьма интересен также и тот факт, что катионы меди и олова в отношении к пигменту свеклы оказались менее агрессивными, чем катион железа.
Таким образом наиболее оптимальным для хранения антоциановых красителей является pН 2, для свекольного до 6. Анализ приведенного материала также показывает, что антоциановые красители необходимо хранить лишь на холоде (0-5°С), при обычной температуре они нестабильны. При pН концентратов, равном 1-2, их можно хранить при температуре 0-5°С в закрытых флаконах в течение трех месяцев без значительных потерь.
Для наиболее длительного сохранения антоцианов необходимо высушивание концентратов. Достаточно стабильные порошки антоцианов получаются после лиофильной сушки.
Проведенные исследования позволили установить, что для получения антоцианового концентрата красящих веществ необходимо использовать свежие выжимки, экстракцию их проводить 0,5 процентным водным раствором HCl с температурой 50-60°С в течение 9-17 ч, очистку и концентрированbt проводить по холодному способу, путем осаждения пигмента солями бария или кальция с последующей регенерацией и очисткой от избытка металлов. Хранить концентрированный краситель следует при pH 2 в охлажденном помещении 0-5°С в течение 4-6 мес. На основании этих исследований разработана принципиальная технологическая схема производства антоцианового красителя из вишневых выжимок, которая представлена на рис. 1.2.
Выжимки загружают в батарейный экстрактор, где экстрагируют подогретым до 60°С 0,5 процентным раствором HCl в течение 12 ч. Насыщенную вытяжку откачивают в сборник 4. Выжимки после экстракции отпрессовывают в корзиночном прессе и отправляют для переработки на активированный уголь, а отжатый экстракт возвращают в сборник 2 для последующего насыщения. Из сборника 4 перничный экстракт поступает и реактор осадитель. Сюда же из сборника 7 добавляют концентрированный едкий натрий для нейтрализации раствора из сборника 8 суспензию осадителя. При осаждении контролируют pН при кальциевом осадителе - 8,3, при бариевом - 8,9. После осаждения антоцианов массе дают отстояться в течение 30-40 мин, верхний прозрачный слой через патрубок со смотровым окном спускают в канализацию через очистные сооружения. Осадок перекачивают в друкфильтр, где осушивают под давлением до воздушно-сухого состояния. Сухой осадок дробят на молотковой дробилке и передают в аппарат для регенерации антоцианов.
Рис. 1.2. Принципиальная технологическая схема производства антоцианового красителя из вишневых выжимок.
В этот аппарат через разбрызгиватель подают концентрированную кислоту из сборника 13 и проводят регенерацию антоцианов при тщательном перемешивании. По окончании реакции смесь передают на нутч-фильтр. На фильтре смесь несколько раз промывают малыми порциями этилового спирта из сборника 15 и передают на очистку от ионом осадителя либо в реактор на осаждение бария раствором сернокислого натрия, либо на ионообменную колонку. После очистки от растворимых солей металла концентрат фильтруют и расфасовывают. При получении сухого концентрата антоцианов раствор после фильтрации сушат в вакуум-вальцевой сушилке.
Антоцианы и близкие к ним полифенольные вещества, находясь в плодах вI небольших количествах, существенно влияют на цвет свежих и консервированных продуктов. Улучшение цвета плодово-ягодных консервов в большой мере может быть достигнуто подкрашиванием их естественными красителями. Такие красители могут получаться из отходов сокового производства, например, из вишневых, черносмородиноных выжимок и других тсмноокрашенных плодов. Хорошие результаты получаются также при купажировании продуктов (например, яблочных) с продуктами, получаемыми из плодов с интенсивной антоциановой окраской рН среды, присутствие ионов металлов, режимы термообработки являются основными факторами, влиящими на сохранность естественной окраски плодов и ягод в консервированных продуктах.
Краситель - густая сиропообразная жидкость темно-красного цвета с массовой долей сухих веществ 38-42 %, красящих веществ 5,5-7,0 %, pН 3,0-4,0, титруемая кислотность 6-8 %. Экстракт содержит Р-активные вещества, микроэлементы, сахара и т.д. Растворимость в воде полная. Выход красителя из оходов составляет 18-20 %.
