Подземная гидромеханика

Модели фильтрационного течения, флюидов и коллекторов. Система уравнений подземной гидромеханики. Виды одномерных потоков. Исследование притока жидкости к несовершенной скважине. Понятие об упругом режиме пласта. Характеристики многофазной фильтрации.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 05.11.2014
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Так в пластах со слоистой неоднородностью предельные градиенты различны для разных пропластков - чем больше проницаемость, тем меньше предельный градиент , и наоборот. В связи с этим, пропластки будут последовательно включаться в работу по мере того, как градиент давления будет превышать величины соответствующих предельных градиентов сдвига.

Наряду с рассмотренным законом фильтрации (6.6), описывающим течение вязкопластичной жидкости в пористой среде, рассматривают степенной закон фильтрации:

, (6.7)

где С - экспериментальная константа; n>0.

Степенной закон, соответствующий псевдопластичному флюиду (6.4), хорошо описывает движение растворов полимеров в пористой среде и используется при расчете “полимерного” заводнения пластов с целью повышения их нефтеотдачи.

6.2 Одномерные задачи фильтрации вязкопластичной жидкости

Движение аномальных нефтей в пластах по закону (6.5) приводит к существенным особенностям разработки этих пластов, не встречающимся в случае фильтрации по закону Дарси.

Установившееся течение вязкопластичной жидкости. Рассмотрим плоскорадиальный приток к скважине при условии выполнения соотношения (6.4):

(u>0); (6.8)

, (u=0).

Решая (6.9) относительно скорости и переходя к дебиту, получим формулу притока, обобщающую формулу Дюпюи.

, если . (6.9)

u=0, если dp/dr.

Считая давления на забое скважины и на границе пласта постоянными (р(rc)=рc; р(rк)=рк ), после интегрирования (6.10) находим:

, (6.10)

(6.12)

Формулы (6.11), (6.12) представляют, соответственно, распределение давления в пласте и дебит скважины. Из формулы (6.11) видно, что часть разности давлений в виде линейного слагаемого с угловым коэффициентом теряется на преодоление предельного градиента сдвига. При Q0, как следует из (6.11), давление не постоянно (как в случае фильтрации по закону Дарси), а изменяется по линейному закону. При тех же условиях наличие предельного градиента давления в пласте ведет к уменьшению дебита скважины по сравнению с фильтрацией по закону Дарси (формула Дюпюи), а индикаторная линия скважины Q(рс) - прямолинейная, но не проходит через начало координат, а отсекает на оси депрессий отрезок, равный Rк (рис. 6.3а).

В случае слоистого пласта с гидродинамически изолированными пропластками, т. е. при отсутствии перетоков между слоями с разными проницаемостями, для дебита в каждом пропластке справедлива формула (6.12), но своими значениями толщин, проницаемости и начального градиента. Индикаторная линия в этом случае представляется ломаной (рис. 6.3b).

Рис. 6.3. Индикаторные линии при плоскорадиальном течении вязкоплоастичной жидкости:

а - однослойный пласт; b - трёхслойный пласт

Неустановившаяся фильтрация вязкопластичной жидкости. Дифференциальные уравнения для определения давления при упругом режиме работы пласта можно получить, дополняя закон фильтрации с предельным градиентом (6.5) уравнениями неразрывности и состояния флюида. Описанным в разделе 5 подходе получим следующее уравнение пьезопроводности:

, (6.13)

где ж - коэффициент пьезопроводности.

Уравнение (6.13) служит основой для построения нелинейной теории упругого режима вязкопластичной жидкости. Вместе с тем следует иметь в виду, что при решении нестационарных задач на основе модели фильтрации с предельным градиентом в пласте образуется переменная область фильтрации, на границе которой (пока она не достигнет границы пласта) модуль градиента давления должен равняться предельному градиенту , а давление - начальному пластовому.

Если рассмотреть задачу о пуске скважины с постоянным дебитом при фильтрации вязкопластичной жидкости с предельным градиентом, то получим из решения уравнения (6.13) следующую зависимость забойного давления от времени:

. (6.14)

В данной формуле логарифмический член играет основную роль при малом времени, когда преобладают упругие силы. При больших значениях времени закон движения границы возмущенной области подчиняется степенному закону. Таким образом, при некоторых значениях параметров оказывается, что основное значение имеет степенной член, так что закон падения давления на забое скважины изменяется с логарифмического на степенной. Следовательно, при больших временах вид кривых изменения забойного давления рс(t) при фильтрации с предельным градиентом существенно изменяется по сравнению с фильтрацией упругой жидкости, что позволяет обнаружить в пластовых условиях проявление предельного градиента давления.

6.3 Образование застойных зон при вытеснении нефти водой

Рис. 6.4. Схемы образования застойных зон

а - между двумя добывающими скважинами;

b - при пятиточечной расстановке скважин

(1 - нагнетательная скважина; 2 - добывающая скважина; 3 - зона застоя)

Важный эффект фильтрации с предельным градиентом давления - возможность образования в пласте застойных зон (движение жидкости или газа отсутствует), при градиенте давления меньшего предельного.

Возникновение застойных зон ведет к уменьшению нефтеотдачи пластов. На рис. 6.4,а застойная зона 3, расположенная между двумя добывающими скважинами с равными дебитами, затемнена. При разработке нефтяных месторождений с поддержанием пластового давления путём закачки воды тоже образуются застойные зоны. На рис. 6.4,b приведена схема вытеснения с пятиточечной системой расположения скважин. Анализ возникающего при этом двумерного течения показывает, что в зонах 3 (рис. 6.4b) скорость течения будет мала по сравнению со скоростями течения в областях, прилегающих к прямым, соединяющим нагнетательную и добывающие скважины. Поэтому эти зоны и окажутся застойными. Отношение незаштрихованных областей на рис.6.4b ко всей площади пятиточечной ячейки можно считать площадным коэффициентом охвата пласта заводнением.

Величина застойной зоны и коэффициент охвата пласта зависят от параметра , где Q - дебит добывающей скважины; L - характерный размер (например, половина расстояния между соседними скважинами).

Коэффициент охвата пласта увеличивается с увеличением параметра . Вместе с тем следует отметить, что для установления чистого эффекта изменения коэффициента охвата из-за предельного градиента давления применительно к реальному месторождению необходимы исследования, позволяющие исключить влияние ряда других причин, связанных с деформацией горных пород, неоднородностью пласта, физико-химическими явлениями и т. п.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Закон Ньютона и его графическое представление.

2. Классы Неньютоновских жидкостей.

3. Стационарно реологические жидкости.

