Теория статистики

Абсолютные и относительные статистические величины. Средние величины и показатели вариации. Понятие выборочного наблюдения. Понятие о рядах динамики. Статистическое изучение взаимосвязей. Индексы фиксированного (постоянного) и переменного состава.

Рубрика Экономика и экономическая теория
Вид курс лекций
Язык русский
Дата добавления 03.06.2015
Размер файла 712,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

= 87/60,82 =1,43, или 143%; = 14,678/60,82 = 0,241, или 24,1%;

= 19,756/60,82 = 0,32, или 32%; d = 14,38/60,82 = 0,236, или 23,6%.

Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава, она состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив Максимально возможные значения показателей вариации: Лmax = ; ;; . Так, для совокупности таможенных постов вариация величины ВО может быть определена как слабая, если < 25%, умеренная при 25% < < 50% и сильная при > 50%.

Различная сила, интенсивность вариации обусловлены объективными причинами, поэтому нельзя говорить о каком-либо универсальном критерии вариации (например, 33%), так как для разных явлений и признаков этот критерий различен. Например, цена продажи американского доллара в коммерческих банках Н.Новгорода 26 июля 2007 года варьировала от 25,45 до 26,00 при средней цене 25,595 руб., тогда по формуле (32) = (26,00-25,45)/25,595 = 0,021, или 2,1%. Такая малая вариация вызвана тем, что при значительном различии курса доллара немедленно произошел бы отлив покупателей из «дорогого» банка в более «дешевые». Напротив, цена килограмма говядины в разных регионах России варьирует очень сильно - на десятки процентов и более (это объясняется разными затратами на доставку товара из региона-производителя в регион потребитель).

Четвертым этапом статистического изучения вариации является расчет моментов распределения и показателей его формы. Для дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели называются центральные моменты распределения порядка, соответствующего степени, в которую возводятся отклонения (табл. 6) или просто моментов (нецентральные моменты в таможенной статистике практически не используются).

Таблица 6. Центральные моменты

Порядок момента

Формула

по несгруппированным данным

по сгруппированным данным

Первый м1

Второй м2

Третий м3

Четвертый м4

Величина третьего момента м3 зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормальном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов, поэтому на основе третьего момента строится показатель, характеризующий степень асимметричности распределения - коэффициент асимметрии (36):

. (36)

В нашем примере про ВО показатель асимметрии по формуле (36) составил (расчет числителя произведен в 9-м столбце табл. 5):

= 0,423 > 0, т.е. асимметрия значительна.

Английский статистик К.Пирсон на основе разности между средней арифметической величиной и модой предложил другой показатель асимметрии (37):

. (37)

В нашем примере по данным табл. 5 показатель асимметрии по формуле (37) составил: = 0,09.

Показатель асимметрии Пирсона (37) зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии (36) - от крайних значений признака. Таким образом, в нашем примере про ВО в средней части распределения наблюдается меньшая асимметрия, чем по краям, что видно и по графику (рис. 2). Распределения с сильной правосторонней и левосторонней асимметрией показаны на рис. 3.

Рис. 3. Асимметрия распределения

С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения - эксцесс (от англ. «излишество»). Показатель эксцесса рассчитывается по формуле (38):

. (38)

Чаще всего эксцесс интерпретируется как «крутизна» распределения, что не совсем верно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе. Не говоря уже о том, что, изменяя масштабы по осям абсцисс и ординат, любое распределение можно искусственно сделать «крутым» и «пологим». Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной у) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 4.

Рис. 4. Эксцесс распределения

Наличие положительного эксцесса означает наличие слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Отрицательный эксцесс означает отсутствие такого «ядра».

В нашем примере по формуле (38) эксцесс составил (расчет числителя произведен в 10-м столбце табл. 5): , т.е. величина ВО по таможенным постам варьирует сильнее, чем при нормальном распределении.

Пятым этапом статистического изучения вариации является проверка соответствия ряда распределения теоретическому (нормальному, логнормальному, биномиальному, распределению Руассона и др.) с помощью критериев согласия, среди которых чаще всего применяют критерии Пирсона ч2, Колмогорова и Романовского. Данный этап не входит в программу изучения для студентов заочного отделения (в случае необходимости - см. конспект лекций для дневного отделения).

2.4 Контрольные задания

Имеются следующие данные по группе из 20 студентов заочного отделения (таблица 7):

Таблица 7. Варианты выполнения контрольного задания

п/п

Вариант

1

2

3

4

5

6

7

8

9

10

Рост,

см

Вес,

кг

Доход,

у.е./мес.

IQ (тест Айзенка)

Тет-радь,

листов

Воз-раст,

лет

Соот-ношение

«рост/вес»

Стаж

работы, мес.

Кол-во

друзей, чел.

Время решения контрольной, час.

