Токсичность веществ и их воздействие на организм человека

Накопление в окружающей среде персистирующих поллютантов. Механизм хронической экотоксичности химических веществ. Популяционный характер зависимости "доза-эффект". Специфические проявления влияния на организм ртути, свинца, кадмия, селена и мышьяка.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 29.03.2014
Размер файла 59,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

В наше время человек постоянно подвергается воздействию химических веществ повсеместно и постоянно. В связи с урбанизацией городов, автоматизацией производств, постоянным применением химических веществ в промышленности, люди подвержены влиянию даже дома, в дороге, на прогулке, на работе и т.д.

Рассмотрим все эти вещества и их воздействия, объединив их широким определением поллютантами.

1. Основные принципы токсического воздействия поллютантов на организм человека

Постоянный выброс в окружающую среду персистирующих поллютантов приводит к их накоплению, превращению в экотоксиканты для наиболее уязвимого (чувствительного) звена биосистемы. После прекращения выброса персистирующего токсиканта он еще длительное время сохраняется в среде. К числу веществ, длительно персистирующих в окружающей среде, относятся тяжелые металлы (свинец, медь, цинк, никель, кадмий, кобальт, сурьма, ртуть, мышьяк, хром), полициклические полигалогенированные углеводороды (полихлорированные дибензодиоксины и дибензофураны, полихлорированные бифенилы и т.д.). Некоторые хлорорганические пестициды (ДДТ, гексахлоран, алдрин, линдан и т.д.) и многие другие вещества.

Некоторые процессы, происходящие в окружающей среде, способствуют элиминации ксенобиотиков из региона, изменяя их распределение в компонентах среды. Загрязнитель с высоким значением давления пара может легко испаряться из воды и почвы, а затем перемещаться в другие регионы с током воздуха. Это явление лежит в основе повсеместного распространения относительно летучих хлорорганических инсектицидов, таких как линдан и гексахлорбензол.

Перемещение ветром и атмосферными течениями частиц токсикантов или почвы, на которых адсорбированы вещества, также важный путь перераспределения поллютантов в окружающей среде. В этом плане характерен пример полициклических ароматических углеводородов (бензпирены, дибензпирены, бензантрацены, дибензантрацены и др.). Бензпирен и родственные ему соединения как естественного (главным образом вулканического), так и антропогенного происхождения (выброс металлургического, нефтеперерабатывающего производств, предприятий теплоэнергетики и т.д.) активно включаются в биосферный круговорот веществ, переходя из одной среды в другую. При этом, как правило, они связаны с твердыми частицами атмосферной пыли. Мелкодисперсная пыль (1-10 мкм) длительно сохраняется в воздухе, более крупные пылевые частицы достаточно быстро оседают на почву и в воду в месте образования. При этом, чем выше выброс, тем на большее расстояние рассеиваются поллютанты.

Сорбция веществ на взвешенных частицах в воде с последующим осаждением приводит к их элиминации из толщи воды, но накоплению в донных отложениях. Осаждение резко снижает биодоступность загрязнителя.

Перераспределению водорастворимых веществ способствуют дожди и движение грунтовых вод. Если загрязнитель окружающей среды не может попасть внутрь организма, он, как правило, не представляет для него существенной опасности. Однако, попав во внутренние среды, многие ксенобиотики способны накапливаться в тканях. Процесс, посредством которого организмы накапливают токсиканты, извлекая их из абиотической фазы (воды, почвы, воздуха) и из пищи (трофическая передача), называется биоаккумуляцией. Результатом биоаккумуляции являются пагубные последствия как для самого организма (достижение поражающей концентрации в критических тканях), так и для организмов, использующих данный биологический вид в качестве пищи.

Водная среда обеспечивает наилучшие условия для биоаккумуляции соединений. Здесь обитают мириады водных организмов, фильтрующих и пропускающих через себя огромное количество воды, экстрагируя при этом токсиканты, способные к кумуляции. Гидробионты накапливают вещества в концентрациях порой в тысячи раз больших, чем содержатся в воде.

В случае потребления чужеродных веществ, если эти вещества не могут быть «переварены» или просто выведены из организма, начинается их накопление по ходу пищевой цепи, особенно в том случае, если данное вещество имеет длительный период биологического полураспада. Коэффициент накопления неразлагающихся ядов в большинстве случаев составляет около 10 на каждую ступень пищевой цепи. К тому же накопление ядов в пищевых цепях нередко усиливается из-за меньшей быстроты реакции и ограниченной подвижности животных, несущих в себе яд, так как сильнее отравленные особи легче становятся добычей хищников, чем все остальные. Вследствие этого в пищевой цепи водоема наиболее высокое содержание ядовитых веществ отмечается у хищных рыб. В дальнейшем ядовитые вещества могут переходить к птицам, питающимся рыбой, к ластоногим, а также и к человеку.

Склонность экотоксикантов к биоаккумуляции зависит от ряда факторов. Первый - персистирование ксенобиотика в среде. Степень накопления вещества в организме, в конечном счете, определяется его содержанием в среде. Вещества, быстро элиминирующиеся, в целом плохо накапливаются в организме. Исключением являются условия, при которых поллютант постоянно привносится в окружающую среду (регионы близ производств и т.д.).

После поступления веществ в организм их судьба определяется токсикокинетическими процессами. Наибольшей способностью к биоаккумуляции обладают жирорастворимые (липофильные) вещества, медленно метаболизирующие в организме. Жировая ткань, как правило, основное место длительного депонирования ксенобиотиков.

Многие липофильные вещества склонны к сорбции на поверхностях различных частиц, осаждающихся из воды и воздуха, что снижает их биодоступность. Например, сорбция бензапирена гуминовыми кислотами снижает способность токсиканта к биоаккумуляции тканями рыб в три раза. Рыбы из водоемов с низким содержанием взвешенных частиц в воде аккумулируют большее количество ДДТ, чем рыбы из эвтрофических водоемов с высоким содержанием взвеси.

Вещества, метаболизирующие в организме, накапливаются в меньшем количестве, чем можно было бы ожидать, исходя из их физико-химических свойств. Межвидовые различия значений факторов биоаккумуляции ксенобиотиков во многом определяются видовыми особенностями их метаболизма.

Биоаккумуляция может лежать в основе не только хронических, но и отсроченных острых токсических эффектов. Так, быстрая потеря жира, в котором накоплено большое количество вещества, приводит к выходу токсиканта в кровь. Мобилизация жировой ткани у животных нередко отмечается в период размножения. В экологически неблагополучных регионах это может сопровождаться массовой гибелью животных при достижении ими половой зрелости. Стойкие поллютанты могут также передаваться потомству. У птиц и рыб - с содержимым желточного мешка, у млекопитающих - с молоком кормящей матери. При этом у потомства возможно развитие эффектов, не проявляющихся у родителей. Механизмы, посредством которых вещества могут вызывать неблагоприятные эффекты в биогеоценозах, многочисленны и, вероятно, в каждом конкретном случае уникальны. Вместе с тем, они поддаются классификации. Так, можно выделить прямое, опосредованное и смешанное действие экотоксикантов.

