Разработка модели пласта
Рассмотрение систем и технологий разработки нефтяных месторождений. Разработка нефтяных месторождений при естественных режимах. Общие требования и рекомендации по составлению проектных документов на разработку нефтяных и газонефтяных месторождений.
Рубрика | Геология, гидрология и геодезия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 13.11.2015 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Следовательно, режим пласта жесткий водонапорный.
Скорости фильтрации воды и нефти подчиняются обобщенному закону Дарси, так что
; , (6.46)
где и , и -- относительные проницаемости, зависящие от водонасыщенности и вязкости воды и нефти.
Рассмотрим функцию , называемую функцией Бакли-Леверетта. При этом
, (6.47)
Или
. (6.48)
Из (6.48), дифференцируя по , получим
. (6.49)
После подстановки (6.49) в (6.43) получим одно дифференциальное уравнение первого порядка для определения , т.е.
. (6.50)
По мере вытеснения нефти водой из прямолинейного пласта фронт вытесняющей нефть воды продвигается к концу пласта и водонасыщенность в каждом сечении заводненной области непрерывно увеличивается. Процесс вытеснения нефти водой из прямолинейного пласта можно представить и иным образом, следя за изменением по пласту некоторой водонасыщенности. Если, например, в какой-то момент времени в некотором сечении пласта водонасыщенность составляла , то спустя определенное время эта водонасыщенность будет и в конце пласта, так как нефть постепенно извлекается из него и ее место занимает вода. Для указанного можно принять
Или
. (6.51)
Сравним (6.50) и (6.51). Они будут идентичными, если положить
. (6.52)
Умножим и разделим (6.52) на и проинтегрируем, получим
; . (6.53)
Обозначим
, (6.54)
Тогда
. (6.55)
Задавая в формуле (6.55), можно определить расстояние от входа в пласт для данного значения водонасыщенности. Однако в период безводной эксплуатации закачиваемая вода еще не достигает конца пласта. Чтобы установить положение фронта вытеснения нефти водой и водонасыщенность на фронте вытеснения, рассмотрим материальный баланс закачанной в пласт воды. Если к моменту времени в пласт закачан объем воды, равный , длина фронта вытеснения составит , насыщенность пласта связанной водой , то
. (6.56)
Введем следующие обозначения:
; ; . (6.57)
Тогда, подставляя (6.57) в (6.56), получим
. (6.58)
Поскольку , то
.
Следовательно, из (6.58)
. (6.59)
В выражении (6.59) принято, что при и , т.е. на входе в пласт, мгновенно устанавливается водонасыщенность , при которой , а на фронте вытеснения значение ее в течение всего процесса составит .
Выполним интегрирование в левой части (6.59) по частям. Имеем
. (6.60)
В соответствии со сказанным водонасыщенность устанавливается в сечении . Следовательно, , поэтому и второй член в формуле (6.60) равен нулю. Далее, поскольку то, согласно формуле (6.47), . Таким образом, из (6.59) и (6.60) получим
,
Откуда
. (6.61)
На рисунке 42 приведен график, построенный с учетом кривых относительных проницаемостей, данных на рисунке 41, при .
По кривой можно найти значение , графическим путем. В самом деле, согласно рис. 41
.
Проведя касательную к кривой из точки , по точке касания (см. рисунок 41) определяем и .
Для того же, чтобы найти распределение водонасыщенности по длине пласта, необходимо построить кривую (рисунок 42). Это можно сделать методом графического дифференцирования кривой или, представив кривые относительных проницаемостей аналитически, выполнить дифференцирование аналитическим путем, сделав соответствующее построение.