Антоцианы и близкие к ним полифенольные вещества, находясь в плодах в небольших количествах, существенно влияют на цвет свежих и консервированных продуктов. Улучшение цвета плодово-ягодных консервов в большой мере может быть достигнуто подкрашиванием их естественными красителями. Такие красители могут получаться из отходов сокового производства, например, из вишневых, черносмородиноных выжимок и других тсмноокрашенных плодов. Хорошие результаты получаются также при купажировании продуктов (например, яблочных) с продуктами, получаемыми из плодов с интенсивной антоциановой окраской. рН среды, присутствие ионов металлов, режимы термообработки являются основными факторами, влиящими на сохранность естественной окраски плодов и ягод в консервированных продуктах.
Описание технологической линии производства антоцианового красителя из растительного сырья
По результатам литературного обзора и патентного поиска предложена следующая схема производства красителя из растительного сырья.
Сырье, выжимки растительного происхождения, поступают после отжима в бункер приемный 1, откуда через дозатор 2 подаются в протирочную машину 3, где с помощью бичей они протираются сквозь сетку с диаметром отверстий 6,3 мм. После чего они становятся однородными по размеру с длиной не более 5 мм, для лучшей сушки в барабанной сушилке при температуре выжимок не более 80 °С. Сушка производится нагретым воздухом. Высушенный продукт проходя через магнитный сепаратор 5, где отбираются возможные металлические примеси поступает в диспергатор 6, где выжимки измельчаются до размера не большего 0,75 мм.
Измельченное сырье подается либо на упаковку в полиэтиленовые пакеты, для хранения и использования в дальнейшем, либо сразу поступает в реактор 7, где кипятится в растворе спирта при температуре 500С и вакууме 0,07 МПа с постоянным перемешиванием, в результате чего происходит интенсивная экстракция. Сырье со спиртом подается аппарат в соотношении 1:3.
Экстракт перекачивается насосом через теплообменник типа "труба в трубе" 9, где охлаждается водой подаваемой из градирни и поступает в сборник экстракта 10. Где в течении некоторого времени отстаивается, в результате чего выпадает твердый осадок, с балластными веществами, которые ухудшают качественные показатели красителя. Из емкости 10 экстракт перекачивается насосом через сепаратор в выпарную установку 12, где раствор выпаривается при температуре 60-700С под вакуумом, до содержания сухих веществ 60-70 % или в ультрафильтрацинный аппарат, откуда он поступает в обратноосмотическую установку, где он также сгущается до выше указанной концентрации. После этого раствор готов для розлива в банки и отправки на склад для хранения.
Так же можно получить порошкообразный краситель, если полученый раствор сушить в распылительной сушилки 19. Уносимый вместе с теплоагентом порошок улавливается циклонами. Полученый порошок поступает на упаковку. Сушка производится нагретым воздухом.
Отходы после сепаратора поступают в выпарную установку, где через них проходит пар, унося с собой пары спирта. Пары спирта затем улавливаются установленными конденсатарами. Полученный спирт 40 градусный отправляется для регенирации на спирт завод.
Вакуум в аппаратах создается вентиляторами.
3.2 Классификация добавок, используемых при производстве колбасных изделий
Введение добавок в пищевые продукты по своему технологическому предназначению может быть направлено на следующее [28,29,32-39,41,42,44,45]:
- сохранение качества продукта в процессе его хранения;
- улучшение внешнего вида и органолептических свойств продукта;
- ускорение сроков изготовления пищевых продуктов.
В соответствии с технологическим предназначением пищевые добавки в свою очередь могут быть сгруппированы следующим образом:
I. Пищевые добавки, обеспечивающие необходимый внешний вид и органолептические свойства продукта, включающие в свою очередь:
- улучшители консистенции;
- пищевые красители;
- ароматизаторы;
- вкусовые вещества.
II. Пищевые добавки, предотвращающие микробную или окислительную порчу продуктов (консерванты):
А) антимикробные средства: химические и биологические;
Б) антиокислители (антиоксиданты), препятствующие химической порче продукта (окислению).
III. Пищевые добавки, необходимые в технологическом процессе производства пищевых продуктов: а) ускорители технологического процесса; б) фиксаторы миоглобина; в) технологические пищевые добавки (желеобразователи, отбеливатели и др.); г) улучшители качества пищевых продуктов [5].