Прямое действие - это непосредственное поражение организмов определенной популяции или нескольких популяций экотоксикантом или совокупностью экотоксикантов данного ксенобиотического профиля среды. Опосредованное - это действие ксенобиотического профиля среды на биотические или абиотические элементы среды обитания популяции, в результате которого условия и ресурсы среды перестают быть оптимальными для её существования. Многие токсиканты способны оказывать как прямое, так и опосредованное, т.е. смешанное действие. Примером веществ, обладающих смешанным механизмом экотоксического действия, являются, в частности, гербициды. По С.А. Куценко (2002), экотоксичность - это способность данного ксенобиотического профиля среды вызывать неблагоприятные эффекты в соответствующем биоценозе. В тех случаях, когда нарушение естественного ксенобиотического профиля связано с избыточным накоплением в среде лишь одного поллютанта, можно условно говорить об экотоксичности только этого вещества.

Неблагоприятные экотоксические эффекты, как отмечает этот же автор, целесообразно рассматривать:

- на уровне организма (аутэкотоксические) - проявляются снижением резистентности к другим действующим факторам среды, понижением активности, заболеваниями, гибелью организма, канцерогенезом, нарушениями репродуктивных функций и т.д.;

- на уровне популяции (демэкотоксические) - проявляются гибелью популяции, ростом заболеваемости, смертности, уменьшением рождаемости, увеличением числа врожденных дефектов развития, нарушением демографических характеристик (соотношение возрастов, полов и т.д.), изменением средней продолжительности жизни, культурной деградацией;

- на уровне биогеоценоза (синэкотоксические) - проявляются изменением популяционного спектра ценоза вплоть до исчезновения отдельных видов и появления новых, не свойственных данному биоценозу, нарушением межвидовых взаимоотношений.

В случае оценки экотоксичности лишь одного вещества в отношении представителей только одного вида живых существ в полной мере могут быть использованы качественные и количественные характеристики, принятые в классической токсикологии (величины острой, подострой, хронической токсичности, дозы и концентрации, вызывающие мутагенный, канцерогенный и иные виды эффектов и т.д.). Однако в более сложных системах экотоксичность цифрами (количественно) не измеряется, она характеризуется целым рядом показателей качественно или полуколичественно через понятия «опасность» или «экологический риск».

В зависимости от продолжительности действия экотоксикантов на экосистему можно говорить об острой и хронической экотоксичности.

Острая экотоксичность.

Острое токсическое действие веществ на биоценоз может явиться следствием аварий и катастроф, сопровождающихся выходом в окружающую среду большого количества относительно нестойкого токсиканта или неправильного использования химикатов.

Истории уже известны такие события. Так, в 1984 году в г. Бхопал (Индия) на заводе американской химической компании по производству пестицидов «Юнион Карбайд» произошла авария. В результате в атмосферу попало большое количество пульмонотропного вещества метилизоцианата. Будучи летучей жидкостью, вещество образовало нестойкий очаг заражения. Однако отравлению подверглись около 200 тыс. человек, из них 3 тысячи - погибли. Основная причина смерти - остро развившийся отек легких.

Другой известный случай острой токсикоэкологической катастрофы имел место в Ираке. Правительством этого государства была закуплена большая партия зерна в качестве посевного материала. Посевное зерно с целью борьбы с вредителями подвергалось обработке фунгицидом (метилртутью). Однако эта партия зерна случайно попала в продажу и была использована для выпечки хлеба. В результате этой экологической катастрофы отравление получили более 6,5 тыс. человек, из которых около 500 погибли.

В 2000 году в Румынии на одном из предприятий по добыче драгоценных металлов в результате аварии произошла утечка синильной кислоты и цианид-содержащих продуктов. Токсиканты в огромном количестве поступили в воды Дуная, отравив все живое на протяжении сотен километров вниз по течению реки.

Величайшим экологическим бедствием является использование высокотоксичных химических веществ в военных целях. В годы первой мировой войны воюющими странами было использовано на полях сражений около 120 тыс. тонн отравляющих веществ. В результате отравление получили более 1,3 млн. человек, это можно рассматривать как одну из крупнейших в истории человечества экологических катастроф.

Острое экотоксическое действие не всегда приводит к гибели или острым заболеваниям людей или представителей других биологических видов, подвергшихся воздействию. Так, среди отравляющих веществ, применявшихся в первую мировую войну, был и сернистый иприт. Это вещество, являясь канцерогеном, стало причиной поздней гибели пораженных от новообразований.

Хроническая экотоксичность.

Хроническое поражение возникает при длительном воздействии небольших концентраций. С хронической токсичностью веществ, как правило, ассоциируются сублетальные эффекты. Часто при этом подразумевают нарушение репродуктивных функций, иммунные сдвиги, эндокринную патологию, пороки развития, аллергизацию и т.д. Однако хроническое воздействие токсиканта может приводить и к смертельным исходам среди особей отдельных видов.

Эффект долговременного воздействия диоксида серы может быть очень заметен. Исследования растительности в районе металлургических печей в Онтарио (Канада) показали, что на расстоянии 16 км от них произрастало в нормальном состоянии 25 видов растений, а по мере приближения к печам их количество уменьшалось. На расстоянии ближе 1,6 км не произрастало ни одного растения.

Механизмы экотоксичности.

В современной литературе приводятся многочисленные примеры механизмов действия химических веществ на живую природу, позволяющие оценить их сложность и неожиданность:

1. Прямое действие токсикантов, приводящее к массовой гибели представителей чувствительных видов. Применение эффективных пестицидов приводит к массовой гибели вредителей: насекомых (инсектициды) или сорняков (гербициды). На этом экотоксическом эффекте строится стратегия использования химикатов. Однако в ряде случаев отмечаются сопутствующие негативные явления. Так, в Швеции в 1950-60 гг. для обработки семян зерновых культур широко использовали метилртутьдицианамид. Концентрация ртути в зерне составляла более 10 мг/кг. Периодическое склевывание протравленного семенного зерна птицами привело к тому, что через несколько лет была отмечена массовая гибель фазанов, голубей, куропаток и других зерноядных пернатых от хронической интоксикации ртутью.

При оценке экологической обстановки необходимо иметь в виду основной закон токсикологии: чувствительность различных видов живых организмов к химическим веществам всегда различна. Поэтому появление поллютанта в окружающей среде даже в малых количествах может быть пагубным для представителей наиболее чувствительного вида. Так, хлорид свинца убивает дафний в течение суток при содержании его в воде в концентрации около 0,01 мг/л, малоопасной для представителей других видов.