Рисунок 41 График зависимости от |
Рисунок 41 График зависимости от |
Определим теперь длительность безводного периода добычи нефти, т.е. момент времени , когда фронт вытеснения достигнет конца пласта и, следовательно, будет равен . Будем считать, что к этому моменту времени в пласт закачано воды. Имеем из (6.57)
. (6.62)
Из (6.62) определим и, следовательно, . Величина равна объему пор пласта. Так как режим жесткий водонапорный, объем закачанной в пласт воды к моменту времени равен объему добытой из пласта нефти к этому же моменту времени, т.е. . Безводная нефтеотдача , где -- коэффициент вытеснения нефти водой, достигнутый в безводный период. Поэтому
. (6.63)
Заметим, что распределение водонасыщенности в пласте изменяется по мере продвижения в глубь пласта фронта вытеснения нефти водой таким образом, что значения на фронте вытеснения и на входе в пласт остаются неизменными. Таким образом, кривая распределения водонасыщенности как бы «растягивается», оставаясь подобной себе. Такое распределение некоторого параметра, будь то водонасыщенность или какой-либо другой параметр, называется автомодельным. Соответствующие решения задач также именуются автомодельными.
Полученные формулы позволяют рассчитать распределение водонасыщенности к моменту подхода воды к линии добывающих скважин, т.е. в безводный период разработки пласта.
Однако добыча нефти из пласта продолжается и после прорыва фронта вытеснения к концу пласта при .
Рисунок 43 Схема вытеснения нефти водой из прямолинейного пласта в водный период разработки. Распределение водонасыщенности: 1 -- истинное; 2 -- фиктивное
Для определения текущей нефтеотдачи и обводненности продукции при , т.е. в водный период разработки пласта поступим следующим образом. Будем считать, что продвижение фронта вытеснения происходит и в водный период разработки пласта, но этот фронт распространяется вправо за пределы пласта (рисунок 43). Водонасыщенность на таком фиктивном фронте вытеснения и в этом случае остается постоянной, равной , а водонасыщенность при уже составит . Пусть в некоторый момент времени фиктивный фронт находится на расстоянии от входа в пласт (см. рисунок 43). В соответствии с формулами (6.54) и (6.55) при можно написать
. (6.64)
Из (6.62) и (6.64) получим
. (6.65)
По формуле (6.65) находим для различных значений времени . Так, зная , и , определим вначале , а затем по графику функции -- значение .
Дебиты нефти и воды в водный период разработки пласта составят
;
. (6.66)
Отсюда для определения текущей обводненности продукции получим формулу
. (6.67)
Текущую нефтеотдачу в водный период разработки пласта можно определить в принципе следующим образом:
1) установлением объема накопленной добычи нефти по формуле:
;
2) отнесением этого объема накопленной добычи нефти к первоначальному объему нефти в пласте, равному .
Однако во втором случае можно определять объем добытой из пласта нефти по изменению в нем водонасыщенности, учитывая опять-таки то, что режим разработки пласта жесткий водонапорный. Так, на основе равенства объема вошедшей в пласт воды объему вытесненной из него нефти имеем
(6.68)
Формула (6.68) должна быть справедлива для всех моментов времени, когда . При , вообще говоря, водонасыщенность должна стать равной во всем пласте. Однако при любом другом значении времени водонасыщенность только на входе в пласт, т.е. при . Тогда, как следует из формулы (6.55), . Следовательно, из (6.68) получим
. (6.69)
~
Из (6.69) вытекает, что текущая нефтеотдача пласта в период водной его эксплуатации
. (6.70)
Таким образом, мы определили основные технологические указатели разработки элемента пласта -- текущую нефтеотдачу и обводненность добываемой продукции.