В качестве основных добавок, применяемых в производстве вареных колбас, используются:
- ароматизатор пряно-вкусовой;
- генугели (каррагенаны), разрешенные к применению Министерством здравоохранения Республики Узбекистан;
- ароматизаторы, композиции пряно-ароматические, глутаминаты пищевые, разрешенные к применению Министерством здравоохранения Республики Узбекистан;
- натрия триполифосфат;
- натрий фосфорнокислый однозамещенный 2-водный;
- натрий пирофосфорнокислый трехзамещенный;
- натрий аскорбиновокислый;
- кислота аскорбиновая ГФХ;
- смеси пищевых добавок, фосфаты и другие пищевые компоненты, разрешенные к применению Министерством здравоохранения Республики Узбекистан;
- пищевые красители, разрешенные к применению Министерством здравоохранения Республики Узбекистан;
- натрий дифосфат;
- моно- и диглицериды пищевых жирных кислот;
- глюконо-дельта-лактон (ГДЛ);
- экстракты пряностей; и др. [3, 5].
Натрий пирофосфорнокислый трехзамещенный - стабилизирующее вещество, улучшает консистенцию, позволяет получить более сочную и эластичную колбасу.
Аскорбиновая кислота, или витамин С - антиоксидант, используемый для предотвращения окислительной порчи пищевых жиров, а также она используется для предотвращения образования N-нитрозоаминов из нитратов и нитритов в колбасном производстве. Для человека безусловно допустимая суточная доза аскорбиновой кислоты составляет 0-2,5 мг/кг, а условно допустимая - 2,5 - 7,5 мг/кг веса тела.
Аскорбинат натрия - используется в производстве колбас как стабилизатор окраски в количестве до 500 мг/кг [21].
Фосфаты используются в качестве улучшителей консистенции и пластификаторов для колбасных изделий [4, 11, 27].
Каррагинаны используются в качестве загустителя, желеобразующего вещества и стабилизатора консистенции [20].
Натрий триполифосфат выполняет роль эмульгатора, стабилизатора, комплексообразователя, текстуратора, влагоудерживающего агента и диспергирующего вещества [5, 12].
В качестве ароматизаторов мясных изделий применяют различные соли и другие вещества.
Исследование химического состава летучей фракции мясных продуктов питания, химических превращений, протекающих при кулинарной обработке мяса и ведущих к образованию веществ запаха вкуса, послужили основанием для разработки способов получения ароматизаторов с мясным запахом. В состав таких ароматизаторов преимущественно входят соединения, содержащиеся в натуральных продуктах [8].
Все известные способы приготовления ароматизаторов с мясным запахом можно разделить на три группы: а) натуральные - основанные на выделении и концентрировании веществ вкуса и запаха из различных видов мяса; б) искусственные, получаемые в результате моделирования процессов, происходящих при кулинарной обработке мяса, с использованием компонентов натуральных продуктов и различных интенсификаторов как натурального, так и искусственного происхождения; синтетические, представляющие собой сложную композицию синтетических веществ-аналогов соединений натуральных одорантов [8, 11, 27].
Натуральные ароматизаторы. Выделение одорантов из различных видов мяса заключается в соответствующей обработке мяса с последующим получением концентрата веществ с мясным запахом. Так, согласно данным работы, измельченное мясо смешивают с водой до получения пастообразной массы, которую нагревают, и после охлаждения отделяют водную фазу, которую обрабатывают протеолитическими ферментами и сгущают удалением большей части воды. В результате получается концентрат с запахом мяса.
Искусственные ароматизаторы [4,26]. Экономические соображения с одной стороны и знания химических процессов, ведущих к возникновению специфического вкуса и запаха пищевых продуктов - с другой, привели к разработке различных способов получения ароматизаторов, способных придавать пищевым продуктам вкус и запах мяса. В качестве исходных веществ используют углеводы и аминокислоты или белки. В зависимости от того, какая из аминокислот или их смесь взяты в качестве исходных, и условий проведения реакции (РН среды, температуры и продолжительности нагревания) создают одорант с различными оттенками в аромате. Последнее зависит также от природы углеводного сырья. Обязательным условием составления ароматизатора с мясным запахом в этих случаях является присутствие в реакционной смеси какой-либо серосодержащей аминокислоты (цистина, цистеина, метионина) или других серосодержащих компонентов (тианина, глютатиона). Так, композиция с запахом вареной говядины получена при нагревании смеси, состоящей из глюкозы, ксилозы глютаминовой кислоты, глицина, цистеина и воды [7, 8].