4. Нестационарно реологические жидкости.

5. Вязкоупругие жидкости.

6. Виды стационарно реологических жидкостей.

7. Вязкопластичные жидкости.

8. Псевдопластичные жидкости.

9. Дилатантные жидкости.

10. Закон фильтрации вязкопластичной жидкости.

11. Степенной закон фильтрации.

12. Уравнение притока для вязкопластичной жидкости и его отличие от уравнения Дюпюи.

13. Уравнение пьезопроводности для вязкопластичной жидкости.

14. Описать изменение забойного давления во времени в случае вязкопластичной фильтрации.

15. Образование застойных зон при вытеснении нефти водой.

7. УСТАНОВИВШАЯСЯ ПОТЕНЦИАЛЬНАЯ ПЛОСКАЯ (ДВУХМЕРНАЯ) ФИЛЬТРАЦИЯ

Основная проблема разработки нефте-водо-газоносных пластов - расчет притока к одной или группе совершенных скважин. Точные решения, как правило, оказываются весьма сложными и громоздкими. При разработке проектов в настоящее время используют численные методы, связанные с довольно большими затратами как финансовыми, так и временными. Для оценочных целей и получения выражений для определения дебитов можно применять более простые приближенные, но вместе с тем достаточно точные методы расчета. Это методы, использующие аппарат функции комплексного переменного и свойства уравнения Лапласа.

При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:

1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Это означает, например, невозможность установления нулевого или отрицательного забойного давления.

Рис. 7.1. Зависимость суммарного дебита от числа скважин

2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.

Следует отметить, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.7.1). Увеличение дебита при этом требует понижения забойного давления.

Для решения поставленных задач необходимо решить задачу плоской интерференции (наложения) скважин.

Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой, и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.

7.1 Метод суперпозиции (потенциалов)

Решение задач будем строить методом суперпозиции (наложения) потоков и методами теории функций комплексного переменного.

Метод суперпозиции заключается в следующем.

а б

Рис. 7.2. Схема векторного сложения скоростей фильтрации в произвольной точке М при работе нескольких источников и стоков

При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.7.2b).

Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 7.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал

, (7.1)

где i - номер скважины; ri - расстояние между некоторой точкой пласта М и центром скважины под номером i.

Пользуясь методом суперпозиции, определяем потенциал сложного потока:

, (7.2)

где .

Зависимость (7.2) физически означает, что фильтрационные потоки от работы каждого источника-стока накладываются друг на друга. Так как. пласт предполагается неограниченным, то потенциал на бесконечности равен бесконечности. В центрах стоков-источников (ri=0) потенциал также равен бесконечности.

Если жидкость несжимаема, то в зависимости (7.2), вместо массовых дебитов, можно использовать объёмные дебиты Q.

Для определения уравнений эквипотенциальных поверхностей (изобар) следует иметь в виду, что во всех точках этих кривых значение потенциала (давления) должно оставаться неизменным. Таким образом, приравнивая (7.2) к некоторой постоянной, получаем:

, (7.3)

где П - знак произведения; С1 - постоянная.

Если дебиты всех скважин равны по величине, то

, (7.4)

где обозначение sign означает знак параметра Gi .

Линии тока образуют семейство кривых, ортогональных изобарам.

Метод суперпозиции можно использовать не только в бесконечных пластах, но и в пластах, имеющих контур питания или непроницаемую границу произвольной формы. В этом случае для выполнения тех или иных условий на границах вводятся фиктивные стоки или источники за пределами пласта. Фиктивные скважины, в совокупности с реальными, обеспечивают необходимые условия на границах, и задача сводится к рассмотрению одновременной работы реальных и фиктивных скважин в неограниченном пласте. Данный метод называется методом отображения источников и стоков.

Формула (7.2) - основная в решении задач интерференции скважин. Рассмотрим применение этой формулы в случаях: фильтрационного потока от нагнетательной скважины к эксплуатационной; пласта с произвольным контуром питания, но удалённым от скважин и пласта с прямолинейным контуром питания.

7.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной

Рис. 7.3. Схема расположения источника 01 и стока 02

Пусть сток О1 и источник О2 равнодебитны, т.е. имеют одинаковые по модулю массовые дебиты G. Расстояние между источником и стоком равно 2а. Исследуем поток от источника к стоку.

Проведём ось 0х через точки О1 и О2 таким образом, чтобы точка О1 находилась от начала координат 0 на расстоянии а1, а точка О2 на расстоянии а2 (рис. 7.3).

По формуле (7.2) определим потенциальную функцию потока. При этом учтем знаки дебитов: источник G 1= - G, а сток G 2= + G. После подстановки получим

, (7.5)

где r1 и r2 - расстояния любой точки пласта до стока и источника, соответственно.

Уравнение изобар (7.4) при этом будет иметь вид

(7.6)

Рис. 7.4. Фильтрационное поле источника и стока

и соответствует окружностям, центры которых расположены на прямой, проходящей через центры скважин (рис.7.4). Среди окружностей есть одна, имеющая бесконечно большой радиус - прямая, которая делит расстояние между скважинами и всю плоскость течения пополам. Половина всех окружностей конечного радиуса расположена по одну сторону от этой прямой, остальные окружности - по другую.

Семейство линий тока ортогонально изобарам и, следовательно, в данном случае тоже окружности. Все линии тока проходят через сток и источник. Центры всех окружностей линий тока расположены на прямой, делящей расстояние между стоком и источником пополам (рис.7.4).

Массовый дебит эксплуатационной и нагнетательной скважин при их совместной деятельности определяется на основе соотношения (7.5), расписанного для каждой скважины при учете отношений радиусов (рис.7.3): на контуре эксплуатационной скважины - ; на контуре нагнетательной скважины - . Решая, полученную систему уравнений, имеем

. (7.7)

Массовая скорость фильтрации в любой точке пласта M (рис.7.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока

Модуль массовой скорости i-ой скважины равен

, (7.8)

/ ,

/

Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, то есть по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, прошедшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.

Чтобы решить указанную задачу, выразим скорость в (7.8) через производную расстояния по времени и, поместив начало координат в сток О1, проинтегрируем полученное уравнение по х от х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью

. (7.9)

Время обводнения Т, т.е. время прохождения частицы расстояния О1О2= 2а определится из (7.9), если принять х=0; х0=2а

, (7.10)

где Q - объёмный дебит.

Зная Т, можно найти площадь обводнения , приравнивая объёмы TQ и mh. Откуда

. (7.11)

Анализ формул (7.9) и (7.10) показывает, что расстояние, пройденное частицей за время Т от нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.

