Оценка качества окружающей среды методом дисперсионного анализа

Автотранспорт и его влияние на экологию. Характеристика веществ в выхлопных газах, их влияние на природную среду. Методы контроля и приборы для измерения концентрации газообразных примесей в атмосфере. Загрязнение воздуха отработавшими газами автомобилей.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 01.11.2018
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Информационно-технологический факультет

Кафедра управления качеством и стандартизации

КУРСОВАЯ РАБОТА

по дисциплине: Экология

Тема: «Оценка качества окружающей среды методом дисперсионного анализа»

Реферат

Одной из острых экологических проблем настоящего времени является загрязнение атмосферного воздуха. В больших городах к числу основных источников загрязнения атмосферного воздуха относится автотранспорт. Отходящие газы двигателей содержат сложную смесь из более двухсот компонентов, среди которых немало канцерогенов. Вредные вещества поступают в воздух практически в зоне дыхания человека. Поэтому автомобильный транспорт следует отнести к наиболее опасным источникам загрязнения.

В ходе моей работы было рассмотрено влияние автотранспорта на экологию города, теория понятия дисперсионного анализа, а также проведен однофакторный дисперсионный анализ влияния количества выброса СО на дорогу в зависимости от времени.

При подготовке курсовой работы использовалась научная и учебная литература по исследуемой проблеме, информация сети Интернет, данные авторских исследований.

В процессе подготовки (оформления) работы были использованы текстовой редактор Word, графический редактор Paint и программа для работы с электронными таблицами Excel.

экология автотранспорт атмосфера газ

Введение

Актуальность курсовой работы. Одной из острых экологических проблем настоящего времени является загрязнение атмосферного воздуха. В больших городах к числу основных источников загрязнения атмосферного воздуха относится автотранспорт. Отходящие газы двигателей содержат сложную смесь из более двухсот компонентов, среди которых немало канцерогенов. Вредные вещества поступают в воздух практически в зоне дыхания человека. Поэтому автомобильный транспорт следует отнести к наиболее опасным источникам загрязнения. В настоящее время мировой автомобильный парк превысил 600 млн. единиц, из которых 83-85% приходится на легковые автомобили. По прогнозам, к 2010 году он достигнет 1 млрд. единиц.

Мировой ежегодный выброс вредных веществ от автомобилей составляет 50 млн.т. углеводородов, 200 млн. т, оксида углерода и 20 млн.т. оксидов азота. Во многих городах мира концентрации вредных веществ в воздухе, создаваемые выбросами автотранспорта, превышают стандарты качества атмосферного воздуха.

Во многих городах России выбросы автотранспорта преобладают над выбросами от стационарных источников, и уровень загрязнения воздуха превышает нормативы предельно допустимых концентраций. В связи с этим проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир, почвы весьма актуальна.

Защита атмосферы от вредных воздействий, возникающих в результате эксплуатации автомобильного транспорта, является крайне актуальной, поскольку от качества атмосферного воздуха в наибольшей степени зависит не только здоровье человека, но и в целом качество жизни на планете.

Цель курсовой работы: оценить влияния автотранспорта на состояние окружающей среды.

Задачи исследования:

- оценить влияния автотранспорта на окружающую среду;

- использовать F-критерий для оценки разностей между несколькими математическими ожиданиями;

- использовать критерий Левене для проверки однородности дисперсии;

- использовать процедуру Тьюки-Крамера для попарного сравнения.

Объектом курсовой работы является приземный слой атмосферы, предметом - влияние выбросов от автотранспорта на состояние приземного слоя атмосферы.

1. Автотранспорт и его влияние на экологию города

1.1 Город и автомобиль

Автомобильный парк, являющийся одним из основных источников загрязнения окружающей среды, сосредоточен, в основном, в городах. Если в среднем в мире на 1 км2 территории приходится пять автомобилей, то плотность их в крупнейших городах развитых стран в 200 - 300 раз выше.

Во всех странах мира продолжается концентрация населения в крупных городских агломерациях. С развитием городов и ростом городских агломераций всё большую актуальность приобретает своевременное и качественное обслуживание населения, охрана окружающей среды от негативного воздействия городского, особенно автомобильного, транспорта. В настоящее время в мире насчитывается 520 млн. легковых, 80 млн. грузовых автомобилей и примерно 1 млн. городских автобусов.

Автомобили сжигают огромное количество ценных нефтепродуктов, нанося одновременно ощутимый вред окружающей среде, главным образом атмосфере. Поскольку основная масса автомобилей сконцентрирована в крупных и крупнейших городах, воздух этих городов не только обедняется кислородом, но и загрязняется вредными компонентами отработавших газов. Противоречия, из которых создан автомобиль, пожалуй, ни в чём не выявляются так резко, как в деле защиты природы. С одной стороны, он облегчил человеку жизнь, с другой - отравляет её в самом прямом смысле слова. Специалисты установили, что один легковой автомобиль ежегодно поглощает из атмосферы в среднем более 4 тонн кислорода, выбрасывая с отработавшими газами примерно 800 кг окиси углерода, около 40 кг окислов азота и почти 200 кг различных углеводородов. Если помножить эти цифры на 600 млн. единиц мирового парка автомобилей, можно представить себе степень угрозы, таящейся в чрезмерной автомобилизации.

Увеличение количества взвешенной в воздухе и осевшей на поверхности пыли объясняется повышенным износом асфальтового покрытия автомобильных дорог вследствие применения ошипованных шин.

Во многих крупных городах мира очень остро стоит проблема городского транспорта. Транспортные потоки растут вместе с ростом городов из-за стихийного, не подчинённого рациональному планированию размещения жилых и промышленных зон. Распространение пригородного образа жизни ведёт к увеличению числа частных автомобилей. Их потоки, затопляющие уличную сеть (отнюдь на них не рассчитанную), делают передвижение по городу в часы «пик» мучительно медленным.

Существует много технических и планировочных приёмов выравнивания транспортной нагрузки на магистральной сети города. Прежде всего, следует равномерно размещать основные зоны приложения труда и жилые районы, а также места отдыха и центры культурно-бытового обслуживания. Одновременно наиболее загруженные участки транспортной сети можно дублировать новыми линиями.