Синтетические ароматизаторы. В эту группу способов получения ароматизаторов с мясным запахом и вкусом составляют методы, основанные на применении индивидуальных синтетических соединений или их композиций, являющихся идентичными веществам, выделенным из летучей фракции пищевых продуктов, приготовленных из традиционного сырья - натурального. Они могут использоваться также как компоненты в ароматизаторах, полученных по реакции Майара. В этом направлении достигнуты значительные успехи. К таким соединениям относятся соединения фурана, тиофена, тиазола, пиразинов, алифатические сульфиды, полисернистые гетероциклы и др.
Наряду с мясными ароматизаторами составленными разными способами, используют так называемые "потенциаторы" (или "интенсификаторы") органолептических свойств пищевых продуктов. Этот термин применяется к веществам, которые изменяют отношение биологической системы к другим соединениям или их композициям. По отношению к пищевым добавкам, вещества такого типа определяются как соединения, усиливающие вкусовые эффекты или ослабляющие дефектный для данного продукта вкус, причем проявляют свои свойства в малых концентрациях. Наиболее известный интенсификатор - натриевая соль L - глютаминовой кислоты [8, 9].
Обзор возможности применения пищевых добавок с позиции санитарного (пищевого) законодательства, существующей базы нормативной и технической документаций и наличия технологической практики. Исследования показатели, что применение пищевых добавок (ПД) в мясной промышленности ограничено технологической целесообразностью даже в большей степени, чем медико-биологической безопасностью и гигиеническими регламентами. Пищевые добавки, используемые в мясной промышленности, служат обеспечению безопасности и улучшению качества продукций и выполняют определенные функций по изменению в положительном направлений или по приданию желаемых свойств исходному сырью и готовому продукту. Пищевые добавки для мясопродуктов имеющие индекс Е, не вызывают сомнений в безопасности для здоровья. Вместе с тем, в современных условиях, связанных с повышением цен на пищевые ингредиенты и добавки, серьезную озабоченность специалистов отрасли вызывают такие проблемы как: отсутствие документированных требований к показателям качества и функционально-технологическим характеристикам используемых пищевых добавок; отсутствие и/или недостаточности нормативной технической документаций по применению пищевых добавок, разработанной на основе принципов технической обоснованности доз внесения и функциональной совместимости; отсутствие и/или недостаточность нормативной технической документаций на мясопродукт, рецептуры которых оптимизированы на основе знаний по функционально- технологическим характеристикам пищевых добавок, проявляемых в многокомпонентных системах [38,39,41,42].
В настоящее время развитие пищевой промышленности, в том числе и мясоперерабатывающей, во многом определяется эффективностью создаваемых и реализуемых на практике наукоемких, экономически целесообразных технологий выработки продуктов питания. Номенклатура и ассортимент мясных продуктов претерпевают значительные изменения в соответствии с концентрацией здорового питания и экономического состояния общества [22].
В качестве методов предварительной оценки безопасности в настоящее время апробируются 2 биологических метода на клеточных культурах. Это автоматизированные биотесты на инфузориях и сперме КРС. С помощью этих методов исследованные пищевые добавки, принадлежащие к 2 классам: подсластители и усилители вкуса. Оба метода тестирования позволяют получать сходные оценки безопасности подсластителей и усилителей вкуса. Выбор метода для использования в производстве или научной работе зависит от конкретных условий и возможностей в каждом варианте применения [46-48].
В литературе приведена информация о свойствах и применении пищевых добавок в переработке мяса КРС и мяса птицы, рыбы и морепродуктов. Настоящее издание является продолжением серии книг для технологов-практиков, посвященных применению пищевых добавок и их применение в переработке мяса, птицы, рыбы и морепродуктов; отмечены особенности применения конкретных добавок в производстве отдельных групп мясных и рыбных продуктов. Выделен чрезвычайно важный для переработки мяса, птицы, рыбы и морепродуктов технологический класс влагосвязывающих агентов к которому отнесены фосфаты, цитраты, гидроколлоиды и др. по традиционной классификации, относящиеся к другим технологическим классам. Описаны интенсификаторы цветообразования, хотя обычно их не выделяют в отдельный технологический класс [31].
3.3 Изучение микробиологических показателей колбасного фарша при использовании пищевого красителя из свеклы
С целью изучения влияния добавок на микробиологическую обсемененность колбасного фарша мы отобрали пробы фарша после куттерования (во время которого добавки вносили в фарш) в стерильные чашки Петри. В лаборатории мы приготовили последовательные разведения фарша ( 1:10, 1:100, 1:1000) согласно п.2.2.3. и провели посев на МПА и среду Эндо.