Рассмотрим непоршневое вытеснение нефти водой в радиальном направлении, например, при разработке элемента семиточечной системы с использованием заводнения. Схема элементарного объема пласта для такого случая показана на рисунке 44. Уравнение неразрывности фильтрующейся воды в таком объеме получим с учетом баланса втекающей и вытекающей воды за время в виде:
. (6.71)
Рисунок 44 Схема элементарного объема радиального пласта
Раскрывая скобки в выражении (6.71), сокращая в нем соответствующие члены и заменяя обозначения обыкновенных производных на частные, имеем
,
Или
. (6.72)
Вполне аналогичным образом, но с учетом того, что насыщенность пористой среды нефтью , установим соответствующее уравнение неразрывности для фильтрующейся в пласте нефти в следующем виде:
. (6.73)
Складывая уравнения (6.72) и (6.73), получим
. (6.74)
Вводя, как и в случае прямолинейного вытеснения нефти водой, функцию , определяемую формулой (6.47) (Бакли-Леверетта), и подставляя ее в (6.72) с учетом (6.74), будем иметь одно дифференциальное уравнение для определения водонасыщенности s в виде
. (6.75)
Так же, как и в прямолинейном случае, рассматриваем перемещение со временем в пласте линий . В этом случае
. (6.76)
Из (6.75) и (6.76)
.
Отсюда
, (6.77)
.
Рассмотрим баланс закачанной в пласт и извлеченной из него воды. Устремляя для простоты радиус скважины к нулю () имеем
. (6.78)
Учитывая из (6.71), что
; ,
и подставляя эти выражения в (6.78), приходим к интегральному соотношению
,
в точности совпадающему с соответствующим соотношением (6.59) для случая вытеснения нефти водой из прямолинейного пласта. Можно поэтому утверждать, что и при вытеснении нефти водой из радиального пласта справедливы соотношение (6.60) и все последующие рассуждения, включая формулу (6.61), пригодную для нахождения водонасыщенности на фронте вытеснения нефти водой, а также описанный графический метод определения .
Время безводной разработки пласта радиусом определим из (6.77). Если полагать, что , имеем
. (6.79)
Аналогично по формулам (6.66) и (6.65) находим текущую обводненность продукции, добываемой из пласта при . Соответственно текущую нефтеотдачу вычислим по формуле (6.70). Таким образом, определяем все важнейшие технологические показатели процесса вытеснения нефти водой.
6.4 РАСЧЕТ ПЛАСТОВОГО ДАВЛЕНИЯ И ДЕБИТОВ СКВАЖИН
При определении забойного давления в скважинах с целью выбора способов подъема жидкости из глубины на дневную поверхность, оценки фазового состояния нефти и воды, а также для вычисления градиентов пластового давления с целью определения скоростей перемещения фильтрующихся веществ, границ разделов между нефтью и водой необходимо знать поле пластового давления.
При решении задач фильтрации неоднородных жидкостей, в частности нефти и воды, наряду с вычислением поля водонасыщенности определяют и поле пластового давления. В случае вытеснения нефти водой из прямолинейного или радиального пласта при использовании модели поршневого вытеснения поле давления вычисляется просто по формулам, приведенным в предыдущем разделе.
В случае непоршневого вытеснения нефти водой даже из прямолинейного пласта распределение давления в нем устанавливать несколько сложнее. Поэтому рассмотрим последний случай более подробно.
Рисунок 45 Схема непоршневого вытеснения нефти водой из прямолинейного пласта 1 -- нефть; 2 -- вода
Согласно рисунку 45 и приведенным в предыдущем разделе формулам, имеем следующее выражение для суммарной скорости фильтрации нефти и воды в пласте:
. (6.80)
Отсюда, учитывая выражение для функции , получим
. (6.81)
При этом для простоты будем полагать в данном параграфе, что объем закачанной в пласт воды . Поскольку
; ,
после их подстановки в (6.81) имеем
. (6.82)
Учитывая, что , получим из (6.82), заменяя частные производные обыкновенными,
,
Или
. (6.83)
Согласно рисунку 45, в области пласта при движется чистая нефть. Будем считать, что фазовая проницаемость для нефти в этой области равна абсолютной. Тогда для полного перепада давления в прямолинейном пласте получим следующее выражение:
;
; (6.84)
.