Магистральные улицы в городах составляют примерно 30-40% общей протяженности всех улиц и проездов. На них сосредотачивается до 60-80% всего автомобильного движения, то есть магистрали в среднем загружены примерно в 15-20 раз больше, чем остальные улицы и проезды.

Создание в городе сети магистралей скоростного движения позволяет существенно увеличить скорости общественного транспорта и легковых автомобилей, повысить её пропускную способность, сократить число дорожно-транспортных происшествий, изолировать жилые районы и общественные центры от концентрированных потоков транспортных средств. Но магистраль скоростного движения - дорогостоящее сооружение. Строительство её может быть эффективно только на направлениях, обеспечивающих мощные и устойчивые транспортные потоки с относительно большой в пределах города дальностью поездок, при которой ощутим выигрыш от увеличения скорости движения. Поэтому такие магистрали строят лишь в крупных городах с полицентрической структурой и растянутой территорией.

При строительстве и реконструкции городов проектировщики стремятся ограничить количество автомобилей, въезжающих в городские центры, разрабатывают новые системы регулирования уличного движения, сводящих к минимуму возможность образования транспортных пробок. Это очень важно, потому что, останавливаясь и, потом, снова набирая скорость, автомобиль выбрасывает в воздух в несколько раз больше вредных веществ, чем при равномерном движении. Эффективными профилактическими мероприятиями являются расширение улиц, создание между проезжей частью дорог и жилыми домами фильтров - стен и зелёных насаждений. [1, с. 95-97]

Для снижения вредного влияния автомобильного транспорта требуется вынос из городской черты грузовых транзитных потоков. Требование это зафиксировано в действующих строительных нормах и правилах, но практически соблюдается редко.

«Город без автомобиля» мыслится как сочетание широких транспортных магистралей, где предоставляется простор для автомобильного движения, с микрорайонами, куда въезд транспорта запрещён или предельно ограничен и где люди ходят только пешком.

Эффективным мероприятием по снижению вредного влияния автомобильного транспорта на горожан является организация пешеходных зон с полным запретом въезда транспортных средств на жилые улицы. Менее эффективное, но более реальное мероприятие - это введение системы пропусков, дающих право на въезд в пешеходную зону только специальным автомобилям, владельцы которых живут в конкретной зоне жилой застройки. При этом должен быть полностью исключён сквозной проезд автотранспорта через жилой квартал.

Развитие общественного транспорта в городах обуславливает необходимость поиска путей оптимального использования городских территорий, так как для перевозки одного пассажира в трамвае требуется 0,9 м2, автобусе - 1,1 м2, легковом автомобиле - свыше 20 м2 городской территории.

«Автомобиль не роскошь, а средство передвижения» - эти слова из известного произведения Ильфа и Петрова, звучавшие иронически, обрели в наше время реальный смысл. Более 10 млн. людей имеют автомобиль в личном пользовании. Взлёт использования личного автотранспорта произошёл в последние 15 лет.

1.2 Классификация автомобилей

Автомобильная промышленность в зависимости от назначения и приспособленности к дорожным условиям выпускает автомобили различных типов. По назначению автомобили делятся на пассажирские, грузовые и специальные. К пассажирским автомобилям, предназначенным для перевозки людей, относятся легковые автомобили и автобусы. Грузовые автомобили служат для перевозки различных грузов.

Пассажирские автомобили, вмещающие не более 8 человек, называют легковыми, а вмещающие более 8 человек - автобусами.

Легковые автомобили по рабочему объему двигателя и сухой массе разделен на следующие классы: особо малый (1.2 дм3; 850 кг); малый (1.2- 1.8 дм3; 850 - 1150 кг); средний (1.8 - 3.5 дм3; 1150 - 1500 кг); большой (свыше 3.5 дм3; до 1700 кг).

Автобусы, предназначенные для внутригородского и пригородного общественного транспорта, называют городскими, а автобусы, предназначенные для междугородних перевозок - междугородными. Число мест в автобусах в зависимости от назначения составляет 10-80.

По длине автобусы разделены на следующие классы: особо малый до 5 м; малый 6 - 7.5 м; средний 8 - 9.5 м; большой 10.5 - 12 м.

Грузовые автомобили делят по грузоподъемности, т. е. по массе груза (т), который можно перевести в кузове. По грузоподъемности они делятся на классы: особо малый 0.3 - 1 т; малый 1-3 т; средний 3-5 т; большой 5 - 8 т; особо большой 8 т и более. [1, с. 135-139]

Автомобили специального назначения выполняют не транспортные работы. К ним относятся коммунальные автомобили для очистки и поливки улиц, пожарные, автокраны и т.д.

По приспособленности к дорожным условиям различают автомобили нормальной и повышенной проходимости. Первые имеют один, а вторые два или три ведущих моста, что позволяет им преодолевать бездорожье или плохие участки дороги.

По типу двигателя автомобили делят на имеющие карбюраторные двигатели, газовые, дизели, электродвигатели.

1.3 Основные виды топлива, используемые в автотранспорте

Автомобильные двигатели работают на бензине. По ГОСТу 20.84 - 77 выпускаются бензины следующих марок: А - 76, АИ - 92, АИ - 95, АИ - 98. Буква А означает, что бензин автомобильный, цифра - наименьшее октановое число, определенное по моторному методу; наличие буквы И указывает на то, что октановое число определено по исследовательскому методу. Автомобильные бензины, за исключением бензина АИ-98, разделены на летние и зимние. Зимние бензины содержат увеличенное количество легкоиспаряющихся фракций, что улучшает условие пуска двигателя.

В автомобильные бензины А - 76, АИ - 92, АИ - 98 добавляют антидетонатор - тетраэтилсвинец (ТЭС) для повышения их антидетонационной стойкости. Для отличия обыкновенного бензина от этилированных, последние окрашивают в зеленый (А - 76), синий (АИ - 92) и желтый (АИ-98) цвета.

Этилированные бензины очень ядовиты и, попав в жидком виде и в виде паров на кожу или в дыхательные пути человека, могут вызвать тяжелые заболевания.

Дизельное топливо.

Топливо, применяемое для автомобильных дизельных двигателей, представляет собой тяжелые нефтяные фракции. Оно должно обеспечивать мягкую и плавную работу двигателей, отвечать условиям надежной подачи его в цилиндры топливоподающей аппаратурой, не оставлять значительного нагара, быть свободным от механических примесей и воды, содержать наименьшее количество органических кислот и серы. Дизельное топливо должно иметь определенную вязкость и возможно более низкую температуру застывания и воспламенения.