Подготовка проб. Объединенную пробу массой 50 г составили из точечных проб следующим образом:
Колбасные изделия в оболочке поместили в эмалированную тарелку, тщательно протерли ватным тампоном, смоченным спиртом, и дважды обожгли над пламенем (спирт этиловый ректификованный по ГОСТ 5962 - 67).
Затем батоны разрезали продольно стерильным (фламбированным) ножом на две половинки, не рассекая оболочки противоположной стороны батона. Пробу отобрали из нескольких участков центральной части и из-под оболочки обеих половинок батона.
Из объединенной пробы каждого образца брали в стерильную посуду (пергамент) навеску массой 20 г с погрешностью, не превышающей 0,1 г.
Навеску поместили в стерильную колбу гомогенизатора для приготовления испытуемой взвеси. Для этого в колбу добавляют 0,1% раствор стерильной пептонной воды в четырехкратном количестве и гомогенизировали в электрическом смесителе; вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000 - 20000 оборотов в минуту в течение 2,5 минут.
Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 минут выдержки при комнатной температуре. 1 куб. см приготовленной испытуемой взвеси содержит 0,2 г продукта.
Определение общего количества микробов в 1 г продукта. Сущность метода заключается в способности мезофильных аэробов и факультативных анаэробов расти на питательном агаре при температуре 370±50С с образованием колоний, видимых при пятикратном увеличении.
Питательный агар (МПА) расплавляли на водяной бане и охлаждали до температуры 450С.
Стерильные чашки Петри раскладывали на столе, подписали наименование анализируемого продукта, дату посева и количество посеянного продукта.
Из каждой пробы должно быть сделано не менее двух посевов, различных по объему и взятых с таким расчетом, чтобы на чашках выросло от 30 до 300 колоний. При этом на одну чашку Петри провели посев 0,1 г, а на другую - 0,01 г продукта.
Для посева 0,1 г продукта готовили первое десятикратное разведение продукта испытуемой взвеси, перенесли ее в пробирку с 5 куб. см стерильного физиологического раствора, не прикасаясь к стенкам пробирки, чтобы избежать смывания бактерий с наружной стороны. 1 куб. см полученного раствора содержит 0,1 г испытуемого продукта.
Другой стерильной пипеткой тщательно перемешали содержимое пробирки продуванием, отобрали 1 куб. см полученного раствора и перенесли в стерильную чашку Петри, слегка приоткрывая крышку.
Для посева 0,01 г продукта приготовили следующее разведение:
Другой стерильной пипеткой тщательно перемешали содержимое пробирки продуванием, отбирают 1 куб. см и перенесли в пробирку с 9 куб. см стерильного физиологического раствора. 1 куб. см испытуемого раствора вторичного разведения содержит 0,01 г испытуемого продукта. 1 куб. см этого раствора перенесли в стерильную чашку Петри, как описано выше. При необходимости таким же образом готовили последующие разведения.
После внесения разведения анализируемой взвеси в чашке Петри чашку залили 12-15 куб. см расплавленного и охлажденного питательного агара при флобировании краев пробирки или бутылки, где он содержится. Быстро смешивали с мясопептонным питательным агаром, осторожно наклоняя или вращая чашку по поверхности стола. Необходимо избегать образования пузырьков воздуха, незалитых участков дна чашки, попадания среды на края и крышку чашки. Для того, чтобы помешать развитию на поверхности спорообразующих микробов и бактерий группы протея в Н-форме, допускают наслоение расплавленного и охлажденного до температуры 45-500С холодного агара толщиной 3-4 мм.
После застывания агара, чашки Петри переворачивали и помещали в термостат в температурой 370С на 48 часов. Через 48 часов подсчитывали общее число колоний бактерий, выросших на чашках. Колонии, выросшие на поверхности, а также в глубине агара, подсчитывали с помощью лупы с пятикратным увеличением или специальным прибором с лупой. Для этого чашку клали вверх дном на черный фон и каждую колонию отмечали со стороны дна тушью или чернилами для стекла.
Для определения общего количества микробов в 1 г продукта подсчитанное количество колоний умножали на степень разведения анализируемого продукта. За окончательный результат определения количества бактерий в 1 г анализируемого продукта принимали среднее арифметическое результатов подсчета двух чашек разной массы продукта.