1

159

45

430

95

24

20

3,533

26

5

8,5

2

160

61

640

115

32

25

2,623

63

7

6,2

3

161

56

610

111

24

28

2,875

94

10

6,8

4

162

48

330

97

24

19

3,375

16

4

12,0

5

162

54

420

105

60

23

3,000

49

2

7,5

6

164

58

290

98

16

20

2,828

14

6

10,0

7

166

51

480

109

90

26

3,255

78

9

7,2

8

169

62

610

120

24

19

2,726

10

5

4,2

9

170

70

840

122

48

30

2,429

130

10

3,5

10

170

72

330

92

24

20

2,361

20

3

9,5

11

171

73

560

110

16

28

2,342

86

8

7,8

12

171

64

450

102

48

21

2,672

29

4

8,0

13

172

73

350

108

32

26

2,356

75

7

6,0

14

174

68

310

100

48

21

2,559

22

4

4,8

15

176

81

380

104

64

20

2,173

32

1

8,6

16

176

84

340

104

48

19

2,095

21

5

10,0

17

178

76

660

128

90

27

2,342

96

8

4,5

18

181

90

450

106

48

26

2,011

70

9

12,5

19

183

68

540

105

32

23

2,691

59

6

10,5

20

192

95

750

117

60

27

2,021

98

4

6,5

Построить интервальный ряд распределения признака и его график, рассчитать среднее значение признака и изучить его вариацию.

3. Выборочное наблюдение

3.1 Понятие выборочного наблюдения

Выборочный метод используется, когда применение сплошного наблюдения физически невозможно из-за огромного массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением. Например, дегустация, испытание кирпичей на прочность и т.п. Выборочное наблюдение используется также для проверки результатов сплошного.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весь их массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают п, во всей ГС - N. Отношение n/N называется относительный размер или доля выборки.

Качество результатов выборочного наблюдения зависит от репрезентативности выборки, т.е. от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц, который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая..

3.2 Способы формирования выборки

1. Собственно случайный отбор: все единицы ГС нумеруются, а выпавшие в результате жеребьевки номера соответствуют единицам, попавшим в выборку, причем число номеров равно запланированному объему выборки. На практике вместо жеребьевки используют генераторы случайных чисел. Данный способ отбора может быть повторным (когда каждая единица, отобранная в выборку, после проведения наблюдения возвращается в ГС и может быть вновь подвергнута обследованию) и бесповторным (когда обследованные единицы в ГС не возвращаются и не могут быть обследованы повторно). При повторном отборе вероятность попадания в выборку для каждой единицы ГС остается неизменной, а при бесповторном отборе она меняется (увеличивается), но для оставшихся в ГС после отбора из нее нескольких единиц, вероятность попадания в выборку одинакова.

Механический отбор: отбираются единицы генеральной совокупности с постоянным шагом N/п. Так, если она генеральная совокупность содержит 100 тыс.ед., а требуется выбрать 1 тыс.ед., то в выборку попадет каждая сотая единица.

Стратифицированный (расслоенным) отбор осуществляется из неоднородной генеральной совокупности, когда ее предварительно разбивают на однородные группы, после чего производят отбор единиц из каждой группы в выборочную совокупность случайный или механическим способом пропорционально их численности в генеральной совокупности.

Серийный (гнездовой) отбор: случайным или механическим способом выбирают не отдельные единицы, а определенные серии (гнезда), внутри которых производится сплошное наблюдение.

3.3 Средняя ошибка выборки

После завершения отбора необходимого числа единиц в выборку и регистрации предусмотренных программой наблюдения изучаемых признаков этих единиц, переходят к расчету обобщающих показателей. К ним относят среднюю величину изучаемого признака и долю единиц, обладающих каким-либо значением этого признака. Однако, если ГС произвести несколько выборок, определив при этом их обобщающие характеристики, то можно установить, что их значения будут различными, кроме того, они будут отличаться и от реального их значения в ГС, если такое определить с помощью сплошного наблюдения. Другими словами, обобщающие характеристики, рассчитанные по данным выборки, будут отличаться от их реальных значений в ГС, поэтому введем следующие условные обозначения (табл. 8).

Таблица 8. Условные обозначения

Показатель

Совокупность

генеральная

выборочная

Число единиц совокупности

N

n

Среднее значение

Доля единиц, обладающих каким-либо значением признака

d

Доля единиц, не обладающих каким-либо значением признака

1-d

1-

Дисперсия

Разность между значением обобщающих характеристик выборочной и генеральной совокупностей называется ошибкой выборки, которая подразделяется на ошибку регистрации и ошибку репрезентативности. Первая возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая возникает из-за несоблюдения принципа случайности отбора единиц в выборку. Ее сложнее обнаружить и устранить, она гораздо больше первой и потому ее измерение является основной задачей выборочного наблюдения.

Для измерения ошибки выборки определяется ее средняя ошибка по формуле (39) для повторного отбора и по формуле (40) - для бесповторного:

= ; (39) = . (40)

Из формул (39) и (40) видно, что средняя ошибка меньше у бесповторной выборки, что и обусловливает ее более широкое применение.

3.4 Предельная ошибка выборки

Учитывая, что на основе выборочного обследования нельзя точно оценить обобщающую характеристику ГС, необходимо найти пределы, в которых он находится. В конкретной выборке разность может быть больше, меньше или равна . Каждое из отклонений от имеет определенную вероятность. При выборочном обследовании реальное значение в ГС неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки . Она определяется в долях средней ошибки с заданной вероятностью, т.е.

= t, (41)

где t - коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной ГС вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице:

при . (42)

А. М. Ляпунов доказал, что независимо от характера распределения генеральной ГС при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению (центральная предельная теорема). Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от t с помощью интеграла вероятностей Лапласа:

, (43)

где - нормированное отклонение выборочной средней от генеральной средней.

Значения P (интеграла Лапласа) для разных t рассчитаны и имеются в специальной таблице, которая приведена в Приложении 1.

Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. Чаще всего принимают вероятность P = 0,950, которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы. Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t по Приложению 1 и рассчитывают предельную ошибку выборки по формуле (41).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики ГС совокупности по формуле (44) - для среднего значения, и по формуле (45) - для доли единиц, обладающих каким-либо значением признака:

или (-) (+) (44)

или (-) d (+) (45)

Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики ГС, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.

3.5 Необходимая численность выборки

Разрабатывая программу выборочного наблюдения, задаются конкретным значением предельной ошибки и уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (39) и затем (40) в формулу (41) и решая ее относительно численности выборки, получим следующие формулы:

для повторной выборки n = ; (46) для бесповторной выборки

n = . (47)

Вариация () значений признака к началу выборочного наблюдения как правило неизвестна, поэтому ее берут приближенно одним из способов:

1) берется из предыдущих выборочных наблюдений;

2) по правилу «трех сигм», согласно которому в размахе вариации укладывается примерно 6 стандартных отклонений (H/ = 6, отсюда = Н2 /36);

3) если приблизительно известна средняя величина изучаемого признака, то = 2 /9;

4) если неизвестна дисперсия доли единиц, обладающих каким-либо значением признака, то используется ее максимально возможная величина = 0,25.

3.6 Методические указания

Задача. На предприятии в порядке случайной бесповторной выборки было опрошено 100 рабочих из 1000 и получены следующие данные об их доходе за месяц (таблица 9):

Таблица 9. Результаты бесповторного выборочного наблюдения на предприятии

Доход, у.е.

до 300

300-500

500-700

700-1000

более 1000

Число рабочих

8

28

44

17

3

С вероятностью 0,950 определить:

1) среднемесячный размер дохода работников данного предприятия;

2) долю рабочих предприятия, имеющих месячный доход более 700 у.е.;

3) необходимую численность выборки при определении среднемесячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е.;

4) необходимую численность выборки при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%.

Решение. Для расчета обобщающих характеристик выборки построим вспомогательную таблицу 10.

Таблица 10. Вспомогательные расчеты для решения задачи

X

f

Х'

X'f

(Х' -)2

(Х' -)2f

до 300

8

200

1600

137641

1101128

300 - 500

28

400

11200

29241

818748

500 - 700

44

600

26400

841

37004

700 - 1000

17

850

14450

77841

1323297

более 1000

3

1150

3450

335241

1005723

Итого

100

57100

4285900

По формуле (11) рассчитаем средний доход в выборке: = 57100/100 = 571 (у.е.). Применив формулу (28) и рассчитав ее числитель в последнем столбце таблицы, получим дисперсию среднего выборочного дохода: = 4285900/100 = 42859.

Теперь можно определить среднюю ошибку выборки по формуле (40): = = 19,640 (у.е.).

В нашей задаче = 0,950, значит t = 1,96. Тогда предельная ошибка выборки по формуле (41):

= 1,96*19,64 = 38,494 (у.е.).

Для определения средней ошибки выборки при определении доли рабочих с доходами более 700 у.е. в ГС необходимо определить их долю: w = 20/100 = 0,2 или 20%, а затем ее дисперсию по формуле = w(1-w) = 0,2*(1-0,2) = 0,16. Тогда можно рассчитать среднюю ошибку выборки по формуле (40): = = 0,038 или 3,8%. А затем и предельную ошибку выборки по формуле (41):

= 1,96*0,038 = 0,075 или 7,5%.

Доверительный интервал среднего дохода находим по формуле (44):

571-38,494 571+38,494 или 532,506 у.е. 609,494 у.е., то есть средний доход всех рабочих предприятия с вероятностью 95% будет лежать в пределах от 532,5 до 609,5 у.е.

Аналогично определяем доверительный интервал для доли по формуле (45):

0,2-0,075 p0,2+0,075 или 0,125 p0,275, то есть доля рабочих с доходами более 700 у.е. на всем предприятии с вероятностью 95% будет лежать в пределах от 12,5% до 27,5%.

В нашей задаче выборка бесповторная, значит, воспользуемся формулой (47), в которую подставим уже рассчитанные дисперсии среднего выборочного дохода рабочих (= 42859) и доли рабочих с доходами более 700 у.е. (= 0,16):

nб/повт = = 62 (чел.), nб/повт= = 197 (чел.).

Таким образом, необходимо включить в выборку не менее 62 рабочих при определении среднего месячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е., и не менее 197 рабочих при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%.

3.7 Контрольные задания

Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная бесповторная выборка лицевых счетов, в результате которой в таблице 11 получено распределение клиентов по размеру вкладов.

Таблица 11. Варианты выполнения контрольного задания

Размер вклада, у.е.

Число вкладчиков, чел.

Вариант

1

2

3

4

5

6

7

8

9

10

до 5000

10

80

100

50

60

30

90

20

70

40

5 000 - 15 000

40

60

150

30

40

110

75

65

90

80

15 000 - 30 000

25

35

70

90

120

90

130

140

60

95

30 000 - 50 000

30

45

40

5

80

30

60

75

20

115

свыше 50 000

15

10

30

25

50

15

25

5

10

5

С вероятностью 0,954 определить:

1) средний размер вклада во всем банке;

2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.;

3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.;

4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%.

4. РЯДЫ ДИНАМИКИ

4.1 Понятие о рядах динамики

Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов).

Ряд динамики - это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).

Числовые значения того или иного статистического показателя, составляющего ряд динамики, называют уровнями ряда и обычно обозначают через y. Первый член ряда y1 называют начальным (базисным) уровнем, а последний yn - конечным. Моменты или периоды времени, к которым относятся уровни, обозначают через t.