2. Прямое действие ксенобиотика, приводящее к развитию аллобиотических состояний и специальных форм токсического процесса. В конце 1980-х годов в результате вирусных инфекций в Балтийском, Северном и Ирландском морях погибло около 18 тысяч тюленей. В тканях погибших животных находили высокое содержание полихлорированных бифенилов (ПХБ). Известно, что ПХБ, как и другие хлорсодержащие соединения, такие как ДДТ, гексахлорбензол, диелдрин, обладают иммуносупрессивным действием на млекопитающих. Их накопление в организме и привело к снижению резистентности тюленей к инфекции. Таким образом, непосредственно не вызывая гибели животных, поллютант существенно повышал их чувствительность к действию других неблагоприятных экологических факторов.

Классическим примером данной формы экотоксического действия является увеличение числа новообразований, снижение репродуктивных возможностей в популяциях людей, проживающих в регионах, загрязненных экотоксикантами (территории Южного Вьетнама - диоксин).

3. Эмбриотоксическое действие экополлютантов. Хорошо установлено, что ДДТ, накапливаясь в тканях птиц, таких как кряква, скопа, белоголовый орлан и др., приводит к истончению скорлупы яиц. В итоге птенцы не могут быть высижены и погибают. Это сопровождается снижением численности популяции птиц.

Примеры токсического действия различных ксенобиотиков (в том числе лекарственных препаратов) на эмбрионы человека и млекопитающих широко известны.

4. Прямое действие продукта биотрансформации поллютанта с необычным эффектом. Полевые наблюдения за живородящими рыбами (карпозубые) в штате Флорида позволили выявить популяции с большим количеством самок с явными признаками маскулинизации (своеобразное поведение, модификация анального плавника и т.д.). Эти популяции были обнаружены в реке ниже стока завода по переработке орехов. Первоначально предположили, что стоки содержат маскулинизирующие вещества. Однако исследования показали, что такие вещества в выбросах отсутствуют: сточная вода не вызывала маскулинизацию. Далее было установлено, что в сточных водах содержался фитостерон, (образуется в процессе переработки сырья), который, попав в воду реки, подвергался воздействию обитающих здесь бактерий и превращался при их участии в андроген. Последний и вызывал неблагоприятный эффект.

Таким образом, взаимодействие ксенобиотика с биотическим компонентом среды (микроорганизмы) может стать причиной существенных популяционных эффектов в биоценозе.

5. Опосредованное действие путем сокращения пищевых ресурсов среды обитания. Для борьбы с вредителями лесного хозяйства, гусеницами елового листовертки-почкоеда, в одном из регионов Канады применили фосфорорганический пестицид, быстро деградирующий в среде. В результате резкого снижения числа гусениц от бескормицы погибло около 12 млн. птиц.

6. Взрыв численности популяции вследствие уничтожения вида-конкурента. В США после начала применения синтетических пестицидов для борьбы с некоторыми видами вредителей растений стали интенсивно размножаться малочисленные ранее виды клещей-хлопкоедов. Количество опасных видов таких клещей увеличилось с 6 до 16. Это явление объясняют тем, что в мире насекомых существует сложная система взаимоотношений, и количество особей в популяции растительноядных насекомых зачастую контролируется другими видами, которые либо паразитируют на этих насекомых, либо ведут себя по отношению к ним как хищники. Воздействие пестицидов может оказаться более выраженным на представителей видов-хищников. В итоге - гибель врагов приводит к взрыву численности растительноядных насекомых.

Нетрудно заметить, что приведенные в качестве примеров механизмы экотоксического действия веществ на животных при иных условиях вполне могут реализоваться и в отношении человека.

По определению, порог вредного действия (Harmful effect threshold) - минимальная концентрация (доза) вещества в объекте окружающей среды, при воздействии которой в организме (при конкретных условиях поступления вещества и стандартной статистической группе животных) возникают изменения, выходящие за пределы физиологических приспособительных реакций, или скрытая (временно компенсированная) патология. Порог однократного действия обозначается символом Lim(ac), порог хронического действия - символом Lim(ch).

При оценке экотоксичности необходимо учитывать, что хотя практически все вещества могут вызывать острые токсические эффекты, хроническая токсичность выявляется далеко не у каждого соединения. Косвенной величиной, указывающей на степень опасности вещества при его хроническом действии, является соотношение концентраций, вызывающих острые и хронические эффекты. Если это соотношение менее 10, вещество рассматривается как малоопасное при хроническом воздействии.

При оценке хронической экотоксичности вещества необходимо учитывать следующие обстоятельства:

1. Определение коэффициента опасности является лишь самым первым шагом определения экотоксического потенциала вещества. В условиях лаборатории пороговые концентрации хронического действия токсикантов определяют, оценивая показатели летальности, роста, репродуктивных способностей группы. Изучение других последствий хронического действия веществ порой может привести к иным числовым характеристикам.

2. Исследования токсичности проводят на животных, пригодных для содержания в условиях лаборатории. Получаемые при этом результаты нельзя рассматривать как абсолютные. Токсиканты могут вызывать хронические эффекты у одних видов и не вызывать - у других.

3. Взаимодействие токсиканта с биотическими и абиотическими элементами окружающей среды может существенно сказаться на его токсичности в естественных условиях.

Популяционный характер зависимости «доза-эффект» (По: В.С. Безель и др., 1994).

Экологическая токсикология оперирует обязательным надорганизменным рангом показателей. В популяции должна существовать некоторая критическая численность особей, ниже которой ее существование в природных условиях невозможно. Этой критической ситуации соответствует определенный процент «пораженных особей».

Проблема оценки диапазона действующих доз для биологических систем различного ранга сложна и неразрывно связана с понятием норма. Теория нормы применительно к биологическим системам разработана в настоящее время недостаточно. В процессе эволюционного развития у растительных и животных организмов закреплена способность адекватно реагировать на изменения среды обитания, вызываемые изменением природно-климатических факторов. К воздействию антропогенных факторов, включая техногенное загрязнение, биологические системы различного ранга эволюционно не готовы. Их реакция на техногенный процесс носит неспецифический характер в рамках традиционных, эволюционно закрепленных механизмов компенсации. Лишь в этом случае адаптационные способности могут быть превышены и параметры, характеризующие функционирование биологических систем, могут выйти за рамки допустимого.