Водонасыщенность на фронте вытеснения определяем по методике, приведенной в предыдущей лекции. Интеграл от функции водонасыщенности можно вычислить численным путем с использованием ЭВМ. При этом входящую функцию и вторую производную функции можно найти путем численного дифференцирования.
В радиальном случае на основе соответствующих формул предыдущей лекции имеем
. (6.85)
Дифференцируя формулу (6.77) имеем
. (6.86)
Подставляя (6.86) в (6.85) и заменяя частную производную на обыкновенную, получим
Или
. (6.87)
Для полного перепада давления между скважиной и контуром питания получим следующее выражение:
. (6.88)
Величины и определяем по соответствующим формулам предыдущего раздела.
При решении плоских задач вытеснения нефти водой численными методами на ЭВМ поле пластового давления вычисляют одновременно с полем водонасыщенности и нефтенасыщенности.
На практике бывает важно определить перепады забойного давления между нагнетательными и добывающими скважинамя не во все периоды, а в определенные моменты разработки, например в начальный ее период, когда в пласте движется одна практически не обводненная нефть, или в некоторые моменты после начала обводнения добываемой из пласта продукции.
Практически важно приближенно определить перепады давлений. Поэтому при таких расчетах можно использовать метод эквивалентных фильтрационных сопротивлений.
Рассчитаем распределение пластового давления при трехрядной схеме расположения скважин по методу эквивалентных фильтрационных сопротивлений. Для простоты возьмем однородный пласт и допустим, что происходит поршневое вытеснение из него нефти водой.
Рисунок 46 Схема части полосы трехрядной системы разработки 1 и 3 -- соответственно первый и второй ряд добывающих скважин; 2 -- ряд нагнетательных скважин
Рассмотрим тот случай, когда процесс заводнения только начался и нефть вытеснена лишь из области вокруг нагнетательной скважины радиусом (рисунок 46). Будем считать, что в часть полосы разработки, содержащей три ряда добывающих скважин, заключенных между рядами нагнетательных, закачивается вода с расходом . Длина рассматриваемой части полосы равна . Таким образом, если взять правый ряд нагнетательных скважин (см. рисунок 46), то влево от него, т.е. в рассматриваемую полосу будет поступать вода с расходом, равным . Остальная часть воды будет уходить в соседнюю полосу, которая должна находиться справа. Так как режим разработки пласта считается водонапорным, объемный расход воды равен объемному дебиту нефти в пластовых условиях. Дебит первого ряда добывающих скважин рассматриваемой части полосы равен , а дебит второго (центрального) ряда скважин . Поскольку в центральный ряд скважин поступает нефть также слева, то имеем следующее. Соотношение баланса жидкости в пласте:
. (6.89)
Согласно методу эквивалентных фильтрационных сопротивлений, с учетом того, что , имеем в соответствии с рисунком 46.
;
;
;
;
;
. (6.90)
Здесь и -- число скважин соответственно в нагнетательном, первом и втором рядах. Остальные обозначения указаны на рисунке 46 или соответствуют принятым ранее. Если сложить первые четыре из соотношений (6.90), то получим следующую формулу
. (6.91)
Сложим последние три соотношения формул (6.90). В результате получим
.(6.92)
Как известно, при расчетах процессов разработки нефтяных месторождений заданы:
дебиты скважин, необходимо найти перепады давления между забоями нагнетательных и добывающих скважин;
перепады давлений, необходимо найти дебиты рядов скважин.
В первом случае следует использовать формулы (6.91) и (6.92), во втором необходимо решать систему из следующих трех линейных алгебраических уравнений:
;
;
;
Где
;
;
. (6.93)
Решая эту систему уравнений, получим
; (6.94)
. (6.95)
Аналогичным образом решают соответствующие задачи в случае пятирядной и других схем расположения скважин.