В настоящее время по ГОСТу 305 - 73, ГОСТ 1667-68 выпускаются сорта дизельного топлива: Л - летнее, З - зимнее, А - арктическое. Каждое из названных топлив делится на две подгруппы: первая с содержанием серы не более 0.2 % и вторая содержание не превышает 0.5%.

Летнее дизельное топливо ДЛ можно применять только при температуре окружающего воздуха выше 0°С. Когда температура опускается до минус 20 С, следует применять зимнее топливо З, а при морозах, достигающих -30°С топливо ДЗ, при более низких температурах применяют арктическое топливо. Однако применять арктическое топливо при температуре выше минус -30°С нельзя.

Современные дизельные автомобили рассчитаны на ДТ, отвечающему европейским нормам Евро 4. В Украине эти нормы зафиксированы в новом ДСТУ 4840:2007, параллельно с которым действует старый ДСТУ 3868-99. Самое главное различие между ними - содержание серы в топливе. Если для обычного дизтоплива допускается до 2000 мг/кг, то в EURO 4 - не более 50 мг/кг. Высокое содержание серы в топливе -- это не только колоссальный удар по экологии, но и по двигателю. Из-за серы увеличивается износ деталей двигателя, сокращается срок службы масла, ускоряется выход из строя деталей, ответственных за выброс вредных веществ (лямбда-зонды, нейтрализаторы).

Топливо для газобаллонных автомобилей.

Горючие газы, используемые в газобаллонных автомобилях, могут быть естественными и искусственными. Естественные газы добывают из подземных газовых или нефтяных скважин. Искусственные газы являются побочными продуктами, получаемыми на химических или металлургических заводах.

Установлены следующие марки газов: СПБТЗ - смесь пропана и бутана техническое зимнее; СПБТЛ - смесь пропана и бутана техническое летнее; БТ - бутан технический.

Сжиженный пропан - бутановый газ согласно стандарту должен содержать пропана зимой не менее 90%, а летом не менее 70%. Газ не должен содержать механических примесей, воды, водорасстворимых кислот, щелочей и других загрязняющих веществ.

Сжатыми называют газы, которые при обычной температуре окружающей среды и высоком давлении до 20 тыс. кН/м2 сохраняют газообразное состояние.

Сжиженными газами называют такие, которые переходят из газообразного состояния в жидкое при нормальной температуре и небольшом давлении до 1600 кН/м2.

Для газобаллонных автомобилей использование сжиженных газов предпочтительнее, чем сжатых. [2, с.40-45]

1.4 Причины дымления автомобилей

Причины дымления автомобилей различны: неисправность двигателя, не отлаженность системы питания или зажигания. Если все автомобильные двигатели будут правильно отрегулированы, то выброс вредных веществ в атмосферу уменьшится в 3-5 раз. Нарушение технологической дисциплины, нежелание лишний час покопаться в двигатели приводят к тому, что автомобиль неделями, а то и месяцами развозят по улицам ядовитый газ. Плохо накачанные шины не только быстрее изнашиваются, но и увеличивают сопротивление движению, а значит, больше сжигается горючего.

Неумелое поведения водителя за рулём (неправильный выбор скоростей движения, резкие разгоны и торможения, превышение установленной скорости), а также самостоятельная регулировка (увеличение частоты вращения на холостом ходу) и нарушение инструкций по эксплуатации автомобиля, нередко приводит к увеличению загрязнения окружающей среды. Поэтому разъяснительная работа среды водителей автомобилей в этом направлении очень важна. Концентрация веществ в зависимости от режима работы карбюраторного двигателя представлены в таблице 1.

Таблица 1. Концентрация веществ в зависимости от режима работы карбюраторного двигателя.

Режим работы двигателя

Оксид углерода, % объёму

Углеводороды, мг/л

Оксиды азота мг/л

Холостой ход

4-12

2-6

--

Принудительный холостой ход

2-4

8-12

--

Средние нагрузки

0-1

0,8-1,5

2,5-4,0

Полные нагрузки

2

0,7-0,8

4-8

1.5 Краткая характеристика некоторых веществ в выхлопных газах и их влияние на природную среду и человека

Оксид углерода СО (угарный газ).

Образуется в результате неполного сгорания углерода в моторном топливе. Ядовитый газ без цвета и запаха. При вдыхании связывается с гемоглобином крови, вытесняя из нее кислород, в результате чего наступает кислородное голодание, сказывающееся прежде всего на центральной нервной системе. Высокая концентрация оксида углерода (ПДК по оксиду углерода составляет 1 мг/м3) даже при кратковременном воздействии может привести к смерти: небольшие дозы вызывают головокружение, головную боль, чувство усталости и замедление реакции у водителя. Повышение концентрации оксида углерода часто возникает в туннелях (до 70 ПДК), в потоке транспортных средств при интенсивном движении (до 60 ПДК), в гаражах. Известны случаи трагической гибели людей, запускающих двигатели автомобилей при закрытых воротах гаража. В одноместном гараже смертельная концентрация СО возникает уже через 2-3 мин после включения стартера. В холодное время года, остановившись для ночлега, водители иногда включают двигатель для обогрева салона. Из-за проникновения оксида углерода в кабину такой ночлег может оказаться последним.

Диоксид углерода СО2 (углекислый газ) обладает наркотическим действием, раздражающе действует на кожу и слизистые оболочки. Выброс СО2 автомобилями вносит свой вклад в усиление парникового эффекта и кислотные осадки, вызывающие разрушение строительных материалов, закисление водоемов и другие нежелательные для биосферы последствия.

Сернистый газ SO2. С парами воды в атмосфере образует аэрозоли сернистой кислоты или в результате фотохимического окисления превращается в серный ангидрид. В обоих случаях в конечном итоге образуются аэрозоли серной кислоты - один из главных компонентов кислотных осадков. Длительное вдыхание повышенных концентраций действует на организм общетоксично, вызывая нарушения деятельности нервной системы.

Воздействие SO2 на почву снижает ее плодородность, т.к. при этом происходит закисление.

Альдегиды (в частности формальдегид НСНО) относятся к отравляющим веществам, раздражающе действующим на глаза, дыхательные пути, поражающим центральную нервную систему, почки и печень.