Наиболее характерным показателем нормы биологических систем является способность таким образом изменять свои функциональные параметры в изменяющихся условиях существования, чтобы поддерживать систему в условиях оптимума. Иначе говоря, норма целого - это норма взаимодействия его частей в процессе адаптации системы к условиям существования. Популяция как системы взаимосвязанных особей уже в силу исходной разнокачественности ее отдельных эколого-функциональных группировок характеризуется разнообразием их ответа на любое внешнее воздействие. Существует своеобразный резерв наследственно закрепленной внутривидовой изменчивости, который, с одной стороны, проявляется в широком спектре отдельных субпопуляционных группировок на техногенное загрязнение среды, с другой - обусловлен наличием специфических популяционных механизмов компенсации неблагоприятных изменений структуры и функции популяции, вызванных загрязнением. Этот резерв является необходимой компонентой нормы реакции популяции на техногенное загрязнение среды.

В связи с изложенным популяционный характер зависимости «доза-эффект» должен учитывать следующие обстоятельства.

1. Количественная оценка «дозы» предполагает учет меры токсического воздействия, отражающей не просто средние уровни токсических веществ в объектах внешней среды, а специфику популяции как гетерогенного объекта, элементы которого испытывают токсическое воздействие различной интенсивности. Например, это может быть общее содержание или поток токсикантов, подразделенный на отдельные компоненты, соответствующие структуре популяции.

2. Аналогичным образом оценка эффекта должна включать некоторые интегральные показатели состояния популяции, непосредственно контролирующие стабильность ее структуры и функции. Например, показатели плодовитости или плодоношения, выживаемости, продуктивности, занимаемой площади или численности и т.д.

3. При оценке эффектов надорганизменного уровня необходимо исходить из первичных проявлений токсичности на молекулярном, тканевом, клеточном и организменном уровнях.

4. Большая, чем для других систем, роль факторов внешней среды в реализации эффектов популяционного уровня. Например, влияние рН среды при воздействии загрязнения на сообщества водных организмов. Анализ большого фактического материала убеждает, что наблюдаемые проявления токсичности при воздействии практически всех техногенных загрязнителей однозначно коррелируют с накоплением этих веществ в отдельных компонентах биоты. Изменяющиеся условия существования природных популяций, включая влияние техногенного загрязнения, прямо отражаются на обилии или численности отдельных эколого-функциональных групп (сезонных, пространственных, половых, возрастных и т.д.). Это определяет вклад каждой внутрипопуляционной группы в общее распределение уровней токсических элементов в популяциях и позволяет рассматривать такие распределения в качестве меры токсического воздействия. Статистическое распределение концентраций токсических веществ в тканях или организмах в целом несимметрично (не может быть описано законом нормального распределения). В экологической токсикологии в качестве аргументации зависимости «доза-эффект» следует рассматривать спектр концентраций токсических веществ в популяционной выборке, описываемой логнормальным законом распределения.

Сложность перехода к анализу дозовых зависимостей экологических систем надорганизменного уровня связана с практической нереализуемостью активных экспериментов с дозируемыми нагрузками на природные биогеоценозы. Другая трудность связана с неопределенностью дозы токсической нагрузки в реальной ситуации. Выбросы реальных источников загрязнения, как правило, многокомпонентны, и не всегда удается выделить один или два ведущих токсиканта. Наконец, третья трудность анализа зависимостей «доза-эффект» на уровне экосистем связана со значительно большей пространственно-временной вариабельностью параметров по сравнению с другими уровнями организации. Она определяется как естественной мозаичностью экологических факторов, так и пространственной неоднородностью распределения дозы токсической нагрузки. Показатели опасности делятся на две группы. К первой группе относятся показатели потенциальной опасности - летучесть вещества, растворимость в воде и жирах и другие, например дисперсность аэрозоля. Эти свойства определяют возможность попадания яда в организм при вдыхании, попадании на кожу и т.п.

Ко второй группе относятся показатели реальной опасности - многочисленные параметры токсикометрии и их производные. Среди них:

Понятие зоны острого действия (Zac) было предложено одним из основателей российской промышленной токсикологии профессором Н.С. Правдиным. Вещество тем опаснее для развития острого отравления, чем меньше разрыв между концентрациями (дозами), вызывающими гибель. Так, например, аммиак имеет Zac > 100 (естественный продукт метаболизма, к которому организмы приспособились). Это вещество малоопасное в смысле острого отравления. В то время, например, амиловый спирт, имеет очень узкую зону действия - Zac = 3. Это опасное вещество в плане возможности развития острого отравления.

Зона хронического действия (Zch) связана с кумулятивными свойствами веществ, ее величина прямо пропорциональна опасности хронического отравления.

Зона биологического действия. Отношение средней смертельной дозы (концентрации) к пороговой дозе (концентрации) при хроническом воздействии. Используется для характеристики кумулятивных свойств ядов.

Зона специфического/избирательного действия. Отношение порога однократного действия, установленного по интегральным показателям, к порогу острого действия по специфическим (системным, органным, рецепторным) показателям. Используется для характеристики специфических свойств яда. Обозначается символом Zsp.

В России принята официальная классификация опасности вредных веществ.

Для характеристики качественной стороны действия промышленных ядов, оценки их влияния на ту или иную функциональную систему организма предложено несколько классификаций. Одна из них предложена применительно к условиям хронического воздействия промышленных веществ в минимальных эффективных дозах и концентрациях.

2. Характеристика воздействия отдельных поллютантов на организм человека

В зависимости от вида экотоксиканта (поллютанта) определяются специфические проявлениях их влияния на организм человека.

Ртуть - единственный металл, который находится в обычных условиях в виде жидкости и интенсивно выделяет пары. Из неорганических соединений ртути наиболее опасны металлическая ртуть, выделяемые пары и хорошо растворимые соли ртути. Соединения двухвалентной ртути токсичнее, чем одновалентные.

Ртуть давно известна как яд. Выражение «сошел с ума как шляпочник» появилось в те времена, когда многие люди, занимавшиеся изготовлением фетровых шляп, страдали психическими расстройствами из-за высоких концентраций ртути, применявшейся в шляпном деле. В легких случаях отравление вызывает бессонницу, неспособность воспринимать критику, страхи, головную боль, депрессию и неадекватные эмоциональные реакции. Ни один известный биоцид не изучен так хорошо, как ртуть, в отношении своей циркуляции в пищевых цепях и зависящей от нее опасности для человека и животных. Это утверждение относится, прежде всего, к метилртути, который представляет собой особо эффективный фунгицид, но одновременно очень токсичный для теплокровных и очень стабильный. Как показывают имеющиеся данные, в настоящее время наиболее опасные и критические ситуации, связанные с загрязнением ртутью, проявляются в связи с ее поступлением в водные экосистемы.