7.1.2 Приток к группе скважин с удаленным контуром питания

В большинстве практических случаев контур питания находится довольно далеко. Поэтому решения данной задачи позволяют провести предварительную оценку однородных участков месторождений.

Рис. 7.5. Схема группы скважин в пласте с удаленным контуром питания

Пусть в пласте расположена группа из n скважин (рис. 7.5) с различными дебитами Gi, забойными потенциалами pi и радиусами скважин ri. Расположение скважин задано и на достаточно большом удалении находится контур питания, форма которого неизвестна, но известен порядок расстояния rк от контура питания до группы скважин. При этом rк намного больше расстояния между скважинами. Считаем, что потенциал контура к и забойные потенциалы скважин i. заданы.

Для определения дебитов используем формулу (7.2) при помещении точки М на забое каждой скважины, что позволяет записать n - уравнений вида

, (7.12)

где rci - радиус скважины, на которую помещена точка М; rji - расстояние между i - й и j - й скважинами; ci - забойный потенциал i-й скважины.

Неизвестных же - n+1, так как константа С тоже неизвестна. Для нахождения С воспользуемся условием =к на удалённом контуре питания:

. (7.13)

Приближение заключается в том, что для удаленных точек контура питания от скважин принимаем одно и то же расстояние rк, что справедливо для достаточного удаления контура, учитывая, что оно находится под знаком логарифма. Уравнение (7.13) и будет (n+1) уравнением.

Таким образом, плоская задача интерференции при удалённом контуре питания сводится к решению алгебраической системы уравнений первой степени (7.12), (7.13).

При помощи данной системы можно находить или депрессию при заданном дебите, или получить значения дебитов при заданных депрессиях. При найденных дебитах можно определить пластовое давление в любой точке по (7.2), причем результат будет тем точнее, чем дальше эта точка отстоит от контура питания.

7.1.3 Приток к скважине в пласте с прямолинейным контуром питания

Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1 на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал к. На скважине радиуса rc поддерживается постоянный потенциал с.

Рис. 7.6. Схема притока к скважине с прямолинейным контуром питания

Найдём дебит скважины G и распределение функции . Так как контур питания пласта 0у является эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой 0у (рис.7.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой 0у.Таким образом, используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 7.1.17. задаче о фильтрационном потоке от источника к стоку. Отличие данных задач только в постановке граничных условий: в задаче раздела 7.1.1. источник питания - нагнетательная скважина, а в данном случае - прямолинейный контур, а источник О2 фиктивный.

Используем для определения дебита выражение (7.10), но со следующей заменой граничных условий:

= к при r1 = r2 ,т.е. при r1/r2 = 1;

= с при r1 = rс , r2 2а, т.е. при r1/r2 rс /2а.

Подставляя последовательно соответствующие граничные значения , r1 и r2 в равенство (7.10), получаем два уравнения, определяющих потенциалы на контуре и забое. Из этих уравнений легко находится массовый дебит одиночной скважины в пласте с прямолинейным контуром

. (7.14)

Если бы в пласте была нагнетательная скважина, то в формуле (7.14) достаточно только изменить знак правой части.

7.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы

Данная задача может возникнуть при расположении добывающей скважины вблизи сброса или около границы выклинивания продуктивного пласта. В этом случае реальную скважину-сток зеркально отображают относительно непроницаемой границы, и дебиту скважины - отображения приписывают тот же знак, что и дебиту реальной скважины. При притоке к двум равнодебитным скважинам скорость фильтрации на непроницаемой границе будет направлена вдоль границы, т.е. граница является линией тока и фильтрация через неё отсутствует. Дебит скважины определяется из уравнений (7.12) и (7.13) для n=2 в пласте с удалённым контуром питания:

. (7.15)

7.1.5 Приток к скважине в пласте с произвольным контуром питания

В естественных условиях контур питания имеет произвольную форму и её не всегда удаётся определить. Кроме того, часто не удаётся определить достаточно точно и расстояние а от скважины О1 до контура. Можно ли в этом случае пользоваться формулой предыдущего раздела? Любой произвольный контур В находится между прямолинейным Впр и круговым Вкр (рис.7.7).

Рис.7.7. Схема видов контуров питания

Расчеты дебитов, проведенные для этих двух крайних разновидностях контуров, показывают:

При вычислении дебита скважины форма внешнего контура пласта не имеет сколько-нибудь существенного значения.

Чем дальше от внешнего контура пласта находится скважина, тем меньший дебит она имеет. Однако так как величина расстояния входит под знаком логарифма, то даже значительное изменение этого расстояния мало влияет на величину дебита

В случае расположения скважины эксцентрично относительно контура поток можно считать плоскорадиальным и дебит рассчитывать по формуле Дюпюи, если rк.>103 rc и эксцентриситет а1< rк /2.

Таким образом, для практических расчетов точное знание формы и расстояния до контура питания необязательно, но порядок расстояния до контура питания должен быть известен.

7.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин

При рациональной системе разработки нефтяных месторождений скважины располагают обычно в виде рядов, расставленных вдоль контура нефтегазоносности и контура питания. Эти линии называются батареями или рядами скважин. Без большой погрешности можно считать дебит скважин в каждом ряду одинаковым, если в каждом ряду скважины находятся в одинаковых условиях. Дебиты же скважин в разных рядах будут отличаться друг от друга. Наибольший дебит имеет первый ряд, ближайший к контуру питания, а по мере удаления дебит уменьшается. Поэтому число одновременно работающих рядов редко превышает два-три, и последующие ряды включаются по мере приближения контура нефтегазоносности. Когда вода подошла к первому ряду, то он выключается и включается один из следующих рядов и так далее.

В этом случае число неизвестных уменьшается от числа скважин n до числа рядов N (обычно число рядов не превышает 2-4), что значительно упрощает решение задачи пункта 7.1.2.

Рис. 7.8. Схема кольцевой батареи

Приток к скважинам кольцевой батареи. Пусть центры скважин располагаются в вершинах правильного n-угольника, т.к. что скважины образуют кольцевую батарею радиуса а (рис. 7.8). Контур питания удалён от скважин на расстояние, значительно превышающее радиус батареи, и тогда можно считать, что все скважины равноудалены от контура питания на расстояние rк. Будем считать, что на контуре питания поддерживается постоянное значение потенциала к и на контуре скважин потенциал постоянен и равен с. В данной постановке, следовательно, надо решить задачу о плоском течении к n точечным стокам, размещённым равномерно на окружности радиуса а.