Канцерогенные вещества (в частности, бензпирен) чрезвычайно опасны для человека даже при их малой концентрации, поскольку обладают свойством аккумулироваться в организме до критических концентраций.

Сажа. Окрашенность дыма отработанных газов двигателя автомобиля зависит от содержания частиц сажи - чем больше сажи, тем чернее дым. Как любая мелкая пыль, сажа действует на органы дыхания, но главная опасность заключается в том, что на поверхности частиц сажи адсорбируются канцерогенные вещества.

Свинцовые соединения - яды, поражающие органы и ткани организма, нервную систему, желудочно-кишечный тракт, а также нарушающие обменные процессы. Во многих городах Украины концентрация свинца в воздухе превышает принятые в стране нормы. Опасность отравления соединениями свинца усугубляется тем, что они, как и канцерогенные вещества, не удаляются из организма, а задерживаются в нем до опасных концентраций. Вблизи автомагистралей свинец накапливается в почве и растениях.

Техногенные свинцовые аномалии отмечаются на расстоянии до 100 м от автомобильных магистралей, при этом свинец не нейтрализуется в почвах из-за его слабой способности к миграции. Установлено, что многие распространенные культурные растения (пшеница, ячмень, картофель, морковь) могут содержать повышенные концентрации свинца, превышая ПДК в 5-10 раз. Следуя по звеньям трофических цепей, свинец попадает в организм человека, вызывая его заболевания.

Оксиды азота образуются при сгорании любых видов топлива - природного газа, угля, бензина или мазута. Приблизительно 90% годового выброса в атмосферу оксидов азота - результат сжигания ископаемого топлива, половина этого количества выбросов приходится на автотранспорт.

Наибольшую опасность представляет диоксид азота, который в присутствии водяных паров образует азотистую и азотную кислоты. Поступая в верхние слои атмосферы, диоксид азота приводит к образованию кислотосодержащих облаков и кислотных осадков. Диоксид азота вызывает сильное раздражение слизистых оболочек, а при вдыхании в организме образуются азотная и азотистая кислоты, разъедающие альвеолы легких. При критической его концентрации, например в закрытых помещениях (гаражах), возникает отек легких, который приводит к смерти. [2, с. 56-63]

Углеводороды - несгоревшие химические составляющие топлива, они токсичны. Выбросы этих веществ на перекрестках и у светофоров в несколько раз больше, чем при движении по магистрали.

Твердые частицы проникают в дыхательные пути, человека вызывает их различные заболевания. Из неорганической пыли наиболее отрицательное воздействие оказывает пыль, содержащая большое количество диоксида кремния, которое может вызвать - силикоз. Попадая в глаза, вызывает глазной травматизм и др. заболевания. Раздражает кожные покровы, подкожные нервы, засоряет кожные железы и бывает причиной гнойничковых заболеваний. Оседая на зеленой части растений, неорганическая пыль и особенно сажа ухудшают условия дыхания, замедляет рост и развитие растений. Все виды пыли засоряют водоемы, а, кроме того, сажа образует на поверхности пленку, препятствующую воздухообмену.

Сероводород - разрушающий и удушливый газ, вызывает поражение нервной системы, дыхательных путей и глаз. Может вызвать острое и хроническое отравление с разного рода последствиями.

Фотохимический смог. Этот вид загрязнения приземного слоя воздуха в виде внезапно образующейся мглы желто - зеленого цвета впервые проявил себя в начале 1950-х годов в Лос-Анджелесе, где 4 млн. автомобилей приходится на 10 млн. жителей. Под действием интенсивной солнечной радиации происходит диссоциация молекул кислорода, образуется озон. Озон и выбросы автомобилей, которых очень много, надолго оказываются вместе на небольшой высоте. При фотохимическом смоге у людей воспаляются глаза, слизистые оболочки носа и горла, отмечаются симптомы удушья, обостряются легочные и нервные заболевания, бронхиальная астма. Повреждаются и растения - нижние поверхности листьев приобретают бронзовый оттенок, верхние становятся пятнистыми, после чего наступает быстрое увядание. Смог вызывает коррозию металлов, разрушает краски. Резиновые и синтетические изделия, портит одежду. Фотохимический смог нередко образуется во многих переполненных автотранспортом городах.

Воздействие атмосферных загрязнений на здоровье можно подразделить на два вида в зависимости от времени проявления эффекта: острое, сказывающееся в период или непосредственно вслед за повышением концентрации токсичного вещества, и хроническое воздействие, результат которого проявляется не сразу, а через некоторое время, иногда через годы. Как в первом, так и во втором случаях атмосферные загрязнения могут быть непосредственной причиной развития заболевания или оказывать не специфическое отягощающее воздействие.

Проникновение различных вредных веществ повышенной концентрации через органы дыхания в наши дни привело к существенному изменению состояния организма. Развилось патологическая повышенная чувствительность организма. Ощутимыми темпами происходит накопление наследственных пороков. Широкое распространение получили хронический бронхит, а также прежде формы легочной патологии, такие как аллергические воспаления альвеол. Увеличилось число больных бронхиальной астмой, относящейся к наиболее тяжелым проявлениям аллергии. Особую тревогу вызывает увеличение количества больных раком легкого, который по своей распространительности у мужчин вышел на первое место среди онкологических заболеваний. Потому как остро стоит проблема защиты воздушной среды от всех видов загрязнений. [3, с.120-124]

Таблица 2. Состав отработанных газов, % по объёму (Экологические проблемы автомобильного топлива, 2016)

Компонент

Двигатель

Примечание

Карбюраторный

Дизельный

Азот

74-77

76-78

Нетоксичен

Кислород

0,3-8

2-18

Нетоксичен

Пар воды

3-5,5

0,5-4

Нетоксичен

Диоксид углерода

5-12

1-10

Нетоксичен

Оксид углерода

1-10

0.01-5

Токсичен

Углеводороды неканцерогенные

0,2-3

0.009-0.5

Токсичен

Альдегиды

0-0,2

0.001-0.009

Токсичен

Оксид серы

0-0,002

0-0,03

Токсичен

Сажа, г/м3

0-0,04

0,01-1,1

Токсичен

Бенопирен

0,01-0,02

До 0,01

Токсичен

Как видно из данной таблицы, состав отработавших газов наиболее распространенных типов двигателей существенно различается по концентрации продуктов неполного сгорания. Основными токсическими компонентами отработавших газов бензиновых двигателей являются: оксид углерода, оксиды азота, альдегиды, соединения свинца, а дизельных - оксиды азота и сажа. [4, с.105-119]

1.6 Шумовое воздействие автотранспорта на организм человека

Один из основных источников шума в городе - это автомобильный транспорт, интенсивность движения которого постоянно растёт. Наибольшие уровни шума 90-95 дБ отмечаются на магистральных улицах городов со средней интенсивностью движения 2-3 тыс. и более транспортных единиц в час.