В районе Минамата (Япония) заболело около 120 человек; 46 из них умерли раньше, чем исследователи обнаружили, что люди и животные отравлялись выловленными в заливе моллюсками и рыбой, содержащими большие количества ртути. Источником ртути оказалась фабрика пластмасс, расположенная на реке, впадающей в залив Минамата. Хотя для рыбы ртуть так же токсична, как и для людей, концентрации ее в воде залива были не столь высоки, чтобы рыбы и моллюски не могли здесь жить. Ртуть из следового элемента превратилась в источник эпидемиологического заболевания. В водной пищевой цепи концентрация метилртути от звена к звену увеличивается. Так как метилртуть растворима в жирах, она легко переходит из воды в водные организмы. При захвате мельчайших живых существ более крупными, для которых они служат пищей, это вещество сохраняется в последних. Так как у него период полураспада (особенно в организмах с низким уровнем обмена веществ) необычайно длителен (у человека 70 дней), яд не выделяется, а, наоборот, накапливается в организме. Особенно страдают от этого морские млекопитающие, так как они живут всецело за счет питания рыбой.

Каким бы путем ртуть ни попадала в воду, микроорганизмы метилируют ее, и при этом всегда образуется метилртуть. Это соединение жирорастворимо (как упоминалось выше), чрезвычайно ядовито и очень устойчиво.

Свинец. Человечество уже более 2 тыс. лет знакомо с опасностью, которую несет использование этого металла и свинцовых изделий.

В Древней Греции отравления людей, работавших со свинцом, называли сатурнизмом. Его симптомами были колики, сопровождавшиеся бредовым состоянием и параличами. Много отравлений вызвало хранение напитков, вин и продуктов в глазурованных керамических сосудах. В 1883 г. в английском законодательстве появился первый закон, посвященный предупреждению свинцового отравления; он запрещал использование гончарной посуды, покрытой свинцовой глазурью. В настоящее время свинец используется в аккумуляторах, в производстве кабелей, красок, стекла, смазок, бензина, средств защиты от радиации и т.д.

К настоящему времени накоплено огромное количество сведений о токсическом действии свинца на живые организмы, о поведении этого элемента в природных средах.

Загрязнение среды свинцом обусловлено в основном четырьмя видами хозяйственной деятельности:

1) сжиганием жидкого и твердого топлива, сопровождающимся выбросами в атмосферу;

2) свинцовоплавильным производством, с которым тоже связаны выбросы свинца в атмосферу;

3) сбрасыванием сточных вод, в которых свинец обычно содержится в повышенных количествах, и

4) внесением в почву химикатов. Настоящим бичом современности является загрязнение атмосферы автомобильными выхлопами, содержащими продукты неполного сгорания топлива, в том числе и неразложившуюся часть тетраэтилсвинца.

В результате вдыхания воздуха, содержащего свинец, не менее 15% его поступает в кровь. Токсическое действие свинца по отношению к организму человека, животных связывают в первую очередь с SH-группами устойчивых меркаптидов и блокированием ферментных систем. Свинец обладает кумулятивными свойствами. Среди механизмов депонирования свинца главным является отложение его в костной ткани в результате замещения кальция. В значительно меньшей степени свинец откладывается в селезенке, печени, почках, головном мозгу и других органах. Этот элемент может сохраняться в организме человека долгое время (годы). Под влиянием неблагоприятных воздействий (алкоголизм, инфекция, травма) нередко наблюдается проявление или обострение свинцовой интоксикации, обусловленное выделением свинца из депонирующего органа, ткани в ток крови.

Свинец является протоплазматическим ядом, действующим на все органы и системы организма. Токсической дозой свинца для человека является 1 мг, летальной - 10 г. Основным источником поступления свинца в организм человека служат продукты питания, в связи с этим опасно техногенное загрязнение свинцом пищевых и кормовых культур. Важную роль играет поступление свинца в организм человека с почвой, пылью, питьевой водой и вдыхаемым воздухом. Данные по содержанию свинца в крови детского населения России свидетельствуют о том, что почти у 44% детей в городах России могут возникать проблемы в поведении и обучении, обусловленные воздействием свинца. Около 9% нуждаются в лечении; здоровье 0,2% детей находится в опасности и примерно 0,01% нуждается в неотложном медицинском вмешательстве (Доклад о свинцовом загрязнении, 1997).

Кадмий. Среди всех токсичных и особотоксичных элементов таблицы Д.И. Менделеева кадмий по темпам и масштабам загрязнения стал одним из приоритетных загрязнителей планеты. После накопления большого массива данных по токсикологии кадмий признан особо опасным экотоксикантом для здоровья человека. Это обусловлено проявлением токсических эффектов соединений кадмия в низких дозах; длительным периодом полувыведения - 30 лет; низким уровнем концентрации в выделениях из организма; преимущественным накоплением в мягких тканях, почках и печени. Полагают, что метаболическая активность кадмия выше, чем у ртути. Толчком к резкому возрастанию интереса к кадмию явилось обнаружение отрицательных биологических последствий при избыточном поступлении этого элемента в среду. В 1960-х годах в Японии произошла вспышка болезни «Itai-Itai», когда было установлено, что попадание кадмия в пищу представляет большую опасность. Болезнь начиналась болями в спине и почках, а заканчивалась деформацией скелета, множественными переломами костей и ужасными страданиями, вызываемыми давление массы тела на кости. Трагедия возникла в результате длительного загрязнения оросительных вод рисовых полей промышленными отходами, содержащими кадмий.

Согласно рекомендациям ФАО/ВОЗ, допустимая суточная доза кадмия для человека равна 0,4-0,5 мг. Поступление кадмия в городские системы последовательно возрастало с увеличением разнообразия выпускаемой продукции, используемой в высоких технологиях и хозяйственно-бытовых целях.

Будучи по своей природе элементом, не способным к высокой аккумуляции в геосистемах (его кларк в литосфере составляет 0,13 мг/кг), кадмий под воздействием человека превратился в элемент, аккумулирующийся в городском пространстве.

Кадмий, как и ртуть, образует крайне токсичные летучие алкилированные формы. В биоценозах за счет ковалентного связывания с органическими соединениями кадмий может, как проникать в зеленую массу растений через кутикулу листа, так и удаляться с листовой поверхности обратно в атмосферу. Именно с этими замечательными свойствами - высокой летучестью и высокой проникающей способностью - связаны сверхвысокие темпы распространения кадмия в биосредах и ландшафтах. Как отмечает В.В. Добровольский, из всех тяжелых металлов кадмий имеет максимальный коэффициент аэрозольной аккумуляции - более 100.

Селен. В течение многих лет при изучении содержания токсичных элементов в среде и биоте внимание исследователей было сосредоточено на тяжелых металлах, список которых традиционно начинался Hg, Pb, Cd, в то время как уровни концентраций селена в компонентах экосистем, особенно морских, оставались малоизвестными.

Появление новых сведений о биологическом значении селена и его токсичных свойствах делают необходимым исследование этого элементов не только в живых организмах, но и в компонентах экосистем в целом, в первую очередь в регионах, подверженных интенсивному антропогенному воздействию.