Ряды динамики, как правило, представляют в виде таблицы (см. табл. 12) или графически (см. рис. 5), причем по оси абсцисс строится шкала времени t, а по оси ординат - шкала уровней ряда y.

Таблица 12. Внешнеторговый оборот (ВО) России за период 2000-2006 гг.

Год

2000

2001

2002

2003

2004

2005

2006

Млрд. долл. США

149,9

155,6

168,3

212,0

280,6

368,9

468,4

Рис. 5. Внешнеторговый оборот (ВО) России за период 2000-2006 гг.

Данные табл. 12 и рис. 5 наглядно иллюстрируют ежегодный рост внешнеторгового оборота (ВО) в России за период 2000-2006 гг.

4.2 Показатели изменения уровней ряда динамики

Анализ рядов динамики начинается с определения того, как именно изменяются уровни ряда (увеличиваются, уменьшаются или остаются неизменными) в абсолютном и относительном выражении. Чтобы проследить за направлением и размером изменений уровней во времени, для рядов динамики рассчитывают показатели изменения уровней ряда динамики:

– абсолютное изменение (абсолютный прирост);

– относительное изменение (темп роста или индекс динамики);

– темп изменения (темп прироста).

Все эти показатели могут определяться базисным способом, когда уровень данного периода сравнивается с первым (базисным) периодом, либо цепным способом - когда сравниваются два уровня соседних периодов.

Абсолютное изменение (абсолютный прирост) уровней рассчитывается как разность между двумя уровнями ряда по формуле (48) - для базисного способа сравнения или по формуле (49) - для цепного. Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше уровня какого-либо предшествующего периода, и, следовательно, может иметь знак «+» (при увеличении уровней) или «-» (при уменьшении уровней).

; (48) . (49)

В табл. 13 в столбце 3 рассчитаны базисные абсолютные изменения по формуле (48), а в столбце 4 - цепные абсолютные изменения по формуле (49).

Таблица 13. Анализ динамики ВО России

Год

y

, %

,%

2000

149,9

2001

155,6

5,7

5,7

1,038

1,038

3,8

3,8

2002

168,3

18,4

12,7

1,123

1,082

12,3

8,2

2003

212,0

62,1

43,7

1,414

1,260

41,4

26,0

2004

280,6

130,7

68,6

1,872

1,324

87,2

32,4

2005

368,9

219,0

88,3

2,461

1,315

146,1

31,5

2006

468,4

318,5

99,5

3,125

1,270

212,5

27,0

Итого

1803,7

318,5

3,125

Между базисными и цепными абсолютными изменениями существует взаимосвязь: сумма цепных абсолютных изменений равна последнему базисному изменению, то есть

. (50)

В нашем примере про ВО подтверждается правильность расчета абсолютных изменений по формуле (50): = 318,5 рассчитана в итоговой строке 4-го столбца, а = 318,5 - в предпоследней строке 3-го столбца табл. 13.

Относительное изменение (темп роста или индекс динамики) уровней рассчитывается как отношение (деление) двух уровней ряда по формуле (51) - для базисного способа сравнения или по формуле (52) - для цепного.

; (51) . (52)

Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при >1) или какую его часть составляет (при <1). Относительное изменение может выражаться в виде коэффициентов, то есть простого кратного отношения (если база сравнения принимается за единицу), и в процентах (если база сравнения принимается за 100 единиц) путем домножения относительного изменения на 100%.

В табл. 13 в столбце 5 рассчитаны базисные относительные изменения по формуле (51), а в столбце 6 - цепные относительные изменения по формуле (52).

Между базисными и цепными относительными изменениями существует взаимосвязь: произведение цепных относительных изменений равно последнему базисному изменению, то есть

. (53)

В нашем примере про ВО подтверждается правильность расчета относительных изменений по формуле (53): = 1,038*1,082*1,260*1,324*1,315*1,270 = 3,125 рассчитано по данным 6-го столбца, а = 3,125 - в предпоследней строке 5-го столбца табл. 13.

Темп изменения (темп прироста) уровней - относительный показатель, показывающий, на сколько процентов данный уровень больше (или меньше) другого, принимаемого за базу сравнения. Он рассчитывается путем вычитания из относительного изменения 100%, то есть по формуле (54):

, (54)

или как процентное отношение абсолютного изменения к тому уровню, по сравнению с которым рассчитано абсолютное изменение (базисный уровень), то есть по формуле (55):

. (55)

В табл. 13 в столбце 7 рассчитаны базисные темпы изменения ВО по формуле (54), а в столбце 8 - цепные темпы изменения по формуле (55). Все расчеты в табл. 13 свидетельствуют о ежегодном росте ВО России за период 2000-2006 гг.

4.3 Средние показатели ряда динамики

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщить в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении динамики изменений того или иного показателя ВЭД в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики служит прежде всего средний уровень ряда . Для разных видов рядов динамики он рассчитывается неодинаково. Ряды динамики бывают равномерные (с равными интервалами времени между уровнями), для которых средний уровень определяется по простой формуле средней величины, и неравномерные (с неравными интервалами), для которых используются формулы средних взвешенных (по интервалам времени) величин. В интервальном ряду динамики (в котором время задано в виде промежутков времени, к которым относятся уровни) определяется по формуле средней арифметической, а в моментном ряду (в котором время задано в виде конкретных моментов времени или дат, к которым относятся уровни) - по формуле средней хронологической. В табл. 14 приводятся виды рядов динамики и соответствующие формулы для расчета их среднего уровня .