Для получения формулы дебита скважин воспользуемся формулой (7.2):

, (7.15)

где G - массовый дебит любой скважины батареи, rj - расстояния от некоторой точки пласта до всех n скважин; h - толщина пласта.

Граничные условия:

на контуре питания =к=const, при rj=rк;

на контуре скважины =с=const, при r1=rс; rj(j1)=2a sin[(n-1)/n].

Используя данные граничные условия, преобразуем формулу (7.15):

, (7.16)

. (7.17)

В последнем выражении

. (7.18)

Тогда (7.17) перепишется в виде

(7.19)

и из (7.16), (7.19) получим выражение для определения дебита скважины

. (7.20)

Формула (7.20) справедлива при любом целом n. В частности, при n=1 имеем выражение типа формулы Дюпюи для определения дебита при плоскорадиальном потоке:

. (7.21)

Формула (7.20) - приближенная. Её можно применять в случае, если размеры пласта во много раз больше площади внутри окружности батареи скважин, например, при водонапорном режиме, когда жидкость можно считать несжимаемой. Если же в пласте установился режим растворенного газа, то трудно ожидать, что площадь, занятая газированной жидкостью, простирается до границ пласта.

Если расстояние до контура незначительно превышает радиус батареи, то, строго говоря, следует воспользоваться более точной формулой:

. (7.22)

Эта формула при n=1 переходит в формулу определения дебита эксцентрично заложенной одиночной скважины (а - эксцентриситет скважины). В большинстве практических случаев можно пользоваться формулой (7.20), т.к. уже при rк=10а дебиты, подсчитанные по формулам (7.20) и (7.22), различаются не более чем на одну тысячную процента.

Определим дебит батареи, умножив формулу (7.20) на число скважин в батарее n:

. (7.23)

Рассмотрим поле течения в области действия круговой батареи, То есть построим семейства линий тока и изобар. Уравнение изобар получаем из (7.3) путём представления радиусов rj в полярной системе координат (рис. 7.8):

. (7.24)

Данное уравнение позволяет построить поле изобар, а линии тока пересекают изобары под прямым углом.

Рис. 7.9. Изобары и изолинии тока для кольцевой батареи из трёх скважин

Плоскость течения (рис. 7.9) кольцевой батареи с n равнодебитными скважинами, размещенными в вершинах правильного многоугольника, делится на n равных частей (секторов) прямыми линиями тока Н, сходящимися в центре батареи и делящими расстояние между двумя соседними скважинами пополам.

Эти линии тока называются нейтральными. Другое семейство прямых линий тока Г проходит через центры скважин и делит сектор, ограниченный двумя нейтральными линиями, пополам. Это - главные линии.

Семейство изобар подразделяется на два подсемейства, которые разграничиваются изобарой, пересекающей себя в центре батареи столько раз, сколько скважин составляет данную батарею. Первое подсемейство изобар определяет приток к отдельным скважинам и представляет собой замкнутые, каплеобразные кривые, описанные вокруг каждой скважины. Второе семейство - определяет приток к батарее в целом и представляет собой замкнутые кривые, описанные вокруг батареи.

Скорость фильтрации по главным линиям максимальна, а по нейтральным линиям - минимальна. В центре кольцевой батареи скорость фильтрации равна нулю, т.е. частица жидкости, находящаяся в точке, в которой изобара пересекает сама себя, неподвижна. Такие точки фильтрационного поля называются точками равновесия и при разработке в окрестностях таких точек образуются “застойные области”. В условиях водонапорного режима в этих областях могут возникать “целики нефти”. Зная положения точек равновесия в пласте, можно находить рациональные приёмы для своевременной ликвидации целиков нефти. Одним из таких приёмов является изменение режима работы скважин, заставляющее нефть целика прийти в движение в нужном направлении.

Для кольцевой батареи, на основе анализа формул (7.20)-(7.23), можно сделать ряд оценок эффекта взаимодействия:

· дебит изменяется непропорционально числу скважин и радиусу батареи (расстоянию между скважинами);

· с увеличением числа скважин дебит каждой скважины уменьшается при постоянном забойном давлении, т.е. растет эффект взаимодействия;

· взаимодействие скважин может практически не проявляться только при очень больших расстояниях между скважинами (в случае несжимаемой жидкости, строго говоря, влияние скважин распространяется на весь пласт);

· с увеличением числа скважин темп роста суммарного дебита батареи замедляется (рис. 7.1), а именно, сверх определённого предела увеличение числа скважин оказывается неэффективным в виду прекращения прироста дебита.

Приток к прямолинейной батарее скважин. Рассмотрим, как и в предыдущем случае, приток к батарее при удалённом контуре питания в режиме поддержания постоянного забойного давления. В отличие от круговой батареи необходимо различать два случая:

· число скважин батареи нечетное;

· число скважин четное.

В обоих случаях дебиты скважин, равноудаленные от середины или от концов батареи, будут одинаковы, а при разной удаленности будут отличаться. Последнее вызывается неодинаковой интенсивностью влияния со стороны скважин батареи на те или иные скважины. При этом при нечетном числе скважин дебит средней скважины отличается от дебитов других скважин.

Дебиты равномерно расположенных скважин можно определить общим методом с использованием формулы (7.2). Можно вывести аналогичные уравнения для любой скважины прямолинейной батареи конечной длины в пласте с прямолинейным контуром питания, но с использованием дополнительно метода отображения. В этом случае запись уравнений оказывается громоздкой из-за необходимости учета не только взаимных расстояний между скважинами, но также расстояний между скважинами и воображаемыми источниками и расстояний между этими последними.

Для практических расчетов можно использовать приближенную формулу П.П. Голосова для общего дебита скважин прямолинейной батареи:

· для нечетного числа скважин 2n+1, где n - любое целое число

; (7.25)

· для четного числа скважин 2n

. (7.26)

Здесь h - толщина пласта; - расстояние между скважинами; L - расстояние до контура.

Ошибка в определении дебитов по данным формулам не превышает 3-4% при L=10км, rс=10см, при расстояниях между скважинами 100м 500м..

Приведенные формулы можно использовать при любом контуре питания, т.к. проведенные ранее исследования взаимодействия двух скважин показали, что форма контура питания пласта мало влияет на взаимодействие скважин. При этом, по мере приближения скважин к контуру питания эффект взаимодействия уменьшается, но в реальных условиях значительного удаления скважин от контура питания погрешность определения расстояния до контура даже в 100% не отражается значительно на эффекте взаимодействия. Для однородных пластов и жидкостей относительные изменения дебитов скважин, вызванные эффектом взаимодействия, не зависят от физико-геологических характеристик пласта и от физических параметров жидкости.