Содержание селена в земной коре, почвах и организмах не превышает 0,001%, однако его биологическая роль весьма значительна. Основным проявлением биологической активности селена является способность заменять серу. Селен до недавнего времени считался канцерогеном, но, как показали детальные исследования последних лет, это ошибочное мнение. Этот элемент входит в состав фермента глютатионпероксидазы, играющей важную роль в качестве антиоксиданта в организме. С явлениями недостаточности селена в рационе связаны такие заболевания, как токсическая дистрофия печени, экссудативный диатез, мышечная дистрофия, энцефаломаляция (размягчение мозга). При недостатке селена в рационе животных наблюдаются следующие изменения в организме: задержка роста, бесплодие, дегенеративные изменения в миокарде и скелетных мышцах, нервных клетках, печени, почках, семенниках и др. органах, повышается проницаемость капилляров и др. изменения.

В Китае, особенно в провинции Кешан, многие сотни лет свирепствовало заболевание сердечной мышцы и уносило жизни детей и молодых матерей до тех пор, пока не выяснили, что причина этого заболевания связана с дефицитом селена в их питании. В областях с очень низким содержанием селена, распространены болезни Кешана и Кашина-Бека.

Селен защищает организм от накопления продуктов перекисного окисления липидов, способствующих в первую очередь окислительной деструкции клеточных и органоидных мембран. Являясь антиоксидантом, селен стабилизирует клеточные мембраны важнейших органов человека, особенно сердечной мышцы; нормализует активность ядер, предупреждает повреждение их хромосом, стимулирует функции рибосом; нормализует обмен простагландинов, простациклинов, дистантных гормонов, таких как гормон роста, тироидные; одновременно нормализуя обмен протеинов и нуклеиновых кислот, увеличивает репродуктивность животных. Биологическая активность селена зависит от химической формы, в которой он содержится в пище и организме. Элементарный селен, инертен, наиболее токсичны некоторые органические соединения селена. Наиболее ядовитыми являются селенистый водород, двуокись селена, галогениды селена и соединения селена с тяжелыми элементами. Селенистая кислота и ее соли действуют значительно сильнее, чем селеновая кислота и ее производные. Дать сравнительную оценку токсичности неорганических и органических соединений пока еще нельзя.

Отдельно следует отметить предельно допустимые уровни нахождения селена в среде и накопление его организмами в концентрациях, вызывающих функциональные нарушения. Содержание селена в воде в количестве 2 мкг/л или выше следует рассматривать как опасное для здоровья и долговременного разведения рыбы и других видов диких животных, которые через биоаккумуляцию могут быть токсичными для пищевых цепей воспроизводства. В некоторых случаях ультраследовые количества растворенного и особенно органического селена могут привести к биоаккумуляции и токсичности даже при концентрациях селена в воде менее чем 1 мкг/л.

Результаты исследований, проведенных Л. Барон и др. (Baron et al., 1997), показывают, что в органах и тканях зимородков, питающихся загрязненной водной, селен - довольно сильный политропный яд, поражающий нервную систему, почки, печень. Установлена его токсичность для человека при потреблении 3-5 мг в день.

Мышьяк. Биофильный элемент, постоянно содержится в организмах растений и животных. Биологическая роль мышьяка выяснена мало, однако известно, что мышьяк относится к ретикуло-эндотелиальным элементам, т.е. принимает участие в процессах выработки иммунных тел и протекания защитных реакций. У лабораторных животных и коз при недостатке мышьяка в специальной диете наблюдалось нарушение воспроизводительных функций, ухудшение общего состояния и увеличение летальных исходов. Вместе с тем, мышьякодефицитные состояния у человека неизвестны. Кроме того, мышьяк принимает участие в нуклеиновом обмене, т.е. имеет прямое отношение к синтезу белка, и необходим для синтеза гемоглобина, хотя и не входит в его состав.

Известно, что в организме млекопитающих мышьяк содержится в восстановленных формах As, NaAs3+, которые рассматривают как потенциальные стимуляторы образования металлотионеина из CdCl2. Мышьяковистые минеральные воды применяют при лечении анемии и некоторых желудочно-кишечных заболеваний. Мышьяк - лучшее средство против селенового токсикоза. Этот элемент входит в состав мумие - природного минерально-органического вещества. Также его применяют при лечении сонной болезни на последней стадии.

Мышьяк - высокотоксичный кумулятивный протоплазматический яд, поражающий нервную систему. Смертельная доза 60-200 мг. Хроническая интоксикация наблюдается при потреблении 1-5 мг/день. Мышьяк блокирует SH-группы в ферментах, контролирует тканевое дыхание, деление клеток, другие жизненно важные функции. Хроническое отравление приводит к потере аппетита, сопровождаемой желудочно-кишечным расстройством типа гастроэнтерита, и к потере веса.

Также отравление мышьяком может вызвать рак легких и кожи, умственные расстройства. Наблюдается резкое обезвоживание организма, сопровождающееся судорогами, гемоглобинурия, гемолитическая анемия, острая почечная недостаточность. Возможна паралитическая форма: оглушение, судороги, потеря сознания, кома, паралич дыхания, коллапс. При ингаляционных отравлениях мышьяковистым водородом быстро развивается тяжелый гемолиз, гемоглобинурия, цианоз, печеночно-почечная недостаточность, гемолитическая анемия. Трехвалентный мышьяк тормозит окислительные процессы. Пятивалентный мышьяк усиливает брожение, повышает гликолиз крови и мышечной ткани и ускоряет распад гексозодифосфата.

Канцерогенность неорганических соединений мышьяка доказана для кожи и легких человека

Таллий, как и мышьяк, поражает дистальные отделы нервной периферической системы, что проявляется в нарушениях нервной графики, мышечной слабости и нарушением кожной чувствительности. Симптомы хронического отравления таллием выражаются в повышенной нервозности, нарушениях сна, быстрой утомляемости, суставных болях, выпадении волос.

Сходные патологические проявления наблюдаются при хроническом отравлении и другими тяжелыми металлами. Все они при определенном уровне накопления в организме обладают мутагенным и эмбриотоксическим действием, а некоторые соединения свинца, кадмия, мышьяка и хрома - канцерогенным эффектом.

Цинк. Особый интерес к цинку связан с открытием его роли в нуклеиновом обмене, процессах транскрипции, стабилизации нуклеиновых кислот, белков и особенно компонентов биологических мембран, а также в обмене витамина А.