3.4 Изучение органолептических показателей вареных колбас при использования пищевого красителя из свеклы
Показатели качества целого продукта определяли в следующей последовательности:
Внешний вид, цвет и состояние поверхности определяли визуально наружным осмотром; запах (аромат) - на поверхности продукта; запах в глубине продукта определяли следующим образом: вводили деревянную иглу в толщу и быстро определяли оставшийся запах на поверхности иглы; консистенцию - легким надавливанием пальцами или шпателем на поверхность продукта. Показатели качества разрезанного продукта определяли в следующей последовательности:
Внешний вид (структура и распределение ингредиентов), цвет - визуально на продольном разрезе колбасных изделий; запах (аромат), вкус и сочность - апробируя колбасы сразу же после их нарезания, отмечали отсутствие или наличие постороннего запаха, привкуса, степень выраженности аромата пряностей, соленость; консистенцию продукта - надавливанием, разрезанием, разжевыванием. При этом устанавливали плотность, рыхлость, нежность, жесткость, крошливость.
Опытные образцы вареных колбас при использовании исследуемых добавок были изготовлены на предприятии "RiSaSh Best". После завершения всех операций технологического процесса сначала на предприятии, а затем и в лаборатории провели дегустацию и органолептическую оценку колбасных изделий согласно п.2.2.1.
Результаты органолептического исследования приведены в таблице ___.
Таблица
Образцы |
Внешний вид |
Консистенция |
Вкус |
Запах |
Цвет |
Общая оценка |
|
1 |
4,7 |
4,8 |
4,8 |
4,7 |
4,9 |
4,7 |
|
2 |
4,7 |
4,2 |
4,3 |
4,1 |
4,7 |
4,3 |
3.5 Изучение физико - химических показателей колбас при использования пищевого красителя из свеклы
Для изучения физико - химических свойств колбасного фарша и колбас в динамике мы трижды проводили исследования согласно п.2.2.2. в лаборатории. Результаты исследований опытных образцов мы свели в таблицы __, ___, ___.
Содержание влаги в колбасных изделиях определяли следующими методами:
1. Навеску около 3 г, смешанную с 5-10 г песка, высушивали в сушильном шкафу при температуре 150єС в течение 1 часа (арбитражный метод).
2. Навеску около 2 г, смешанную с 5-6 г песка, высушивали в аппарате САЛ в поле инфракрасного излучения при температуре в зоне сушки 135-1400С в течение 15-17 минут.
3. Навеску 20 г без добавления песка высушивали в сушильном шкафу при температуре от 180 до 2000С в течение 25-30 минут.
Порядок выполнения работы (арбитражный метод).
Навеску фарша около 3 г взвешивали в бюксе, предварительно высушенной до постоянной массы, с 5-6 г прокаленного песка и стеклянной палочкой с точностью до 4-го знака. Продукт высушивали в сушильном шкафу при температуре 1500С в течение 1 часа. После высушивания бюксы с навеской охлаждали в эксикаторе с закрытой крышкой в течение 30 минут и взвешивали. Содержание влаги (Х, %) рассчитывали по формуле:
Х=(М1-М2)100/МО где:
М1 - масса колбасы с бюксой до высушивания, г; М2 - масса колбасы с бюксой после высушивания, г.; МО - масса колбасы, г.
Для колориметрического определения pH можно использовать универсальный индикатор, состоящий из смеси индикаторов, охватывающих зону перехода окраски в области pH от 3,0 до 11,0.
Порядок выполнения работы:
1. 1 мл испытуемого раствора колбасного фарша мы вносили в фарфоровую чашку и добавляли 3-5 капель универсального индикатора (0,1 г метилового красного, 0,2 г бромэтимолового синего, 0,4 г фенолфталеина растворили в этаноле в мерной колбе вместимостью 500 мл).
2. Появившуюся окраску сравнивали с данными таблицы ___, в которой приводится окраска индикатора в зависимости от величины pH.
Таблица
рН |
Цвет |
рН |
Цвет |
|
4,0 |
Красный |
7,5 |
Зеленый |
|
4,5 |
Оранжево-красный |
8,0 |
Зелено-синий |
|
5,0 |
Оранжевый |
8,5 |
Синий |
|
5,5 |
Оранжево-желтый |
9,0 |
Серо-фиолетовый |
|
6,0 |
Желтый |
9,5 |
Сине-фиолетовый |
|
6,5 |
Лимонно-желтый |
10,0 |
Фиолетовый |
|
7,0 |
Желто-зеленый |
10,5 |
Красно-фиолетовый |
Для определения водосвязывающей способности навеску взвешивали на торзионных весах, что значительно сократило продолжительность взвешивания при сохранении достаточной точности.