Рис. 7.10. Схема прямолинейной батареи скважин

Рассмотрим фильтрационное поле (рис.7.10), поддерживаемое бесконечной цепочкой равностоящих скважин (требование бесконечности приводит к ликвидации граничных эффектов на концах батареи и равнодебитности скважин, так как все скважины оказываются в равных условиях притока к ним флюидов).

Для получения формул дебита скважины бесконечной прямолинейной батареи воспользуемся формулой (7.20) дебита скважины кольцевой батареи. Положим, что

rк = L + a; a = n /(2 ), (7.27)

где L = const - разность между радиусом контура питания и радиусом кольцевой батареи а; = const - длина дуги окружности радиусом а между двумя соседними скважинами кольцевой батареи.

Подставив значения rк , a в формулу (7.20), получим

, (7.28)

где z= / (2l).

Переходя в данной формуле к пределу при n и учитывая, что=e, получаем формулу массового дебита скважины прямолинейной батареи:

. (7.29)

Здесь L - расстояние от контура питания до батареи; -- расстояние между скважинами батареи; h - толщина пласта.

Суммарный дебит из n - скважин определится следующим выражением:

. (7.30)

Для несжимаемой жидкости соотношение (7.35) можно переписать через давление и объёмный дебит

. (7.31)

Рис.7.17. Фильтрационное поле для бесконечной батареи.

Ортогональная сетка, изображающая фильтрационное поле бесконечной прямолинейной батареи, изображена на рис. 7.11 .

Здесь, как и в кольцевой батарее, имеются главные и нейтральные линии тока перпендикулярные цепочке. Нейтральными линиями тока вся плоскость течения делится на бесконечное число полос, каждая из которых является полосой влияния одной из скважин, находящейся в середине расстояния между двумя соседними нейтральными линиями. Главные линии тока проходят через центры скважин параллельно нейтральным линиям.

Изобара, бесчисленное множество раз пересекающая сама себя, отделяет изобары внешнего течения ко всей батареи, охватывающих всю цепочку скважин, от изобар притока к скважине, охватывающих только данную скважину. Точки пересечения граничной изобары являются точками равновесия и они делят интервал между двумя соседними скважинами пополам.

7.2 Метод эквивалентных фильтрационных сопротивлений (метод Борисова)

Данный метод называется методом Борисова и позволяет сложный фильтрационный поток в пласте при совместной работе нескольких батарей эксплуатационных и нагнетательных скважин разложить на простейшие потоки - к одиночно работающей скважине и к одиночно работающей батареи. Реализация данного метода достигается введением понятий внутреннего и внешнего фильтрационных сопротивлений, которые придают простейший физический смысл членам уравнений, используемых для подсчетов дебитов и значений потенциальных функций. Для выяснения этих понятий сравним формулы (7.30) или (7.31) с законом Ома I=U / R, где I - ток, U - разность потенциалов и R - сопротивление. Из сравнения видно, что фильтрационное сопротивление определяется величиной знаменателя правой части (7.30), который состоит из двух слагаемых. Если в (7.30) оставить только первое слагаемое, то оно будет выражать дебит в прямолинейно-параллельном потоке через площадь величиной nh на длине L. Таким образом, первое слагаемое выражает фильтрационное сопротивление потоку от контура питания к участку прямолинейной бесконечной цепочки, занятому n скважинами, в предположении замены батареи галереей. Борисов назвал эту часть фильтрационного сопротивления - внешним фильтрационным сопротивлением:

. (7.32)

Оставим теперь в (7.30) только второе слагаемое. В этом случае получим аналог формулы Дюпюи для суммарного дебита n скважин при плоскорадиальном течении и в предположении, что каждая скважина окружена контуром питания длиной . Таким образом, второе слагаемое выражает местное фильтрационное сопротивление, возникающее при подходе жидкости к скважинам. Появление этого сопротивления объясняется искривлением линий тока у скважин и, по Борисову, оно получило название внутреннего

. (7.33)

На внешнее и внутреннее фильтрационные сопротивления разделяется также полное фильтрационное сопротивление кольцевой батареи:

. (7.34)

Здесь выражает фильтрационное сопротивление потоку от контура питания к кольцевой батареи радиуса а в предположении, что поток плоскорадиален и батарея заменена галереей. Внутреннее сопротивление / - это сопротивление плоскорадиального потока от воображаемого контура окружности длиной 2а/n к скважине. Величина 2а/n - длина дуги сектора радиуса а, который содержит одну из скважин батареи.

Рис. 7.12. Схема одной Рис. 7.13 Электрическая

Батареи схема одной батареи

Электрическая схема в случае одной батареи (рис.7.12) имеет вид (рис.7.13). На рис.7.12 затемнены области внутреннего сопротивления.

а b

Рис.7.14. Схема n-батарей с двумя контурами питания:

а) линейные батареи;

b) кольцевые батареи

Рассмотрим случай притока к n эксплуатационным и нагнетательным батареям скважин и составим схему сопротивлений. Предположим, что скважины i - й батареи имеют забойные потенциалы сi (i = 1,...,n), пласт имеет контурные потенциалы к1 и к2 (рис. 7.14). Пусть к1 > к2. Очевидно, поток от контура питания к первому ряду скважин будет частично перехватываться первой батареей и частично двигаться ко второй. Поток ко второй батарее будет частично перехватываться второй батареей, частично двигаться к третьей и т.д. Этому движению отвечает разветвленная схема фильтрационных сопротивлений (рис. 7.15).

Рис. 7.15. Электрическая схема n-батарей с двумя контурами питания

Расчет ведется от контура с большим потенциалом к контуру с меньшим потенциалом, а сопротивления рассчитываются по зависимостям:

· прямолинейная батарея

(7.35)

· круговая батарея

(7.36)

где Li - расстояние между батареями (для i = 1 - L1 = Lк1 ); ri - радиусы батарей (для i = 1 - r0 = rк ); ki - число скважин в батарее.

Дальнейший расчет ведется, как для электрических разветвленных цепей, согласно законам Ома и Кирхгоффа:

· - алгебраическая сумма сходящихся в узле дебитов равна нулю, если считать подходящие к узлу дебиты положительными, а отходящие - отрицательными.

· - алгебраическая сумма произведения дебитов на сопротивления (включая и внутренние) равна алгебраической сумме потенциалов, действующих в замкнутом контуре. При этом и дебиты и потенциалы, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а направленные навстречу обходу отрицательными.