6.5 ОПЫТ И ПРОБЛЕМЫ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ С ПРИМЕНЕНИЕМ ЗАВОДНЕНИЯ
Промышленное применение заводнения нефтяных пластов в СССР было начато в 1948 г. при разработке девонских горизонтов Туймазинского нефтяного месторождения. К этому времени уже были известны опыты закачки воды в нефтяные пласты с целью пополнения пластовой энергии, проводившиеся в различных странах.
При разработке нефтяных месторождений с применением заводнения вначале использовали законтурное заводнение. При этом нагнетательные скважины бурили за внешним контуром нефтеносности, вдоль него. Добывающие скважины располагали также вдоль контура нефтеносности. Линии расположения нагнетательных скважин были удалены от первых рядов добывающих скважин на 1 - 6 км.
Законтурное заводнение применяли на месторождениях, продуктивные пласты которых были сложены в основном песчаниками и алевролитами с проницаемостью 0.3 - 1.0 мкм2. Вязкость нефти в пластовых условиях заводняемых месторождений составляла -- 1 - 5·10-3 Па·с.
Законтурное заводнение осуществлялось часто не с самого начала разработки месторождений, а спустя некоторое время, в течение которого происходило падение пластового давления. Тем не менее, закачка воды в законтурную область пласта позволяла в течение одного-двух лет настолько восполнить запас пластовой энергии, что оно стабилизировалось.
Использование заводнения нефтяных пластов привело вначале к возникновению технологической трудности, связанной с низкой приемистостью нагнетательных скважин. Пласты, которые, согласно формуле Дюпюи, должны были при используемых перепадах давления поглощать запроектированные расходы воды, практически не принимали воду. Широкое применение методов воздействия на призабойную зону скважин, таких, как гидравлический разрыв пласта и кислотные обработки, и главным образом, использование повышенных давлений нагнетания привели к существенному увеличению приемистости нагнетательных скважин и, по сути дела, к решению проблемы их освоения.
Опыт разработки нефтяных месторождений с применением законтурного заводнения привел к следующим основным выводам.
1. Законтурное заводнение позволяет не только поддерживать пластовое давление на первоначальном уровне, но и превышать его.
2. Использование законтурного заводнения дает возможность обеспечивать доведение максимального темпа разработки месторождений до 5 - 7 % от начальных извлекаемых запасов, применять системы разработки с параметром плотности сетки скважин 20 - 60*104 м2/скв при довольно высокой конечной нефтеотдаче, достигающей 0.50 - 0.55 в сравнительно однородных пластах, и при вязкости нефти в пластовых условиях порядка 1 - 5*10 -3 Па·с.
3. При разработке крупных по площади месторождений с числом рядов добывающих скважин больше пяти законтурное заводнение оказывает слабое воздействие на центральные части, в результате чего добыча нефти из этих частей оказывается низкой. Это ведет к тому, что темп разработки крупных месторождений в целом не может быть достаточно высоким при законтурном заводнении.
4. Законтурное заводнение не позволяет воздействовать на отдельные локальные участки пласта с целью ускорения извлечения из них нефти, выравнивания пластового давления в различных пластах и пропластках и т.д.
5. При законтурном заводнении довольно значительная часть воды, закачиваемой в пласт, уходит в водоносную область, находящуюся за контуром нефтеносности, не вытесняя нефть из пласта.
Указанные выводы о результатах законтурного заводнения нефтяных пластов вызвали дальнейшее усовершенствование разработки нефтяных месторождений и привели к целесообразности использования внутриконтурного заводнения, особенно крупных месторождений, с разрезанием пластов рядами нагнетательных скважин на отдельные площади или блоки.
Дальнейшие исследования и опыт разработки показали, что наиболее целесообразно разрезание разрабатываемых пластов рядами нагнетательных скважин на отдельные блоки таким образом, чтобы между рядами нагнетательных скважин в блоке (полосе) находилось не более пяти рядов добывающих скважин.
Так возникла современная разновидность рядных систем -- блоковые системы разработки нефтяных месторождений: однорядная, трехрядная и пятирядная. Эти системы впервые стали применять на месторождениях Куйбышевской области.