Таблица 14. Виды средних величин, применяемых при расчете среднего уровня

Вид ряда динамики

Название средней величины

Формула средней величины

Номер формулы

Равномерный интервальный

Арифметическая простая

(56)

Равномерный моментный

Хронологическая простая

(57)

Неравномерный интервальный

Арифметическая взвешенная

(58)

Неравномерный моментный

Хронологическая взвешенная

(59)

В нашем примере про ВО России за период 2000-2006 гг. имеем равномерный интервальный ряд динамики, поэтому его средний уровень определяем по формуле (56): = 1803,7/7 = 257,671, то есть ВО России в период 2000-2006 гг. составлял ежегодно в среднем 257,671 млрд. долл. США.

Кроме среднего уровня ряда рассчитываются и другие средние показатели:

– среднее абсолютное изменение (средний абсолютный прирост);

– среднее относительное изменение (средний темп роста);

– средний темп изменения (средний темп прироста).

Каждый из этих показателей может рассчитываться базисным и цепным способом.

Базисное среднее абсолютное изменение - это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (60); цепное среднее абсолютное изменение уровней ряда - это частное от деления суммы всех цепных абсолютных изменений на количество изменений (61):

Б = (60) Ц = (61)

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Очевидно, что числители формулы (60) и (61) равны между собой по формуле (50), значит, среднее абсолютное изменение не зависит от способа расчета (базисный или цепной), так как результат получится одинаковый. В нашей задаче по формуле (60) или (61):

= 318,5/6 = 53,083, то есть ежегодно в среднем ВО растет на 53,083 млрд. долл.

Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (62), а цепное среднее относительное изменение - по формуле (63):

Б== (62) Ц= (63)

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашем примере про ВО: = = 1,209, то есть ежегодно в среднем в период 2000-2006 гг. ВО России растет в 1,209 раза.

Вычитанием 100% из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашем примере про ВО: = 1,209 - 1 = 0,209, то есть ежегодно в среднем в период 2000-2006 гг. ВО России растет на 20,9%.

4.4 Методы выявления основной тенденции (тренда) в рядах динамики

Одна из основных задач изучения рядов динамики - выявить основную тенденцию (закономерность) в изменении уровней ряда, именуемую трендом. Закономерность в изменении уровней ряда в одних случаях проявляется наглядно, в других - может маскироваться колебаниями случайного или неслучайного характера. Поэтому, чтобы сделать правильные выводы о закономерностях развития того или иного показателя, надо суметь отделить тренд от колебаний, вызванных случайными кратковременными причинами. На основании выделенного тренда можно экстраполировать (прогнозировать) развитие явления в будущем. С этой целью (устранить колебания, вызванные случайными причинами) ряды динамики подвергают обработке.

Существует несколько методов обработки рядов динамики, помогающих выявить основную тенденцию изменения уровней ряда, а именно: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Во всех методах вместо фактических уровней при обработке ряда рассчитываются иные (расчетные) уровни, в которых тем или иным способом взаимопогашается действие случайных факторов и тем самым уменьшается колеблемость уровней. Последние в результате становятся как бы «выравненными», «сглаженными» по отношению к исходным фактическим данным. Такие методы обработки рядов динамики называются сглаживанием или выравниванием рядов динамики.

Простейший метод сглаживания уровней ряда - укрупнения интервалов, для определяется итоговое значение или средняя величина исследуемого показателя. Этот метод особенно эффективен, если первоначальные уровни ряда относятся к коротким промежуткам времени. Например, если имеются данные о ежесуточном производстве мороженого на предприятии за месяц, то, естественно, в таком ряду возможны значительные колебания уровней, так как чем меньше период, за который приводятся данные, тем больше влияние случайных факторов. Чтобы устранить это влияние, рекомендуется укрупнить интервалы времени, например до 5 или 10 дней, и для этих укрупненных интервалов рассчитать общий или среднесуточный объем производства (соответственно по пятидневкам или декадам). В ряду с укрупненными интервалами времени закономерность изменения уровней будет более наглядной.

По своей сути метод скользящей средней похож на метод укрупнения интервалов, но в данном случае фактические уровни заменяются средними уровнями, рассчитанными для последовательно подвижных (скользящих) укрупненных интервалов, охватывающих m уровней ряда. Например, если принять m=3, то сначала рассчитывается средняя величина из первых трех уровней, затем находится средняя величина из 2-го, 3-го и 4-го уровней, потом из 3-го, 4-го и 5-го и т.д., т.е. каждый раз в сумме трех уровней появляется новый уровень, а два остаются прежними, что и обусловливает взаимопогашение случайных колебаний в средних уровнях. Рассчитанные из m членов скользящие средние относятся к середине (центру) каждого рассматриваемого интервала.

Сглаживание методом скользящей средней можно проводить по любому числу членов m, но удобнее, если m - нечетное число, так как в этом случае скользящая средняя сразу относится к конкретной временнОй точке - середине (центру) интервала. Если же m - четное, то скользящая средняя относится к промежутку между временнЫми точками: например, при сглаживании по четырем членам (m=4) средняя из первых четырех уровней будет находиться между второй и третьей временной точкой, следующая - между третьей и четвертой и т.д. Тогда, чтобы сглаженные уровни относились непосредственно к конкретным временнЫм точкам, из каждой пары смежных промежуточных значений скользящих средних находят среднюю арифметическую, которую относят к временной точке, находящейся между смежными. Такой прием двойного расчета сглаженных уровней называется центрированием.