Ему принадлежит важная роль в синтезе нуклеиновых кислот и белка. Повышенные концентрации цинка оказывают токсическое влияние на живые организмы. У человека они вызывают тошноту, рвоту, дыхательную недостаточность, фиброз легких, является канцерогеном, оказывает влияние на деление и дыхание клеток, развитие скелета, формирование мозга и поведенческих рефлексов, заживление ран, воспроизводительную функцию, иммунный ответ, взаимодействует с инсулином. При дефиците элемента возникает ряд кожных заболеваний. Токсичность цинка для человека невелика, т.к. при избыточном поступлении он не кумулируется, а выводится.

Медь - является одним из важнейших незаменимых элементов, необходимых для живых организмов. В растениях она активно участвует в процессах фотосинтеза, дыхания, восстановления и фиксации азота. Медь входит в состав целого ряда ферментов-оксидаз - цитохромоксидазы, церулоплазмина, супероксидадисмутазы, уратоксидазы и других и участвует в биохимических процессах как составная часть ферментов, осуществляющих реакции окисления субстратов молекулярным кислородом. Данные по токсичности элемента для растений немногочисленны. В настоящее время основной проблемой считается недостаток меди в почвах или ее дисбаланс с кобальтом. В организме взрослого человека половина от общего количества меди содержится в мышцах и костях и 10% - в печени. Основные процессы всасывания этого элемента происходят в желудке и тонкой кишке. Ее усвоение и обмен тесно связаны с содержанием в пище других макро- и микроэлементов и органических соединений. Существует физиологический антагонизм меди с молибденом и сульфатной серой, а также марганцем, цинком, свинцом, стронцием, кадмием, кальцием, серебром. Избыток данных элементов, наряду с низким содержанием меди в продуктах питания, может обусловить значительный дефицит последней в организме человека, что в свою очередь приводит к анемии, снижению интенсивности роста, потере живой массы, а при острой нехватке металла (менее 2-3 мг в сутки) возможно возникновение ревматического артрита и эндемического зоба. Чрезмерное поглощение меди человеком приводит к болезни Вильсона, при которой избыток элемента откладывается в мозговой ткани, коже, печени, поджелудочной железе и миокарде.

Никель. Биологическая роль никеля заключается в участии в структурной организации и функционировании основных клеточных компонентов - ДНК, РНК и белка. Наряду с этим он присутствует и в гормональной регуляции организма.

По своим биохимическим свойствам никель весьма схож с железом и кобальтом. Экспериментально установлена эмбриотоксичность никеля. Избыточное поступление металла в организм человека может быть связано с интенсивным техногенным загрязнением почв и растений этим элементом.

Хром. Хром относится к числу элементов, жизненно необходимых животным организмам. Основные его функции - взаимодействие с инсулином в процессах углеводного обмена, участие в структуре и функции нуклеиновых кислот и, вероятно, щитовидной железы. Токсичное действие металла зависит от валентности: шестивалентный катион гораздо токсичнее трехвалентного. В организме человека общетоксикологическое, нефротоксическое и гепатотоксическое действие оказывает Cr6+. Токсичность хрома выражается в изменении иммунологической реакции организма, снижении репаративных процессов в клетках, ингибировании ферментов, поражении печени, нарушении процессов биологического окисления, в частности цикла трикарбоновых кислот. Кроме того, избыток металла вызывает специфические поражения кожи (дерматиты, язвы), изъявления слизистой оболочки носа, пневмосклероз, гастриты, язву желудка и двенадцатиперстной кишки, хромовый гепатоз, нарушения регуляции сосудистого тонуса и сердечной деятельности. Соединения Cr6+, наряду с общетоксикологическим действием, способны вызывать мутагенный и канцерогенный эффекты. Хром, помимо легочной ткани, накапливается в печени, почках, селезенке, костях и костном мозге.

Пестициды - собирательный термин, охватывающий химические соединения различных классов, применяемые в сельском хозяйстве, здравоохранении, промышленности, нефтедобыче и др. Пестициды начали использовать еще в войсках Александра Македонского для борьбы с паразитами человека (порошок долматской ромашки). В здравоохранении пестициды применяют для борьбы с членистоногими - переносчиками таких опасных заболеваний, как малярия, чума, туляремия, энцефалит, сонная и слоновая болезнь, многие кишечные заболевания. В здравоохранении и ветеринарии, кроме того, пестициды используют в качестве дезинфицирующих средств, в промышленности - для предохранения неметаллических материалов (полимеров, древесины, текстильных изделий), борьбы с обрастанием морских судов, особенно в южных морях, для борьбы с сероводородобразующими бактериями, для предохранения труб от коррозии.

В наибольших масштабах пестициды используют в сельском хозяйстве для борьбы с членистоногими (инсектициды и акарициды), нематодами (нематоциды), грибными (фунгициды) и бактериальными (бактерициды) заболеваниями растений и животных, а также для борьбы с сорняками (гербициды). К пестицидам относят также регуляторы роста растений (ретарданты), используемые для борьбы с полеганием различных культур, для дефолиации (удаления листьев) и десикации (подсушивания растений на корню), чтобы облегчить уборку урожая, а также для предохранения от заморозков и засухи.

В результате накопления множества подобных сведений за ДДТ утвердилась слава чудовищно опасного препарата.

Когда в США концентрация ДДТ в молоке кормящих матерей в результате передачи этого вещества через пищевые цепи достигла уровня в 4 раза выше предельно допустимого, применение ДДТ было запрещено.

По химическому составу выделяются 3 основные группы пестицидов:

Неорганические соединения (соединения ртути, фтора, бария, серы, меди, а также хлораты и бораты).

Пестициды растительного, бактериального и грибного происхождения (пиретрины, бактериальные и грибные препараты, антибиотики и фитонциды).

Органические соединения, к которым относятся пестициды высокой физиологической активности: хлорорганические соединения (гексахлорциклогексан, гептахлор и др.); фосфорорганические соединения (хлорофос, метилнитрофос, карбофос и др.). Производные карбаминовой, тио- и дитиокарбаминовой кислот (пиримор, карбин, тиллом); нитропроизводные фенолов (нитрафен, каратан); фталимиды (каптан, фталан); минеральные масла; органические соединения ртути (гранозан, меркуран и др.); хиноны (дихлон); производные мочевины и др.

В зависимости от способности сопротивляться процессам разложения пестициды подразделяются на слабостойкие (сохраняются в окружающей среде 1-12 недель), среднестойкие (сохраняются 1-18 месяцев) и очень стойкие (сохраняются два года и более). Очевидно, что слабостойкие пестициды в окружающей среде практически не накапливаются. В идеальном виде пестицид, оказав требуемое воздействие на вредителя, должен был бы сразу разрушиться, образовав безвредные продукты разложения. Особую опасность представляют стойкие и кумулятивные пестициды: триазин, симтриазин, хлордан, гептахлор - они обнаруживаются в почве спустя десять и более лет после применения. Поступая в почву, пестициды мигрируют вниз по профилю с нисходящими токами дождевых и оросительных вод, причем скорость и глубина миграции зависят от дозы токсиканта, его летучести и адсорбируемости, а также от водного и теплового режимов почвы.