Уровень уличных шумов обуславливается интенсивностью, скоростью и характером (составом) транспортного потока. Кроме того, он зависит от планировочных решений (продольный и поперечный профиль улиц, высота и плотность застройки) и таких элементов благоустройства, как покрытие проезжей части и наличие зелёных насаждений. Каждый из этих факторов способен изменить уровень транспортного шума в пределах до 10 дБ.

В промышленном городе обычно высок процент грузового транспорта на магистралях. Увеличение в общем потоке автотранспорта грузовых автомобилей, особенно большегрузных с дизельными двигателями, приводит к повышению уровней шума. В целом грузовые и легковые автомобили создают на территории городов тяжёлый шумовой режим.

Шум, возникающий на проезжей части магистрали, распространяется не только на примагистральную территорию, но и вглубь жилой застройки. Так, в зоне наиболее сильного воздействия шума находятся части кварталов и микрорайонов, расположенных вдоль магистралей общегородского значения (эквивалентные уровни шума от 67,4 до 76,8 дБ). Уровни шума, замеренные в жилых комнатах при открытых окнах, ориентированных на указанные магистрали, всего на 10-15 дБ ниже.

Акустическая характеристика транспортного потока определяется показателями шумности автомобиля. Шум, производимый отдельными транспортными экипажами, зависит от многих факторов: мощности и режима работы двигателя, технического состояния экипажа, качества дорожного покрытия, скорости движения. Кроме того, уровень шума, как и экономичность эксплуатации автомобиля, зависит от квалификации водителя. Шум от двигателя резко возрастает в момент его запуска и прогревания (до 10 дБ). Движение автомобиля на первой скорости (до 40 км/ч) вызывает излишний расход топлива, при этом шум двигателя в 2 раза превышает шум, создаваемый им на второй скорости. Значительный шум вызывает резкое торможение автомобиля при движении на большой скорости. Шум заметно снижается, если скорость движения гасится за счёт торможения двигателем до момента включения ножного тормоза.

За последнее время средний уровень шума, производимый транспортом, увеличился на 12-14 дБ. Вот почему проблема борьбы с шумом в городе приобретает всё большую остроту.

Влияние шума на организм человека.

В условиях сильного городского шума происходит постоянное напряжение слухового анализатора. Это вызывает увеличение порога слышимости (10 дБ для большинства людей с нормальным слухом) на 10-25 дБ. Шум затрудняет разборчивость речи, особенно при его уровне более 70 дБ.

Ущерб, который причиняет слуху сильный шум, зависит от спектра звуковых колебаний и характера их изменения. Опасность возможной потери слуха из-за шума в значительной степени зависит от индивидуальных особенностей человека. Некоторые теряют слух даже после короткого воздействия шума сравнительно умеренной интенсивности, другие могут работать при сильном шуме почти всю жизнь без сколько-нибудь заметной утраты слуха. Постоянное воздействие сильного шума может не только отрицательно повлиять на слух, но и вызвать другие вредные последствия - звон в ушах, головокружение, головную боль, повышенную усталость.

Шум в больших городах сокращает продолжительность жизни человека. По данным австрийских исследователей, это сокращение колеблется в пределах 8-12 лет. Чрезмерный шум может стать причиной нервного истощения, психической угнетённости, вегетативного невроза, язвенной болезни, расстройства эндокринной и сердечнососудистой систем. Шум мешает людям работать и отдыхать, снижает производительность труда.

Наиболее чувствительны к действию шума лица старших возрастов. Так, в возрасте до 27 лет на шум реагируют 46% людей, в возрасте 28-37 лет - 57%, в возрасте 38-57 лет - 62%, а в возрасте 58 лет и старше - 72%. Большое число жалоб на шум у пожилых людей, очевидно, связано с возрастными особенностями и состоянием центральной нервной системы этой группы населения.

Наблюдается зависимость между числом жалоб и характером выполняемой работы. Данные опроса показывают, что беспокоящее действие шума отражается больше на людях, занятых умственным трудом, по сравнению с людьми, выполняющими физическую работу (соответственно 60% и 55%). Более частые жалобы лиц умственного труда, по-видимому, связаны с большим утомлением нервной системы. [4, с.45-61]

Массовые физиолого-гигиенические обследования населения, подвергающегося воздействию транспортного шума в условиях проживания и трудовой деятельности, выявили определённые изменения в состоянии здоровья людей. При этом изменения функционального состояния центральной нервной и сердечнососудистой систем, слуховой чувствительности зависели от уровня воздействующей звуковой энергии, от пола и возраста обследованных. Наиболее выраженные изменения выявлены у лиц, испытывающих шумовое воздействие в условиях, как труда, так и быта, по сравнению с лицами, проживающими и работающими в условиях отсутствия шума.

Высокие уровни шума в городской среде, являющиеся одним из агрессивных раздражителей центральной нервной системы, способны вызвать её перенапряжение. Городской шум оказывает неблагоприятное влияние и на сердечнососудистую систему. Ишемическая болезнь сердца, гипертоническая болезнь, повышенное содержание холестерина в крови встречаются чаще у лиц, проживающих в шумных районах.

Шум в значительной мере нарушает сон. Крайне неблагоприятно действуют прерывистые, внезапно возникающие шумы, особенно в вечерние и ночные часы, на только что заснувшего человека. Внезапно возникающий во время сна шум (например, грохот грузовика) нередко вызывает сильный испуг, особенно у больных людей и у детей. Шум уменьшает продолжительность и глубину сна. Под влиянием шума уровнем 50 дБ срок засыпания увеличивается на час и более, сон становится поверхностным, после пробуждения люди чувствуют усталость, головную боль, а нередко и сердцебиение.