Недостатком метода скользящей средней является то, что сглаженный ряд укорачивается по сравнению с фактическим с двух концов: при нечетном m на (m-1)/2, а при четном m - на m/2 с каждого конца. Применяя этот метод, надо помнить, что он сглаживает (устраняет) лишь случайные колебания. Если же, например, ряд содержит сезонную волну (см. 6.6), она сохранится и после сглаживания методом скользящей средней. Кроме того, этот метод сглаживания, как и метод укрупнения интервалов не позволяет выражать общую тенденцию изменения уровней в виде математической модели.

Наиболее совершенным методом обработки рядов динамики в целях устранения случайных колебаний и выявления тренда является выравнивание уровней ряда по аналитическим формулам (или аналитическое выравнивание). Суть аналитического выравнивания заключается в замене эмпирических (фактических, исходных) уровней yi теоретическими , которые рассчитаны по определенному уравнению, принятому за математическую модель тренда, где теоретические уровни рассматриваются как функция времени: = f(t).

При этом каждый фактический уровень yi рассматривается обычно как сумма двух составляющих:

, (64)

где f(t) = - систематическая составляющая, отражающая тренд и выраженная определенным уравнением; - случайная величина, вызывающая колебания уровней вокруг тренда.

Задача аналитического выравнивания сводится к следующему:

1) определение на основе фактических данных формы (вида) гипотетической функции = f(t), способной наиболее адекватно отразить тенденцию развития исследуемого показателя;

2) нахождение по эмпирическим данным параметров указанной функции (уравнения);

3) расчет по найденному уравнению теоретических (выравненных) уровней.

В аналитическом выравнивании наиболее часто используются простейшие функции, представленные в табл. 15, где обозначено - теоретические (выравненные) уровни (читается как «игрек, выравненный по t»); t - условное обозначение времени (1, 2, 3 …); a0, a1, a2, ... - параметры аналитической функции; k - число гармоник (при выравнивании по ряду Фурье).

Выбор той или иной функции для выравнивания ряда динамики осуществляется на основании графического изображения эмпирических данных. Если по тем или иным причинам уровни эмпирического ряда трудно описать одной функцией, следует разбить анализируемый период на отдельные части и затем выровнять каждую часть по соответствующей кривой.

Таблица 15. Виды математических функций, используемые при выравнивании

Название функции

Вид функции

Формула

Прямая линия

(65)

Парабола 2-го порядка

или

(66)

Парабола 3-го порядка

(67)

Гипербола

(68)

Показательная

(69)

Степенная

(70)

Ряд Фурье

(71)

Нередко один и тот же ряд можно выровнять по разным аналитическим функциям и получить довольно близкие результаты. В нашем примере про ВО России можно произвести выравнивание и по прямой линии, и по параболе. Чтобы решить вопрос о том, использование какой кривой дает лучший результат, обычно сопоставляют суммы квадратов отклонений эмпирических уровней от теоретических (остатки), рассчитанным по разным функциям, то есть:

. (72)

Та функция, при которой эта сумма минимальна, считается наиболее адекватной, приемлемой. Однако сравнивать непосредственно суммы квадратов отклонений можно в том случае, если сравниваемые уравнения имеют одинаковое число параметров. Если же число параметров k разное, то каждую сумму квадратов делят на разность (n - k), выступающую в роли числа степеней свободы, и сравнивают уже квадраты отклонений уровней, рассчитанные на одну степень свободы (т.е. остаточные дисперсии на одну степень свободы).

Параметры искомых уравнений (a0, a1, a2, ...) при аналитическом выравнивании могут быть определены по-разному, но наиболее распространенным методом является метод наименьших квадратов (МНК). При этом методе учитываются все эмпирические уровни и должна обеспечиваться минимальная сумма квадратов отклонений эмпирических значений уровней y от теоретических уровней :

. (73)

В частности, при выравнивании по прямой вида (65) параметры и отыскиваются по МНК следующим образом. В формуле (73) вместо записываем его конкретное выражение . Тогда . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении и функция двух переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по и , приравнять их к нулю и после элементарных преобразований решить систему двух уравнений с двумя неизвестными.

В соответствии с вышеизложенным найдем частные производные:

Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные - оставив в левой, получим систему нормальных уравнений:

(74)

где n - количество уровней ряда; t - порядковый номер в условном обозначении периода или момента времени; y - уровни эмпирического ряда.

Эта система и, соответственно, расчет параметров и упрощаются, если отсчет времени ведется от середины ряда При расчете параметров уравнения тренда на ЭВМ необходимость вести отсчет от середины ряда динамики отпадает. Например, для получения уравнения тренда в Microsoft Office Excel необходимо построить его график с помощью «Мастера диаграмм», после чего вызвать контекстное меню, нажав на правую кнопку мыши на построенном графике, и выбрать пункт «Добавить линию тренда», в появившемся окне выбрать подходящую математическую функцию и установить галочку «показывать уравнение на диаграмме». Например, при нечетном числе уровней (как в нашем примере про ВО России - 7 уровней) серединная точка времени (год, месяц) принимается за нуль, тогда предшествующие периоды обозначаются соответственно -1, -2, -3 и т.д., а следующие за средним (центральным) - соответственно 1, 2, 3 и т.д. (см. 3-й столбец табл. 16). При четном числе уровней два серединных момента (периода) времени обозначают -1 и +1, а все последующие и предыдущие, соответственно, через два интервала: , , и т.д.