Остаточные количества пестицидов обнаруживают на глубине 200 см и более.

Попадая в почвенно-грунтовые воды в малых концентрациях, пестициды изменяют к худшему органолептические свойства воды (вкус, запах). Присутствие 5-10 мкг/л дихлорфенола придает воде специфический запах и делает ее непригодной для питья. В годы массового применения ДДТ на хлопковых полях этот пестицид обнаруживали в артезианских скважинах на глубине 80 м, а его концентрация в арыках превышала допустимую в 3-4 раза, а иногда и в десятки раз.

...

Подобные документы

  • Анализ проблемы химического загрязнения окружающей среды. Влияние промышленных выбросов на здоровье населения России. Выхлопы автотранспорта: проблемы загрязнения воздуха и меры борьбы с ним. Особенности воздействия химических веществ на человека.

    реферат [2,3 M], добавлен 21.01.2015

  • Тяжелые металлы как группа химических элементов со свойствами металлов и значительным атомным весом либо плотностью, степень их распространенности в окружающей среде. Факторы, влияющие на концентрацию данных веществ в воздухе, влияние на человека.

    доклад [12,2 K], добавлен 20.09.2011

  • Описание физических и химических свойств асбеста как группы тонковолокнистых минералов класса гидросиликатов. Применение асбеста и его воздействие на организм человека. Роттердамская конвенция и ликвидация заболеваний, связанных с асбестосодержащей пылью.

    реферат [35,9 K], добавлен 15.08.2014

  • Зональный характер ведущих абиотических и биотических факторов забуференности водных экосистем. Токсичность поллютантов и характеристика токсикорезистентности пресноводных биоценозов. Экологическая роль рыбохозяйственных ПДК для загрязняющих веществ.

    автореферат [235,8 K], добавлен 05.09.2010

  • Радиация, ее влияние на организм человека. Дозовые зависимости показателей состояния здоровья. Последствия влияния радиации на взрослый организм. Проблемы, связанные с нормированием воздействия радиации. Методология оценки генетического риска облучения.

    реферат [31,8 K], добавлен 14.12.2010

  • Показатели опасности канцерогенов и не канцерогенов. Расчет средних суточных и пожизненных доз поступления химических веществ в организм. Оценка риска развития канцерогенных эффектов. Мероприятия по уменьшению влияния некачественной среды на население.

    дипломная работа [601,6 K], добавлен 13.03.2014

  • Общие понятия об атомных реакторах, ядерная энергетика и экология. Единицы измерения, используемые в радиационной экологии человека. Токсичность радионуклидов и пути их попадания в организм человека, накопление в продуктах питания и кормах животных.

    курсовая работа [974,9 K], добавлен 18.04.2011

  • Понятие экотоксикантов - долгоживущих в окружающей среде биологических веществ, включающихся в биологические циклы обмена и трансформации веществ в экосистемах и негативно влияющих на отдельные их виды. Классификация тяжелых металлов по их токсичности.

    презентация [1,0 M], добавлен 05.10.2010

  • Негативные факторы окружающей среды. Влияние химических веществ на организм. Развитие воспалительных заболеваний. Влияние загрязнённого воздуха на здоровье женщины. Влияние электромагнитных полей. Главные последствия облучения и влияния окружающей среды.

    контрольная работа [34,0 K], добавлен 04.04.2015

  • Характеристика ртути и ее токсический эффект. Санитарно-гигиенические нормы по нахождению металла в окружающей среде. Схемы и установки по ее очистке в сточных водах. Механизм удаления паров ртути из вентиляционных выбросов при производстве витаминов.

    презентация [320,8 K], добавлен 11.05.2015

  • Воздействие на организм человека разного рода химических, биологических загрязнений. Отрицательное влияние сильного шума. Погода и самочувствие человека, роль правильного питания. Проблемы адаптации человека к окружающей среде. Схемы водооборотных циклов.

    реферат [54,2 K], добавлен 14.01.2011

  • Природа человека как причина возникновения экологической проблемы. Участие организмов в круговороте веществ и энергии, способность их адаптации к окружающей среде. Виды и значение экологического мониторинга. Экологические последствия военных конфликтов.

    контрольная работа [3,0 M], добавлен 12.05.2014

  • Негативные факторы окружающей среды, их воздействие на организм человека. Оценка степени их влияния на здоровье, характер изменений функционального состояния организма, возможности развития отдельных нарушений. Влияние среды на генофонд человечества.

    реферат [22,6 K], добавлен 22.10.2011

  • Основные источники поступления кадмия в природные среды и живые организмы. Гигиенические параметры использования элемента, его токсикологическая характеристика. Популяционные свойства, используемые для оценки состояния организмов под действием кадмия.

    курсовая работа [62,6 K], добавлен 12.11.2014

  • Выбросы ТЭЦ-2 и ТЭЦ-3. Характеристика загрязняющих веществ, их воздействие на организм человека. Воздействие ТЭЦ на гидросферу. Системы очистки, применяемые на тепловых электростанциях. Расчет выбросов оксида ванадия, углерода, азота, твердых частиц.

    курсовая работа [2,2 M], добавлен 02.02.2016

  • Потенциальная угроза радиационного загрязнения окружающей среды. Физические и биохимические механизмы влияния радиации на природу. Радиоактивные вещества и ионизирующее излучение. Пути попадания радионуклидов в организм человека, генетические последствия.

    реферат [16,8 K], добавлен 28.02.2009

  • Факторы окружающей среды, воздействующие на здоровье. Источники загрязнения воздуха и воды. Токсичность свинца выбрасываемого в воздух вместе с выхлопами от сгорания бензина. Качество воздуха внутри помещений. Радиоактивные отходы – проблемы России.

    презентация [1,2 M], добавлен 17.11.2014

  • Структура окружающей среды. Комплексное воздействие факторов среды на организм. Влияние природно-экологических и социально-экологических факторов на организм и жизнедеятельность человека. Процесс акселерации. Нарушение биоритмов. Аллергизация населения.

    реферат [20,2 K], добавлен 19.02.2009

  • Экологическое нормирование как учет допустимой нагрузки на экосистему. Сущность вредных веществ и их воздействие на окружающую среду. Принципы системы санитарно-гигиенического нормирования химических веществ, ее основные достоинства и недостатки.

    реферат [18,1 K], добавлен 13.02.2014

  • Краткая характеристика предприятия и организационные аспекты мониторинга. Воздействие вредных веществ, находящихся в воздухе рабочей зоны в сварочном цехе на организм человека. Методы, средства и приборы для их контроля, анализ соответствующих приборов.

    курсовая работа [117,9 K], добавлен 12.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.