Отсутствие нормального отдыха после трудового дня приводит к тому, что естественно развивающееся в процессе работы утомление не исчезает, а постепенно переходит в хроническое переутомление, которое способствует развитию ряда заболеваний, таких как расстройство центральной нервной системы, гипертоническая болезнь.

1.7 Методы контроля и приборы для измерения концентрации газообразных примесей в атмосфере

Независимо от используемого метода анализа контроль концентрации вредных примесей сводится к следующим операциям:

- отбор проб воздуха,

- подготовка пробы к анализу,

- анализ и обработка результатов.

Одним из основных элементов анализа качества атмосферного воздуха является отбор проб. Если отбор проб выполнен неправильно, то результаты самого тщательного анализа теряют всякий смысл. Отбор проб атмосферного воздуха осуществляется через поглотительный прибор аспирационным способом путем пропускания воздуха с определенной скоростью или заполнения сосудов ограниченной емкости. Для исследования газообразных примесей пригодны оба метода, а для исследования примесей в виде аэрозолей (пыли) - только первый.

В результате пропускания воздуха через поглотительный прибор осуществляется концентрирование анализируемого вещества в поглотительной среде. Для достоверного определения концентрации вещества расход воздуха должен составлять десятки и сотни литров в минуту. Пробы подразделяются на разовые (период отбора 20 - 30 мин) и средние суточные (определяются путем осреднения не менее четырех разовых проб атмосферного воздуха, отобранных через равные промежутки времени в течение суток). Обычно для получения средних суточных значений концентрации загрязняющих веществ в атмосферном воздухе пробы воздуха отбирают в 7, 13, 19 и 01 ч по местному декретному времени. Средняя суточная концентрация может быть получена и при более частых отборах проб воздуха в течение суток, но обязательно через равные промежутки времени. Наилучшим способом получения средних суточных значений является непрерывный отбор проб воздуха в течение 24 ч.

Для отбора проб воздуха используются электроаспираторы, пылесосы и другие приборы и устройства, пропускающие воздух, а также устройства, регистрирующие объем пропускаемого воздуха (реометры, ротаметры и другие расходомеры).

Самым простым и распространенным способом накопления газовой пробы является протягивание воздуха воздуходувными устройствами (аспиратор, насос) с определенной скоростью, регистрируемой расходомерным устройством (реометр, ротаметр, газовые часы), через накопительные элементы, обладающие необходимой поглотительной способностью.

Метод фильтрации позволяет выделить частицы размером свыше 0,1 мкм. Этот метод основан на пропускании через фильтр определенного объема исследуемого воздуха при помощи аспирационного устройства.

Отбор проб воздуха при анализе газообразных примесей осуществляется за счет протягивания воздуха через специальные твердые или жидкие поглотители, в которых газовая примесь конденсируется либо адсорбируется.

Контроль концентрации газообразных примесей атмосферного воздуха производится с помощью газоанализаторов, позволяющих осуществлять мгновенный и непрерывный контроль содержания в нем вредных примесей. Для экспрессного определения токсичных веществ используют универсальные газоанализаторы упрощенного типа (УГ 2, УХ 2), основанные на линейно-колористическом методе анализа. При просасывании воздуха через индикаторные трубки, заполненные твердым веществом - поглотителем, происходит изменение окраски индикаторного порошка. Длина окрашенного слоя пропорциональна концентрации исследуемого вещества, измеряемой по шкале в мг/л.

Универсальный газовый анализатор УГ-2 позволяет определить концентрацию 16 различных газов и паров. Погрешность измерения не превышает + 10% и - 10% от верхнего предела.

Выбор метода анализа загрязненного воздуха определяется природой примесей, а также ожидаемой концентрацией и целью анализа. [5, с.21-26]

1.8 Загрязнение воздуха отработавшими газами автомобилей

Первым виновником порчи атмосферного воздуха является детище научно-технического прогресса - автомобиль. Поглощая столь необходимый для жизни кислород, он интенсивно “обогащает” воздушную среду токсичными компонентами, наносящими вред всему живому и неживому.

Воздействие автотранспорта и обеспечивающей его инфраструктуры на природную среду сопровождается не только потреблением невозобновляемых природных ресурсов и связанных с этим загрязнением природной среды, но и негативными изменениями биосферы, и, прежде всего воздушного бассейна, обусловленными непосредственно работой современных карбюраторных и дизельных двигателей.

В основе процессов, приводящих автомобиль в движение, лежит горение топлива, невозможное без кислорода воздуха. В среднем современный автомобиль для сгорания 1 кг бензина (примерно 10- километровый пробег машины) использует около 2500 л кислорода - это больше объема, вдыхаемого человеком в течение суток. Если учесть, что средний годовой пробег автомобиля составляет 10 000 км, то им из атмосферы поглощается ежегодно 2,5 млн. л, или около 4 т кислорода.

Основная причина загрязнения воздуха заключается в неполном и неравномерном сгорании топлива. Всего 15% его расходуется на движение автомобиля, а 85% «летит на ветер». К тому же камеры сгорания автомобильного двигателя - это своеобразный химический реактор, синтезирующий ядовитые вещества и выбрасывающий их в атмосферу.

Двигаясь со скоростью 80-90 км/ч в среднем автомобиль, превращает в углекислоту столько же кислорода, сколько 300-350 человек. Но дело не только в углекислоте. Годовой выхлоп одного автомобиля - это 800 кг окиси углерода, 40 кг окислов азота и более 200 кг различных углеводородов. В этом наборе весьма коварна окись углерода. Из-за высокой токсичности её допустимая концентрация в атмосферном воздухе не должна превышать 1 мг/м3. Уровень загазованности магистралей и примагистральных территорий зависит от интенсивности движения автомобилей, ширины и рельефа улицы, скорости ветра, доли грузового транспорта и автобусов в общем потоке и других факторов. При интенсивности движения 500 транспортных единиц в час концентрация окиси углерода на открытой территории на расстоянии 30-40 м от автомагистрали снижается в 3 раза и достигает нормы. Затруднено рассеивание выбросов автомобилей на тесных улицах. В итоге практически все жители города испытывают на себе вредное влияние загрязнённого воздуха. Как показали многочисленные эксперименты, концентрация токсичных газов, которые проникают в прилегающие к автодорогам здания, в 2--3 раза меньше в сравнении с их концентрацией снаружи. На скорость распространения загрязнения и концентрацию его в отдельных зонах города значительно влияют температурные инверсии. Инверсионный слой выполняет роль экрана, от которого на землю отражается факел вредных веществ, в результате чего их приземные концентрации возрастают в несколько раз.