Следует помнить, что для последовательных сопротивлений =i, а для параллельных -

Рис.7.16. Электрическая схема n-батарей с двумя контурами питания (проницаемым и непроницаемым)

Если одна из границ непроницаема, то расход через неё равен нулю, и в соответствующем узле схемы фильтрационных сопротивлений задаётся не потенциал, а расход. На рис. 7.16 показана схема в случае непроницаемости второго контура, где вместо потенциала к2 (рис.7.15) задано условие Gi = 0.

Приведенные формулы тем точнее, чем больше расстояние между батареями по сравнению с половиной расстояния между скважинами. Если расстояние между скважинами много больше расстояния между батареями, то расчет надо вести по общим формулам интерференции скважин, или использовать другие виды схематизации течения, например, заменить две близко расположенные соседние батареи скважин с редкими расстояниями между скважинами (рис. 7.17,а) эквивалентной батареей - с суммарным числом скважин и расположенной посредине (рис.7.17,b).

a b

Рис. 7.17. Схема замены соседних батарей скважин одной батареей

7.3 Интерференция несовершенных скважин

В случае интерференции скважин несовершенных по степени вскрытия в условиях течения по закону Дарси вначале определяется дебит совершенных скважин с радиусами rс по формулам теории интерференции для притока к стокам и источникам на плоскости, а затем фильтрационное сопротивление каждой скважины увеличивается на величину коэффициентов несовершенства Сi (i = 1,...,4). При использовании метода эквивалентных фильтрационных сопротивлений двухчленный закон фильтрации надо представить в виде

, (7.50)

где можно рассматривать как нелинейное сопротивление, добавляемое к внутреннему сопротивлению .

Например, в схеме фильтрационных сопротивлений для условий линейного закона фильтрации, внутренние сопротивления следует заменить суммой , где . Дальнейший расчет ведется, как и ранее, при помощи законов Ома и Кирхгофа, но система уравнений получается уже не линейной, а содержащей квадратные уравнения, что приводит к усложнению вычислений.

7.3.1 Взаимодействие скважин в анизотропном пласте

Рис. 7.18. Кольцевая батарея скважин при двухзональной неоднородности пласта

При разработке часто возникают условия, при которых проницаемость в законтурной области меньше проницаемости внутри контура (рис.7.18).

Пусть в круге радиуса R0 проницаемость k1, а в кольце Rк проницаемость k2. При этом Rк >> a радиуса батареи.

Поток к n эксплуатационным скважинам идёт от окружности радиуса R0 и дебит G1 каждой скважины определяется по (7.20), где вместо к следует поставить 0 - потенциал на границе двух сред, а вместо rк - R0. Во второй области поток плоскорадиален от контура Rк до укрупненной скважины радиуса R0 и дебит скважины , где G определяется по формуле (7.21).

Имея в виду, что в пределах каждой зоны k = const, распишем потенциал в виде = kФ+С, где . Подставляя данное выражение для в соотношение для дебитов и исключая Ф0, получим

. (7.51)

Для однородной несжимаемой жидкости Ф = р/, а вместо массового дебита G/ надо подставить объёмный дебит Q. Пользуясь (7.51), можно сравнить дебиты батареи при различных относительных размерах частей I и II пласта и при различных соотношениях между проницаемостями. Расчеты показывают, что при k1/k2 = < 1 величина коэффициента суммарного взаимодействия (отношение суммарного дебита группы совместно действующих скважин к дебиту одиночной скважины) всегда выше, чем U батареи, действующей при тех же условиях в однородном пласте ( = 1). Если же >1, то U будет меньше его значения в однородном пласте. При одних и тех же значениях взаимодействие скважин будет тем больше, чем большую площадь при данных условиях занимает менее проницаемая часть пласта.

Рассмотрим случай, когда кольцевая батарея занимает область II, то есть область, примыкающую к контуру питания (а > R0). В этом случае

. (7.52)

Для анизотропных пластов эффект взаимодействия будет значительно усиленным или ослабленным лишь при резком различии проницаемостей в двух определённых направлениях: в направлении линии расстановки скважин и в направлении, перпендикулярном к этой линии.

Ослабление взаимодействия наблюдается в случае более низкой проницаемости в направлении линии расстановки скважин по сравнению с проницаемостью в перпендикулярном направлении. Усиление эффекта взаимодействия происходит в обратном случае. Таким образом, для уменьшения эффекта взаимодействия при закладывании новых скважин следует выбирать направление, в котором пласт наименее проницаем.

Взаимодействие скважин. С целью выявления влияния радиуса скважин на дебит при взаимодействии скважин сравним дебиты скважин кольцевой батареи из n эксплуатационных скважин в двух случаях: 1)скважины имеют радиус rc и 2)скважины имеют радиус хrc.

Из (7.20) следует

. (7.53)

Кроме того, рассмотрим случай, если в центре батарей действует нагнетательная скважина с дебитом, равным дебиту батареи:

. (7.54)

Из данных зависимостей следует, что с увеличением числа эксплуатационных скважин кольцевой батареи влияние их радиуса на дебит уменьшается, если отсутствует нагнетание жидкости в пласт. Если в центре батареи находится нагнетательная скважина, то влияние радиуса скважины на дебит будет больше, чем при отсутствии центрального нагнетания жидкости в пласт. При этом радиус скважины влияет на производительность больше, чем при одиночной эксплуатационной скважине. Число скважин при этом несущественно. Таким образом, взаимодействие эксплуатационных скважин с нагнетательными повышает влияние радиуса скважин на дебит.

7.3.2 Взаимодействие скважин при нестационарных процессах

Метод суперпозиции фильтрационных потоков используется и в задачах неустановившихся процессов при упругом режиме.

Группа скважин. Так, если в пласте действует группа скважин, в числе которых имеются как эксплуатационные, так и нагнетательные скважины, понижение давления в какой-либо точке пласта р определяется сложением понижений давлений, создаваемых в этой точке отдельными источниками и стоками, изображающими скважины рj. Следовательно,

, (7.29)

где n -число скважин; Qj - объемный дебит стока (+) или источника(-) за номером j; rj- расстояние данной точки пласта от скважины за номером j.

Так как аргумент интегрально-показательной функции мал (меньше 1), то зависимость (7.29) можно переписать в виде

. (7.30)

Данная зависимость используется для расчета параметров пласта путем обработки кривой восстановления давления в случае скважины, эксплуатирующейся в течение длительного времени и остановленной для исследования.