При таком порядке отсчета времени (от середины ряда) = 0, поэтому, система нормальных уравнений (74) упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

(75)

Как видим, при такой нумерации периодов параметр представляет собой средний уровень равномерного интервального ряда, то есть формулу (56). Определим по формуле (75) параметры уравнения прямой для нашего примера про ВО России, для чего исходные данные и все расчеты необходимых сумм представим в табл. 16.

Таблица 16. Вспомогательные расчеты для линейного тренда

Год

y

t

t2

yt

2000

149,9

-3

9

-449,7

97,557

2739,775

25636,584

11614,681

2001

155,6

-2

4

-311,2

150,929

21,822

11394,038

10418,577

2002

168,3

-1

1

-168,3

204,300

1296,000

2848,509

7987,252

2003

212

0

0

0

257,671

2085,879

0,000

2085,879

2004

280,6

1

1

280,6

311,043

926,768

2848,509

525,719

2005

368,9

2

4

737,8

364,414

20,122

11394,038

12371,795

2006

468,4

3

9

1405,2

417,786

2561,806

25636,584

44406,531

Итого

1803,7

0

28

1494,4

1803,700

9652,171

79758,263

89410,434

Из табл. 16 получаем, что: a0 = 1803,7/7 = 257,671 и a1 = 1494,4/28 = 53,371. Отсюда искомое уравнение тренда: =257,671+53,371t. В 6-м столбце табл. 16 приведены теоретические (трендовые) уровни, рассчитанные по этому уравнению, а в итоге 7-го столбца - остатки по формуле (72). Для иллюстрации построим график эмпирических и трендовых уровней - рис. 6.

Рис. 6. Эмпирические и трендовые уровни ряда динамики ВО России

4.5 Оценка адекватности тренда и прогнозирование

Для найденного уравнения тренда необходимо провести оценку его надежности (адекватности), что осуществляется обычно с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическим (табличным) значением FТ (Приложение 3). При этом расчетный критерий Фишера определяется по формуле (76):

, (76)

где k - число параметров (членов) выбранного уравнения тренда.

Для проверки правильности расчета сумм в формуле (76) можно использовать следующее равенство (77):

. (77)

В нашем примере про ВО равенство (77) соблюдается (необходимые суммы рассчитаны в трех последних столбцах табл. 16): 89410,434 = 9652,171 + 79758,263.

Сравнение расчетного и теоретического значений критерия Фишера ведется при заданном уровне значимости (вероятности сделать неверный прогноз) с учетом степеней свободы: и . При условии Fр > FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд.

Проверим тренд на адекватность в нашем примере про ВО по формуле (76):

FР = 79758,263*5/(9652,171*1) = 41,32 > FТ, значит, модель адекватна и ее можно использовать для прогнозирования (FТ = 6,61 находим по Приложению 3 в 1-ом столбце [= k - 1 = 2 - 1 = 1] и 5-й строке [= n - k = 5]).

Как уже было отмечено ранее, в нашем примере про ВО России можно произвести выравнивание не только по прямой линии, но и по параболе, чего делать не будем, так как уже найденный линейный тренд адекватно описывает тенденцию.

При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (78):

, (78)

где - точечный прогноз, рассчитанный по модели тренда; - коэффициент доверия по распределению Стьюдента при уровне значимости и числе степеней свободы =n-1 (Приложение 2) Используется при малом количестве уровней (n<30), в противном случае (n>30) вместо используют коэффициент доверия t нормального закона распределения (Приложение 1); - ошибка аппроксимации, определяемая по формуле (79):

. (79)

Спрогнозируем ВО России на 2007 и 2008 годы с вероятностью 0,95 (значимостью 0,05), для чего найдем ошибку аппроксимации по формуле (79): == 43,937 и найдем коэффициент доверия по распределению Стьюдента по Приложению 2: = 2,4469 при = 7 - 1= 6.

Прогноз на 2007 и 2008 годы с вероятностью 0,95 по формуле (78):

Y2007 = (257,671+53,371*4)2,4469*43,937 или 363,6<Y2007<578,7 (млрд. долл.);

Y2008 = (257,671+53,371*5)2,4469*43,937 или 417,0<Y2008<632,0 (млрд. долл.).

Как видно из полученных прогнозов, доверительный интервал достаточно широк (из-за достаточно большой величины ошибки аппроксимации). Более точный прогноз можно получить при выравнивании по параболе 2-го порядка.

4.6 Контрольные задания

По статистическим данным ФСГС по России за 2000 - 2005 гг. (таблица 17) вычислить: абсолютные, относительные, средние изменения и их темпы базисным и цепным способами. Проверить ряд на наличие в нем линейного тренда, на основе которого рассчитать интервальный прогноз на 2006 и 2007 годы с вероятностью 95%.

Таблица 17. Варианты выполнения контрольного задания

Год

Вариант

1

2

3

4

5

6

7

8

9

10

Валовой сбор сахарной свеклы, млн.т.

Валовой сбор картофеля, млн.т.

Число заключенных браков, тыс.

Число построенных жилых домов, млн.м2

Поголовье крупного рогатого скота, млн.голов (на конец года)

Производство мяса, млн.т.