Порядок выполнения работы: навеску колбасного фарша (0,3 г) взвешивали на торзионных весах на кружке из полиэтилена диаметром 15-20 мм (диаметр кружка равен диаметру чашки весов), после чего ее перенесли на беззольный фильтр, помещенный на стеклянную пластинку так, чтобы навеска оказалась под кружком.
Сверху навеску накрыли такой же пластинкой, как и нижняя, установили на нее груз массой 1 кг и выдерживали 10 мин. После этого фильтр с навеской освободили от груза и нижней пластинки, а затем карандашом очертили контур пятна вокруг спрессованного мяса.
Внешний контур вырисовался при высыхании фильтровальной бумаги на воздухе. Площади пятен, образованных спрессованным мясом и адсорбированной влагой, измерили планиметром.
Размер влажного пятна (внешнего) вычислили по разности между общей площадью и площадью пятна, образованного мясом. Экспериментально установлено, что 1 см2 площади влажного пятна фильтра соответствует 8,4 мл воды.
Содержание связанной влаги вычислили по формулам:
Х1= (А - 8,4Б)100/m0,
Х2=(А - 8,4Б)100/А,
где Х1 - содержание связанной влаги, % к мясу;
А - общее содержание влаги в навеске, мг;
Б - площадь влажного пятна, кв. см;
m0 - масса навески мяса, мг; Х2 - содержание связанной влаги, % к общей влаге.
Таблица
Физико - химические показатели фарша при использовании
пищевого красителя
№ |
pH, m +- 0,1 |
Содержание влаги, % |
|
1 |
6,6 |
70,9 |
|
2 |
6,5 |
70,4 |
С целью изучения динамики изменения физико-химических свойств колбас при хранении мы проводили исследования в день приготовления колбас и через 14 суток хранения образцов при температуре 4-6°С и относительной влажности 85 %.
Таблица
Физико-химические показатели опытных образцов в день изготовления
№ |
pH |
Содержание влаги, % |
|
1 |
6,7 |
67,5 |
|
2 |
6,8 |
63,8 |
Таблица
Физико-химические показатели опытных образцов через 14 суток хранения
№ |
pH |
Содержание влаги, % |
|
1 |
6,8 |
52,9 |
|
2 |
6,8 |
50,1 |
Анализ результатов исследования
В пищевом балансе человека белки животного происхождения составляют основную часть, они используются в виде различных мясных продуктов, в том числе в качестве колбасных изделий.
...Подобные документы
Факторы, влияющие на ассортимент и качество колбасных изделий. Ассортимент и фальсификация колбасных изделий. Экспертиза качества колбасных изделий, реализуемых в магазине "Пятерочка". Оценка конкурентоспособности колбасных изделий разных производителей.
дипломная работа [408,6 K], добавлен 18.11.2010Гигиенические нормативы качества и безопасности продовольственного сырья и пищевых продуктов. Порядок санитарно-микробиологического контроля колбасного производства. Лабораторные методы исследований колбасных изделий. Производственные пороки колбас.
курсовая работа [42,6 K], добавлен 28.08.2009Технологическая схема производства полукопченых колбас. Приготовление колбасного фарша. Тепловая обработка колбасных изделий. Подбор технологического оборудования, его описание. Контроль качества готовой продукции. Расчет хладоснабжения предприятия.
курсовая работа [2,1 M], добавлен 06.11.2014История приготовления колбас. Классификация вареных колбасных изделий, химический состав, энергетическая, пищевая ценность. Факторы, формирующие качество вареных колбасных изделий. Технология производства вареных колбасных изделий, дефекты производства.
курсовая работа [50,3 K], добавлен 02.11.2009Классификация вареных колбасных изделий. Гигиенические требования к качеству вареных колбасных изделий, в том числе к безопасности сырья и упаковки. Факторы, формирующие и сохраняющие качество вареных колбасных изделий. Фальсификация вареных колбас.
презентация [4,3 M], добавлен 10.11.2014Анализ состояния рынка колбас на современном этапе. Классификация и ассортимент колбасных изделий, определение их пищевой ценности и главные факторы, влияющие на качество. Требования к нормативной документации колбасных изделий, этапы их экспертизы.