Периодически работающая скважина. В неограниченном пласте останавливается скважина, эксплуатирующаяся с постоянным дебитом Q в течении времени Т, сравнимого со временем проведения исследований. Понижение давления р/ в момент времени Т можно найти по формуле (7.23). С момента остановки давление в ней и окружающей области пласта повышается, т.е. с данного момента в одном и том же месте пласта как бы действуют совместно и непрерывно эксплуатационная (сток) и нагнетательная (источник) скважины. При этом источник имеет тот же дебит Q. Обозначим повышение давления за счет работы источника через р//. Таким образом, начиная с момента времени Т, на основании формулы (7.23) имеем:

, (7.31)

.

Результирующее понижение давления р в любой точке пласта находится по методу суперпозиции

. (7.32)

Обозначая через рс давление на забое скважины после её остановки, получаем

. (7.33)

Зависимость (7.33) используется при гидродинамических исследованиях скважин, работающих не продолжительное время, методом построения кривой восстановления давления.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Основные виды задач по заданию режима работы скважин.

2. Сущность метода суперпозиции.

3. Потенциал сложного потока.

4. Уравнения эквипотенциальных поверхностей.

5. Метод отображения источников и стоков.

6. Фильтрационный поток от нагнетательной скважины к эксплуатационной (выражение для потенциала, изобара, поле течения).

7. Фильтрационный поток от нагнетательной скважины к эксплуатационной (выражение для массового дебита, модуль массовой скорости, время и площадь обводнения).

8. Приток к группе скважин с удаленным контуром питания.

9. Приток к скважине в пласте с прямолинейным контуром питания.

10. Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы.

11. Приток к скважине в пласте с произвольным контуром питания.

12. Приток к скважинам кольцевой батареи (дебит скважины и батареи). Что такое - эксцентрично расположенная скважина?

13. Приток к скважинам кольцевой батареи (поле течения, оценки эффекта взаимодействия).

14. Приток к прямолинейной батарее скважин (конечное число скважин). В чем отличие формул Голосова для четного и нечетного числа скважин?

15. Приток к прямолинейной батарее скважин (бесконечное число скважин).

16. Метод Борисова (сущность, внутреннее и внешнее сопротивления).

17. Интерференция несовершенных скважин.

18. Взаимодействие скважин в анизотропном пласте (батарея расположена во внутренней неоднородности кругового пласта).

19. Взаимодействие скважин в неоднородно проницаемом и анизотропном пластах (батарея расположена во внешней неоднородности кругового пласта).

20. Периодически работающая скважина. Уравнение КВД.

21. Влияние радиуса скважины на дебит при взаимодействии скважин.

8. РЕШЕНИЕ ПЛОСКИХ ЗАДАЧ ФИЛЬТРАЦИИ МЕТОДАМИ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

8.1 Общие положения теории функций комплексного переменного

Рис. 8.1. Ортогональность изобар и линий тока

Круг задач, рассмотренных в предыдущем разделе, может быть значительно расширен, если к решениям применить аппарат теории функций комплексного переменного. При этом оказывается возможным исследовать отдельные вопросы плоского потока более полно. Рассмотрим связь между задачами плоского фильтрационного потока и теорией функций комплексного переменного.

Совместим с основной плоскостью течения плоскость комплексного переменного z = х + iy. Каждое комплексное число z изображается в этой плоскости точкой М (х, у) (рис. 8.1.). Функцией комплексного переменного z будет комплексное переменное F (z), если указан закон, позволяющий получить значение F (z) no заданному значению z.

Отделив в функции F (z) действительную часть от мнимой, можем записать

F (z) = F (х + iy) = (х, у) + i (х, у), (8.1)

где (х, у) и (х, у) - некоторые функции действительных переменных х и у; i - мнимая единица.

Задать функцию комплексного переменного - значит задать соответствие между парами чисел (х, у) и (, ). Функция F (z) является аналитической в точке zm, то есть имеющей производную во всех точках некоторой окрестности zm.

В теории функций комплексного переменного имеются следующие положения:

8. Каждые две кривые, из которых одна принадлежит семейству кривых, определяемых уравнением (х, у) = С, а другая - семейству кривых (х, у) = С* (С и С* - постоянные), пересекаются под прямым углом, т. е. два семейства кривых образуют ортогональную сетку в основной плоскости течения.

2. Функции (х, у) и (х, у) удовлетворяют уравнению Лапласа, то есть

; (8.2)

. (8.3)

Положения 1 и 2 справедливы, если выполняются такие условия:

. (8.4)

Условия (8.4) называются уравнениями Коши - Римана.

8.2 Характеристическая функция, потенциал и функция тока

Представим себе, что имеем плоский фильтрационный поток любой жидкости или газа, подчиняющийся закону Дарси. При рассмотрении одномерных течений было показано, что если фильтрация протекает по закону Дарси, существует потенциальная функция , удовлетворяющая уравнению Лапласа. Но если существует потенциальная функция , то наряду с ней существует функция , также удовлетворяющая уравнению Лапласа. Зная функцию , всегда можно определить функцию путем интегрирования уравнения (8.4).

Потенциальная функция течения определяется зависимостью основных параметров жидкости (или газа) и пористой среды от давления. Допустим, что эта зависимость однозначная; тогда можно заключить, что в основной плоскости течения линии равного давления (изобары) совпадают с эквипотенциальными линиями (х, у) = С. Но кривые (х, у)=С* взаимно ортогональны с эквипотенциальными линиями. Следовательно, направление векторов скорости фильтрации будет совпадать в любой данной точке М с направлением касательной к кривой семейства (х, у)=С*, то есть кривые этого семейства можно считать линиями тока. (При установившемся движении линии тока и траектории частиц жидкости совпадают). Функция (х, у) называется функцией тока.

Потенциальную функцию течения и функцию тока всегда можно принять за действительную и мнимую части некоторой функции F(z) комплексного переменного z (8.1).

Функция F (z) называется характеристической функцией течения (комплексным потенциалом).

Исследование любого плоского течения жидкости или газа в пористой среде должно начинаться с определения характеристической функции, соответствующей данной задаче. Найдя ее, мы можем считать задачу решенной. В самом деле, отделив в характеристической функции действительную часть от мнимой, т. е. представив ее в виде, показанном формулой (8.1), можно определить потенциальную функцию (х, у) и функцию тока (х, у). В результате можно представить полную картину потока: принимая различные значения функции , получим уравнения семейства эквипотенциальных линий (х, у) = С, а придавая различные значения , найдем уравнения семейства линий тока (х, у) = С*. По эквипотенциальным линиям определяется распределение давлений в пласте, по линиям тока - направление движения и характер поля скоростей фильтрации.