Из соединений металлов, входящих в состав твёрдых выбросов автомобилей, наиболее изученными являются соединения свинца. Это обусловлено тем, что соединения свинца, поступая в организм человека и теплокровных животных с водой, воздухом и пищей, оказывают на него наиболее вредное действие. До 50% дневного поступления свинца в организм приходится на воздух, в котором значительную долю составляют отработавшие газы автомобилей.

Поступления углеводородов в атмосферный воздух происходит не только при работе автомобилей, но и при разливе бензина.

Количество вредных веществ, поступающих в атмосферу, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и особенно от двигателя - источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы СО увеличиваются в 4 - 5 раз. [7, с. 223-236]

Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70% свинца, добавленного к бензину с этиловой жидкостью, попадает в атмосферу с отработавшими газами, из них 30% оседает на земле сразу, а 40% остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5 - 3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания свинца в бензине:

- содержание свинца в бензине, г/л…………0,15 0,20 0,25 0,50

- концентрация свинца в воздухе, мкг/м3…..0,40 0,50 0,55 1,00

Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина на неэтилированный, что давно практикуется в крупных городах ряда стран Западной Европы.

Мировым парком автомобилей с ДВС ежегодно выбрасывается, млн. т:

- оксида углерода - 260

- летучих углеводородов - 40

- оксидов азота - 20.

Токсичные вещества, содержащиеся в отработанных газах автомобильных двигателей, могут сохраняться в атмосфере в течение длительного времени и переноситься на значительные расстояния. Первичные загрязнители в атмосфере при соответствующих условиях могут взаимодействовать друг с другом, образуя новые токсичные вещества: сульфаты, нитраты, кислоты, фотооксиданты и др. Атмосферный воздух следует рассматривать как вторичный реактор до образования вредных веществ, токсичность которых в некоторых случаях значительно превышает токсичность первичных компонентов.

Для предупреждения загрязнения воздушного бассейна в нашей стране в законодательном порядке установлены предельно допустимые концентрации (ПДК) вредных веществ в атмосфере. Для каждого вещества, загрязняющего атмосферный воздух, установлены разовые и среднесуточные ПДК. Разовая ПДК устанавливается при кратковременном воздействии (до 20 мин) загрязнения, а среднесуточная -- при постоянном, ПДК устанавливается на основе высокочувствительных методов анализа, позволяющих определить физиологические пределы приспособления организма; коэффициент запаса при этом изменяется от 2 до 100 в зависимости от токсичности конкретного элемента.

Следует заметить, что ПДК разработаны только применительно к организму человека, хотя от загрязнения атмосферы страдает все живое.

2. Теоретические основы и принципиальная схема дисперсионного анализа

Дисперсионный анализ.

Дисперсионный анализ - анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA - «Analisis of Variance»).

Результативный признак называют также зависимым признаком, а влияющие факторы - независимыми признаками.

Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые - только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

Формулировка гипотез в дисперсионном анализе.

Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

- от количества рассматриваемых независимых факторов;

- от количества результативных переменных, подверженных действию факторов;

- от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

- Анализ несвязанных (то есть - различных) выборок. Например, одна группа респондентов решает задачу в условиях тишины, вторая - в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

- Анализ связанных выборок, то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй - сходная задача - в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе. Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

- вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

- вариативность, обусловленную взаимодействием исследуемых независимых переменных.

- вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F - критерий Фишера.

; (1)

; (2)

; (3)

Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия F.

В формулу расчета критерия F входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из k групп.

Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) - подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы - это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нелинейных зависимостей и более разумным представляется использование более простых). [8, с.68-72]

Непараметрическим вариантом этого вида анализа является критерий Н. Крускала-Уоллиса.

Гипотезы:

H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

Ограничения метода однофакторного дисперсионного анализа:

1. Однофакторный дисперсионный анализ требует не менее трех градаций фактора и не менее двух испытуемых в каждой градации.

2. Результативный признак должен быть нормально распределен в исследуемой выборке.

Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

F-критерий Фишера.

Дисперсионный анализ, использующий полностью рандомизированные планы, называется однофакторной процедурой ANOVA. В некотором смысле термин дисперсионный анализ является неточным, поскольку при этом анализе сравниваются разности между математическими ожиданиями групп, а не между дисперсиями. Однако сравнение математических ожиданий осуществляется именно на основе анализа вариации данных. В процедуре ANOVA полная вариация результатов измерений подразделяется на межгрупповую и внутригрупповую (рис. 1). Внутригрупповая вариация объясняется ошибкой эксперимента, а межгрупповая -- эффектами условий эксперимента. Символ с обозначает количество групп.

Рис. 1. Разделение вариации в полностью рандомизированном эксперименте

Скачать заметку в формате Word или pdf, примеры в формате Excel 2013

Предположим, что с групп извлечено из независимых генеральных совокупностей, имеющих нормальное распределение и одинаковую дисперсию. Нулевая гипотеза заключается в том, что математические ожидания генеральных совокупностей одинаковы: Н0: м1 = м2 = … = мс. Альтернативная гипотеза гласит, что не все математические ожидания одинаковы: Н1: не все мj одинаковы j = 1, 2, …, с).

На рис. 2 представлена истинная нулевая гипотеза о математических ожиданиях пяти сравниваемых групп при условии, что генеральные совокупности имеют нормальное распределение и одинаковую дисперсию. Пять генеральных совокупностей, связанных с разными уровнями фактора, идентичны. Следовательно, они накладываются одна на другую, имея одинаковые математическое ожидание, вариацию и форму.

Рис. 2. Пять генеральных совокупностей имеют одинаковое математическое ожидание: м1 = м2 = м3 = м4 = м5

С другой стороны, предположим, что на самом деле нулевая гипотеза является ложной, причем четвертый уровень имеет наибольшее математическое ожидание, первый уровень -- чуть меньшее математическое ожидание, а остальные уровни -- одинаковые и еще меньшие математические ожидания (рис. 3). Обратите внимание на то, что за исключением величины математических ожиданий все пять генеральных совокупностей идентичны (т.е. имеют одинаковую изменчивость и форму).