Производство яиц, млрд.шт.

Численность населения, тыс.чел. (на начало года)

Среднегодовая числен...


Подобные документы

  • Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.

    шпаргалка [31,9 K], добавлен 26.01.2009

  • Рассмотрение процесса ревизии в бухгалтерии предприятия налоговыми органами с точки зрения статистического наблюдения. Выбор из исходных данных абсолютной статистической величины. Представление статистических данных. Средние величины. Показатели вариации.

    контрольная работа [139,5 K], добавлен 28.05.2015

  • Абсолютные и относительные статистические показатели, методы прогнозирования. Закон распределения вероятностей дискретной случайной величины. Оценки параметров генеральной совокупности. Статистическое исследование социально-экономического потенциала.

    шпаргалка [1,8 M], добавлен 16.05.2012

  • Средние величины и показатели вариации. Агрегатные индексы физического объёма товарной массы. Группировка статистических данных. Индивидуальные и сводный индексы себестоимости единицы продукции. Показатели ряда динамики. Расчёт стоимости основных средств.

    контрольная работа [306,8 K], добавлен 04.06.2015

  • Абсолютные и относительные статистические величины. Понятие и принципы применения средних величин и показателей вариации. Правила применения средней арифметической и гармонической взвешенных. Коэффициенты вариации. Определение дисперсии методом моментов.

    учебное пособие [276,4 K], добавлен 23.11.2010

  • Предмет и метод статистики. Группировка и ряд распределения. Абсолютные, относительные, средние величины, показатели вариации. Выборочное наблюдение, ряды динамики. Основы корреляционного и регрессионного анализа. Статистика населения и рынка труда.

    методичка [2,2 M], добавлен 16.02.2011

  • Сводка и группировка материалов статистического наблюдения. Абсолютные, относительные и средние величины, показатели вариации. Ряды динамики, индексный анализ. Проведение корреляционно-регрессионного анализа таблиц о сборе урожая и внесении удобрений.

    курсовая работа [667,1 K], добавлен 14.05.2013

  • Общая характеристика органов пенсионного обеспечения, организация работы органов Пенсионного фонда Российской Федерации. Статистические показатели и их расчет: средние величины, показатели вариации, ряды динамики, индексы, трендовый анализ, группировка.

    курсовая работа [256,8 K], добавлен 15.06.2010

  • Предмет и метод статистической науки. Методология наблюдения, статистическая сводка, группировка, таблицы и графики, показатели и средние величины. Показатели вариации, выборочное наблюдение. Корреляционно-регрессионный анализ. Экономические индексы.

    лекция [1,2 M], добавлен 02.01.2014

  • Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.

    лекция [29,1 K], добавлен 25.09.2011

  • Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция [985,6 K], добавлен 13.02.2011

  • Статистическое наблюдение; классификация признаков явлений; сводка и группировка. Ряды распределения и их графическое изображение; уровневые и интегральные графики. Динамические ряды, статистические таблицы, абсолютные, относительные и средние величины.

    учебное пособие [217,1 K], добавлен 23.12.2009

  • Предмет и метод статистики, понятие статистического наблюдения: сводка, группировка, абсолютные и относительные величины, ряды динамики, индексы. Корреляционный анализ зависимости урожайности сельскохозяйственных культур от внесения минеральных удобрений.

    дипломная работа [798,3 K], добавлен 13.05.2013

  • Арифметическая, гармоническая и геометрическая средняя величина. Задача на определение среднемесячной оплаты труда рабочих. Моментный и интервальный ряд динамики. Общее понятие об индивидуальных и сводных индексах. Объемные показатели перевозки грузов.

    контрольная работа [604,4 K], добавлен 24.03.2013

  • Сущность и основные элементы статистики труда. Статистический анализ безработицы. Специфические показатели уровня безработицы населения. Средние величины и показатели вариации. Применение выборочного метода. Прогноз динамики трудовых ресурсов России.

    курсовая работа [273,6 K], добавлен 21.12.2015

  • Предмет и метод статистики, сводка и группировка, абсолютные и относительные величины. Определение показателей вариации и дисперсии. Понятие о выборочном наблюдении и его задачи. Классификация экономических индексов. Основы корреляционного анализа.

    контрольная работа [80,0 K], добавлен 05.06.2012

  • Понятие статистики, история ее развития. Организация статистики в Российской Федерации. Понятие о статистическом наблюдении. Виды экономических индексов. Виды статистических показателей. Абсолютные и относительные величины. Этапы построения группировки.

    лекция [92,0 K], добавлен 20.10.2010

  • Средние величины и показатели вариации. Аналитические показатели ряда динамики. Расчеты и результаты индексов сезонности. Определение общего индекса цен по всем видам продукции и абсолютной экономии от снижения цен. Выборочное наблюдение, пределы.

    курсовая работа [607,7 K], добавлен 13.04.2013

  • Расчет средних уровней производительности труда и показателей вариации. Понятие моды и медианы признака, построение полигона и оценка характера асимметрии. Методика выравнивания ряда динамики по прямой линии. Индивидуальные и агрегатные индексы объема.

    контрольная работа [682,4 K], добавлен 24.09.2012

  • Сводка и группировка. Абсолютные и относительные величины. Расчет соотношения потребленного и вывезенного сахара. Сущность и значение средних показателей. Исчисление средней из интервального ряда распределения по методу моментов. Показатели вариации.

    контрольная работа [75,7 K], добавлен 20.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.