Использование систем разработки с внутриконтурным разрезанием позволило в 2 - 2.5 раза увеличить темпы разработки по сравнению с законтурным заводнением, существенно улучшить технико-экономические показатели разработки. Блоковые рядные системы нашли большое применение при разработке нефтяных месторождений во многих нефтедобывающих районах, и особенно в Западной Сибири.
В дальнейшем, в основном с целью расположения резервных скважин, интенсификации и регулирования разработки месторождений, стали применять схемы очагового и избирательного заводнения, при использовании которых нагнетательные и добывающие скважины располагают не в соответствии с принятой упорядоченной системой разработки, а на отдельных участках пластов.
Очаговое и избирательное заводнение стали впервые применять на нефтяных месторождениях Татарии. Заводнение нефтяных пластов с его разновидностями в настоящее время -- главный метод воздействия на нефтяные пласты с целью извлечения из них нефти. Это главенствующее положение метод заводнения сохранит, видимо, и в начале XXI века.
Обширные фактические данные по разработке нефтяных месторождений с применением заводнения во многих случаях подтверждают с той или иной степенью точности теоретические результаты, получаемые на основе моделей поршневого и непоршневого вытеснения нефти водой из однородного, слоисто - неоднородного, а также трещиноватого и трещиновато-пористого пластов, если модель соответствует реальному пласту. Фактическое изменение пластового давления, добыча нефти и жидкости, зависимость текущей обводненности от нефтеотдачи согласуются с расчетными. Однако проблема правильного выбора модели, наиболее точно отражающей главные особенности разработки пласта, еще далека от своего полного разрешения. Модели разработки пластов, наиболее соответствующие действительности, могут быть построены лишь на основе тщательного изучения и учета свойств пласта и сопоставления результатов расчета процесса разработки пласта с фактическими данными. В последние годы в связи с ростом вычислительных возможностей ЭВМ получают большее развитие детерминированные модели пластов и процессов разработки. Их использование приводит к необходимости решения двумерных и трехмерных задач многофазной многокомпонентной фильтрации.
Богатый и весьма многообразный опыт применения заводнения в СССР позволил не только вполне определенно выявить его технологические возможности, но и сформулировать проблемы, связанные с этим методом воздействия на пласты.
Первая проблема заводнения возникла еще на стадии его лабораторных экспериментальных исследований. Затем теоретические исследования и анализ разработки нефтяных месторождений с различной вязкостью пластовой нефти показали, что с увеличением отношения вязкостей нефти и воды в пластовых условиях текущая нефтеотдача при одном и том же отношении объема закачанной в пласт воды к объему пор пласта снижается. Если, например, за условную конечную нефтеотдачу принять нефтеотдачу при прокачке через пласт трех объемов пор пласта, т.е. объема воды, равного , то в среднем при можно получить конечный коэффициент вытеснения порядка 0.6 - 0.7 для пород-коллекторов нефти с проницаемостью 0.3 - 1.0 мкм2.
Если же заводнение применяют на нефтяном месторождении с вязкостью нефти в пластовых условиях порядка 20 - 50*10 -3 Па·с, то конечный коэффициент вытеснения снижается до 0.35 - 0.4 в результате усиления неустойчивости процесса вытеснения нефти водой.
Лабораторные экспериментальные исследования вытеснения нефти водой, проводимые на моделях пластов, показывают, что при линия контакта нефть -- вода изгибается сравнительно мало (рисунок 47), но при она сильно деформируется (рисунок 48). При этом вода, вытесняющая нефть, движется языками, оставляя позади контакта нефть -- вода участки обойденной водой нефти.