...

Подобные документы

  • Влияние транспорта на окружающую среду. Устройство поршневых двигателей внутреннего сгорания, принцип их работы. Причины загрязнения воздуха отработавшими газами автомобилей. Альтернативные виды топлива. Защита окружающей среды, меры предосторожности.

    реферат [27,1 K], добавлен 11.12.2012

  • Проблема загрязнения воздушной среды газами и топливными испарениями автомобилей, их негативное влияние на здоровье человека. Состав выхлопных газов, распространение автомобильных выбросов в атмосфере. Мероприятия по борьбе с шумом и загрязнением почвы.

    реферат [30,6 K], добавлен 30.03.2013

  • Влияние автотранспорта на окружающую среду: локальные, региональные и глобальные экологические проблемы. Акустическое загрязнение и его влияние на здоровье. Загрязнение воздуха, контроль его чистоты. Экономическая оценка загрязнения окружающей среды.

    курсовая работа [34,8 K], добавлен 25.06.2009

  • Показатели, характеризующие уровень антропогенного воздействия на окружающую природную среду. Критерии качества окружающей среды. Требования к питьевой воде. Предельно допустимые концентрации химических веществ в почве. Индексы загрязнения атмосферы.

    презентация [29,4 K], добавлен 12.08.2015

  • Состояние деятельности автомобильного транспорта и его влияние на окружающую среду. Химический состав отработавших газов автотранспорта. Метод измерения концентрации атмосферного загрязнения вредных примесей. Экологическая оценка уровня загрязнения.

    дипломная работа [66,8 K], добавлен 02.07.2015

  • Проблемы экологической безопасности автомобильного транспорта. Физическое и механическое воздействие автотранспорта на окружающую среду. Влияние выхлопных газов на здоровье человека. Мероприятия по борьбе с загрязнением атмосферы выхлопными газами.

    презентация [1,0 M], добавлен 21.12.2015

  • Нормативы выбросов вредных веществ с отработавшими газами автомобилей. Методы анализа ингредиентов выхлопных газов. Организационно-административные методы обеспечения экологической безопасности. Телекоммуникационная система сбора экологической информации.

    реферат [701,7 K], добавлен 05.08.2013

  • Отрицательное влияние тепловых двигателей, выбросы вредных веществ в атмосферу, производство автомобилей. Авиация и ракетоносители, применение газотурбинных двигательных установок. Загрязнение окружающей среды судами. Способы очистки газовых выбросов.

    реферат [16,9 K], добавлен 30.11.2010

  • Анализ влияния загрязняющих веществ при производстве кормовых дрожжей на окружающую природную среду. Расчет годовых выбросов вредных примесей; определение границ санитарно-защитной зоны для предприятия. Методы очистки сточных вод и газообразных выбросов.

    курсовая работа [906,2 K], добавлен 25.08.2012

  • Влияние загрязненного токсичными веществами воздуха на экологическую ситуацию. Оценка материального ущерба от загрязнения атмосферы. Уменьшение токсичности автомобильных двигателей внутреннего сгорания. Концентрация вредных веществ в выхлопных газах.

    реферат [8,5 M], добавлен 15.11.2010

  • Химическое воздействие автотранспорта на окружающую среду, загрязнение атмосферы, гидросферы, литосферы. Физическое и механическое воздействие автотранспорта на окружающую среду, методы их предотвращения. Причины отставания России в сфере экологии.

    реферат [32,9 K], добавлен 10.09.2013

  • Разрушающее влияние человека на окружающую среду, причины загрязнение воздуха, водных ресурсов и их последствия. Зоны экологического бедствия в Казахстане. Система мониторинга контроля качества окружающей среды. Охрана природы и Красная книга Казахстана.

    реферат [150,3 K], добавлен 28.11.2010

  • Определение предельно допустимой концентрации вредных веществ. Основные методы мониторинга и очистки атмосферного воздуха, почв, гидросферы. Влияние экологических факторов на здоровье населения. Воздействие промышленного загрязнения на экологию города.

    курсовая работа [955,7 K], добавлен 18.02.2012

  • Понятие, правовая основа, принципы и методы, этапы проведения, процедура подготовки оценки воздействия на окружающую среду. Нормативы качества окружающей среды и продуктов питания, концентрации вредного вещества в единице объема, массы или поверхности.

    контрольная работа [29,6 K], добавлен 31.03.2012

  • Влияние промышленности и транспорта на окружающую среду, загрязнение атмосферы и воды. Рекомендации по улучшению экологии России. Радиоактивность окружающей среды. Угольно-энергетические технологии, разрабатываемые в СО РАН. Меры по защите от облучения.

    контрольная работа [30,2 K], добавлен 16.10.2010

  • Загрязнение атмосферного воздуха в г. Уфа, его источники и характеристика выбросов. Мониторинг атмосферного воздуха. Влияние направления и скорости ветра, вертикального распределения температур воздуха (инверсии) на содержание примесей в воздухе.

    дипломная работа [1,5 M], добавлен 18.02.2012

  • Влияние морского транспорта, автотранспорта, авиации на окружющею среду. Против природы на авто. Авиация и ракетоносители. Загрязнение окружающей среды судами. Декларация и Общеевропейская программа по транспорту, Охране окружающей среды и здоровья.

    реферат [79,1 K], добавлен 18.11.2003

  • Загрязнение воздушного бассейна. Изменение состава атмосферного воздуха путем поступления примесей естественного характера или антропогенного происхождения. Вредные вещества, содержащиеся в выхлопных газах. Изменение состояния атмосферы в Омске.

    контрольная работа [465,6 K], добавлен 02.01.2012

  • Твердые бытовые отходы, общая характеристика и виды. Энергосберегающие лампы, их воздействия на экологию и особенности утилизации. Негативное воздействие пластика на здоровье человека и на окружающую среду. Методы и приборы переработки пищевых отходов.

    презентация [2,6 M], добавлен 14.12.2013

  • Влияние курения как антропогенного фактора на окружающую природную среду. Загрязнение почвы элементами, содержащимися в окурке. Изучение отрицательного наркотического действия никотина на организм курильщика и общества, на растения и животный мир.

    доклад [7,6 K], добавлен 21.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.