Проекции вектора массовой скорости фильтрации на оси координат можно записать в виде:

(8.5)

Примечание. Функции тока может быть дан следующий смысл. Фиксируем некоторую линию тока (х, у) = 0 и вообразим канал, ограниченный цилиндрическими поверхностями с образующими, перпендикулярными плоскости течения, проведенными через линию тока = 0 и другую линию тока (х, у) = С* и двумя плоскостями - плоскостью движения и ей параллельной, отстоящей от первой плоскости на расстояние, равное единице (рис. 8.2).

...

Подобные документы

  • Основные положения науки о движении нефти, воды, газа и их смесей (флюидов) через коллектора. Описание требований адекватности моделей реальным процессам подземной гидромеханики. Изучение особенностей законов фильтрации пористой и трещинной среды.

    презентация [760,3 K], добавлен 15.09.2015

  • Исследование притока жидкости и газа к несовершенной скважине. Влияние радиуса скважины на её производительность. Определение коллекторских свойств пласта. Фильтрация газа в пористой среде. Приближенные методы решения задач теории упругого режима.

    презентация [577,9 K], добавлен 15.09.2015

  • Основы теории фильтрации многофазных систем. Характеристики многофазной среды. Сумма относительных проницаемостей. Потенциальное движение газированной жидкости. Определение массовой скорости фильтрации капельно-жидкой фазы газированной жидкости.

    презентация [255,4 K], добавлен 15.09.2015

  • Основы фильтрации неньютоновских жидкостей. Реологические модели фильтрующихся жидкостей. Плоские задачи теории фильтрации об установившемся притоке к скважине. Оценки эффекта взаимодействия скважин круговой батареи. Скважины с удаленным контуром питания.

    презентация [430,1 K], добавлен 15.09.2015

  • Уравнения состояния флюидов и пористой среды. Математическое описание неразрывности фильтрационного потока. Соотношение между плотностью и давлением. Уравнение состояния идеального газа и его трансформация в зависимости от значения пластового давления.

    презентация [262,8 K], добавлен 27.11.2013

  • Расчет дебита воды через слабопроницаемый экран при дренировании нефтяного пласта. Уравнение границы раздела "нефть — вода". Совместный приток нефти и воды к несовершенной скважине, перфорированной в водоносной зоне без отбора газа из газовой шапки.

    курсовая работа [990,8 K], добавлен 20.03.2013

  • Осесимметричный приток газа к скважине. Линеаризация уравнения Лейбензона и основное решение линеаризованного уравнения. Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний. Расчет по линеаризованной формуле.

    курсовая работа [108,5 K], добавлен 31.01.2011

  • Задачи, решаемые индикаторными методами исследований. Индикаторы для жидкости. Определение скорости и направления фильтрационного потока. Исследование фильтрационного потока способом наблюдения за изменением содержания индикатора на забое скважины.

    курсовая работа [6,4 M], добавлен 24.06.2011

  • Одномерный фильтрационный поток жидкости или газа. Характеристика прямолинейно-параллельного фильтрационного потока. Коэффициент фильтрационного сопротивления для гидродинамически совершенной скважины. Понятие гидродинамического несовершенства скважины.

    курсовая работа [914,9 K], добавлен 03.02.2011

  • Напорный приток к дренажной галерее. Приток к совершенной скважине, расположенной в центре кругового пласта. Время движения частицы жидкости, движущейся по радиусу от контура питания к скважине. Стоки и источники. Фильтрация неньютоновских жидкостей.

    курсовая работа [538,7 K], добавлен 03.04.2014

  • Влияние радиуса скважины на ее производительность. Формулы для плоских и сферических радиальных притоков к скважинам с линейным и нелинейным законами фильтрации. Закон распределения давления для галереи. Расчет скорости фильтрации по закону Дарси.

    курсовая работа [1,3 M], добавлен 07.04.2012

  • Общие сведения о месторождении. Характеристика геологического строения, слагающих пород и продуктивного пласта. Методы интенсификации притока нефти к добывающей скважине. Операции по гидроразрыву пласта, их основные этапы и предъявляемые требования.

    дипломная работа [3,6 M], добавлен 24.09.2014

  • Гидродинамическая фильтрации жидкостей и газов в однородных и неоднородных пористых средах. Задачи стационарной и нестационарной фильтрации. Расчет интерференции скважин; теория двухфазной фильтрации. Особенности поведения вязкопластичных жидкостей.

    презентация [810,4 K], добавлен 15.09.2015

  • Схемы плоскорадиального фильтрационного потока и пласта при плоскорадиальном вытеснении нефти водой. Распределение давления в водоносной и нефтеносной областях. Скорость фильтрации жидкостей. Определение коэффициента продуктивности работы скважины.

    курсовая работа [371,9 K], добавлен 19.03.2011

  • Определение коэффициентов продуктивности скважины при различных вариантах расположения скважины в пласте. Оценка применимости линейного закона Дарси для рассматриваемых случаев фильтрации нефти. Расчет давления на различных расстояниях от скважины.

    курсовая работа [259,3 K], добавлен 16.10.2013

  • Эффективность разработки месторождения, дебиты добывающих скважин, приемистость нагнетательных и доля пластовой энергии на подъем жидкости непосредственно в скважине. Гидравлический разрыв пласта, гидропескоструйная перфорация и торпедирование скважин.

    презентация [1,8 M], добавлен 28.10.2016

  • Сущность и особенности определения истечения жидкости из резервуара через отверстия и насадки. Понятие и виды степени сжатия струи. Основные характеристики насадков при турбулентных режимах течения. Описание экспериментальной установки напорного бака.

    реферат [747,1 K], добавлен 18.05.2010

  • Краткие сведения о месторождении, коллекторских свойствах пласта и физико-химических свойствах пластовых флюидов. Анализ состояния эксплуатационного фонда скважин объекта. Оценка правильности подбора оборудования в скважине Красноярского месторождения.

    курсовая работа [213,9 K], добавлен 19.11.2012

  • Виды и методика гидродинамических исследований скважин на неустановившихся режимах фильтрации. Обработка результатов исследования нефтяных скважин со снятием кривой восстановления давления с учетом и без учета притока жидкости к забою после ее остановки.

    курсовая работа [680,9 K], добавлен 27.05.2019

  • Емкостные, фильтрационные и емкостные свойства коллекторов. Сжимаемость пород коллектора и пластовых жидкостей. Молекулярно-поверхностное натяжение и капиллярные явления. Реологические характеристики нефти. Подвижность флюидов в пластовых условиях.

    контрольная работа [288,3 K], добавлен 21.08.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.