Рисунок 47 Схема движения водонефтяного контакта в пласте при 1 -- область, занятая водой остаточной нефтью; 2 -- водонефтяной контакт; 3 -- область, занятая нефтью
Рисунок 48 Схема движения водонефтяного контакта в пласте при 1-3 -- см. рисунок 1; 4 -- скопление нефти, оставшееся позади водонефтяного контакта
Если , заводнение нефтяных месторождений, осуществляемое путем закачки в пласты обычной воды, оказывается неэффективным, поскольку конечная нефтеотдача получается низкой (порядка 0.1).
Та же самая картина возникает при использовании заводнения для вытеснения высокопарафинистой нефти из пластов, Если допустить сильное разгазирование нефти во время разработки месторождения на естественном режиме или снижение пластовой температуры ниже температуры кристаллизации парафина вследствие закачки в пласт воды с более низкой температурой, чем пластовая, то парафин, первоначально находившийся в нефти в растворенном состоянии, выделится из нее, вязкость нефти повысится и она приобретет неньютоновские свойства, что, в конечном счете, приведет к снижению нефтеотдачи.
Исходя из сказанного, первая проблема разработки нефтяных месторождений с применением заводнения состоит в ликвидации отрицательного влияния высокого отношения вязкостей нефти и воды, а также неньютоновских свойств нефти на текущую и конечную нефтеотдачу.
Исследования и опыт разработки привели к созданию следующих направлений решения этой проблемы:
применению для закачки в пласт горячей воды и водяного пара;
загущению воды полимерными добавками и другими веществами;
использованию влажного и сверхвлажного внутрипластового горения.
Следует отметить, что вода, замещающая в пласте извлекаемую из него нефть, действительно наиболее доступное и целесообразное с экономической точки зрения вещество. Поэтому новые, более эффективные методы разработки нефтяных месторождений будут, по всей видимости, и впредь базироваться на закачке в пласт воды, хотя сам механизм извлечения нефти из недр будет коренным образом отличаться от соответствующего механизма обычного заводнения.
Вторая проблема заводнения связана с принципиальной невозможностью достижения полного вытеснения нефти водой, даже при наиболее благоприятных условиях значительной проницаемости коллекторов и малых значениях параметра .
Главная причина невозможности полного вытеснения нефти водой из заводненных областей пластов заключается в несмешиваемости нефти и воды. Решить проблему обеспечения полного вытеснения нефти из пластов можно, либо обеспечив смешиваемость нефти с вытесняющим ее веществом, либо применив высокотемпературное воздействие на пласт, при котором происходило бы выпаривание нефти.
Третья, может быть наиболее обширная проблема, возникшая в результате анализа и обобщения опыта разработки заводняемых нефтяных месторождений, -- проблема обеспечения более полного охвата пластов процессом заводнения. Данные разработки показывают, что по целому ряду причин отдельные пропластки, входящие в объекты разработки, не поглощают воду и, следовательно, из них не вытесняется нефть. Кроме того, обводнение отдельных нефтяных скважин происходит весьма неравномерно даже при их строго упорядоченном расположении на нефтеносной площади месторождения, что ведет к оставлению в пласте не охваченных заводнением нефтенасыщенных зон.
Опыт применения заводнения показал, что решение проблемы повышения охвата пластов можно получить путем комплексного использования методов воздействия на призабойную зону добывающих и нагнетательных скважин, повышенных давлений нагнетания, эффективных средств подъема жидкости из скважин, методов регулирования разработки месторождений, а также выбора наиболее подходящей для физико-геологических условий месторождения системы его разработки, и в первую очередь соответствующего выбора объектов разработки и плотности сетки скважин.
При этом систему разработки, конечно, приходится выбирать на стадии составления технологической схемы разработки, когда месторождение еще не достаточно хорошо изучено.
При выборе оптимальных объектов разработки очень важную роль играет знание степени сообщаемости отдельных пластов по вертикали. Известно, что трещиноватость свойственна не только карбонатным коллекторам, но и пластам, сложенным песчаниками и алевролитами. Во многих случаях увеличению сообщаемости пластов по вертикали способствует наличие в разделяющих пласты непроницаемых слоях отдельных окон, т. е. проницаемых участков.