курсовая работа [58,8 K], добавлен 11.01.2011Товароведческая характеристика колбасных изделий: химический состав, пищевая ценность, особенности производства, классификация, ассортимент, упаковка и хранение. Основные требования к качеству колбасных изделий, фальсификация и экспертиза этих продуктов.
курсовая работа [871,2 K], добавлен 01.04.2010Основные виды колбасных изделий, отличительные особенности их изготовления. Требования к мясному сырью для производства вареных колбас. Используемые белковые стабилизаторы животного происхождения и вспомогательные материалы. Классификация пищевых добавок.
реферат [19,0 K], добавлен 15.03.2010Характеристика технологического процесса производства колбас. Влияние тонкого измельчения мяса на качество колбасных изделий. Этапы и требования для изготовления фарша, применение жировых эмульсий, перемешивание, шприцевание, обжарка, варка, охлаждение.
реферат [39,8 K], добавлен 24.03.2010Колбасные изделия на продовольственном рынке Российской Федерации. Отбор проб для бактериологических, органолептических и химических испытаний. Упаковка и маркировка, транспортирование и хранение колбас. Критерии выбора и места покупки колбасных изделий.
курсовая работа [728,5 K], добавлен 07.02.2011Особенности химического состава, пищевой и биологической ценности вареных колбас. Факторы, формирующие и сохраняющие качество вареной колбасы. Характеристика вспомогательного сырья используемого в производстве колбасных изделий. Дефекты колбасных изделий.
курсовая работа [165,1 K], добавлен 21.10.2013Гигиенические нормативы качества и безопасности продовольственного сырья и пищевых продуктов. Санитарная оценка колбасных изделий и копченостей. Органолептические признаки доброкачественных копченых, кровяных, ливерных колбас, зельцев, мясных хлебов.
курсовая работа [40,1 K], добавлен 15.02.2013Методы анализа готовой продукции. Процесс изготовления колбас, виды порчи и пороки изделий. Способы увеличения сроков хранения колбасных изделий. Изменение микрофлоры фарша при изготовлении колбас. Оценка качества колбасной продукции на ООО МПП "Темп".
дипломная работа [2,4 M], добавлен 23.06.2019История появления колбасы. Ассортимент колбасных изделий, их пищевая ценность, технологическая схема производства. Особенности хранения и специфика экспертизы колбас. Мясокомбинаты и предприятия, производящие колбасы в Санкт-Петербурге и области.
презентация [1,3 M], добавлен 01.10.2010Изучение пищевой ценности и химического состава колбасных изделий - продуктов, изготовленных из мясного фарша и подвергнутые термической обработке или ферментации до готовности к потреблению. Характеристика сырья и материалов для колбасного производства.
реферат [21,9 K], добавлен 24.03.2010Технологическая схема производства вареных колбасных изделий. Применение в пищевой промышленности оборудования для копчения и варки мясных продуктов, термокамер интенсивного охлаждения. Основные кинетические характеристики теплообменного процесса.
курсовая работа [854,8 K], добавлен 22.11.2014Цель проведения экспертизы качества алкогольных напитков. Показатели качества вино-водочных изделий. Фальсификация алкогольных напитков: подделка букета вина, фальсификация способа производства. Категории ассортиментного ряда колбасных изделий.
контрольная работа [17,6 K], добавлен 28.04.2009Технология производства варено-копченых, полукопченых и сырокопченых колбас. Требования, предъявляемые к качеству копченых колбасных изделий. Упаковка, маркировка, хранение и транспортирование колбас. Изменение колбас при производстве и хранении.
курсовая работа [55,2 K], добавлен 01.07.2013Обсеменение колбасного фарша микроорганизмами. Наполнение оболочки фаршем. Изменение микрофлоры фарша при выработке вареных и полукопченых колбасных изделий. Отбор и подготовка проб к анализу. Бактерии группы кишечных палочек. Сальмонеллы и стафилококки.
курсовая работа [49,5 K], добавлен 18.12.2010Производственный ветеринарный контроль в основных цехах мясокомбината. Технологические схемы изготовления колбас и ветеринарно-санитарный контроль технологических процессов производства колбасных изделий. Лаборатория ветеринарно-санитарной экспертизы.
отчет по практике [117,7 K], добавлен 10.12.2010