Оптимальные объекты разработки и плотности сетки скважин, как и систем разработки месторождения в целом, следует выбирать на основе технико-экономического анализа. Однако зависимость коэффициента охвата пласта заводнением от степени объединения пластов в объекты разработки и параметра плотности сетки скважин , устанавливают только на основе совместного изучения геологического строения пластов месторождения и процесса вытеснения из него нефти водой при различных системах разработки или многофакторного анализа результатов фактической разработки пластов с различной степенью объединения их в объекты разработки и различными параметрами плотности сетки скважин.
Для иллюстрации одного из приведенных положений рассмотрим в основных чертах методику нахождения зависимости на основе анализа возможных вариантов разработки месторождения при различных значениях параметра , с использованием зональных карт неоднородности месторождения.
Рисунок 49 Схема вертикального разреза участка пласта с несколькими пропластками 1, 2 и 4 -- соответственно пропласткн А, Б и В; 3 -- линза в пропластке; 5 -- непроницаемые прослои
Допустим, что разрабатываемый пласт месторождения состоит из нескольких пропластков (рисунок 49), разделенных прослоями непроницаемых пород. С целью построения зависимости для пласта в целом будем поочередно выделять из него отдельные пропластки и изучать, как зависит охват заводнением каждого пропластка от плотности сетки скважин.
Для упрощения будем считать, что неоднородность каждого из пропластков характеризуется линзами, не сообщающимися с остальной частью пласта. Если при некоторой плотности сетки скважин линзу вскрывают одновременно не менее двух скважин, одна из которых нагнетательная, а другая -- добывающая, то такая линза считается охваченной разработкой. Если же линзу не вскроет ни одна нагнетательная и ни одна добывающая скважина, то эта линза принимается не вовлеченной в разработку, а содержащиеся в ней запасы нефти исключаются из запасов, охваченных разработкой.
Рисунок 50 Схема расположения скважин в пропластке А при . 1 и 2 -- скважины соответственно нагнета-тельные и добывающие; 3, 4 и 5 -- линзы; 6 -- условный контур нефтеносности
Выделим из изучаемого участка разрабатываемого слоистого пласта пропласток А (рисунок 50). Этот пропласток содержит в пределах участка три линзы: 3, 4 и 5. Будем считать, что при разработке месторождения применяют однорядную схему расположения скважин. Рассмотрим изменение охвата пласта разработкой при этой схеме расположения скважин, но при двух различных и , причем . В случае, показанном на рисунке 50, соответствующем , охватывается разработкой только линза 4. Запасы нефти, содержащиеся в линзах 3 и 5, должны быть исключены из извлекаемых запасов рассматриваемого участка пласта.
Во втором случае (рисунок 51) при той же схеме расположения скважин плотность сетки скважин выше () и в линзы 3 и 5 пропластка 4 «попадают» не менее одной нагнетательной и одной добывающей скважины. Следовательно, все линзы охватываются разработкой, и коэффициент охвата пласта будет выше, чем в первом случае.
Рисунок 51 Схема располо-жения скважин в пропластке А при
Из приведенного примера следует, что для нахождения зависимости коэффициента охвата пластов месторождения разработкой следует прежде всего изучить и знать макронеоднородность пласта. Необходимо при этом отметить, что на охват пластов месторождения разработкой влияет не только их линзовидность, но и другие виды неоднородности и тектонические нарушения. Трещиноватость пластов может играть полезную роль в повышении их охвата разработкой, поскольку с помощью трещин соединяются литологически неоднородные пропластки, в результате чего повышается однородность пластов. Однако неоднородная трещиноватость приводит к преждевременным прорывам закачиваемой воды в добывающие скважины и к снижению коэффициента охвата пластов заводнением.
Для решения проблемы повышения охвата пластов заводнением необходимо количественно прогнозировать характер процесса вытеснения нефти водой в неоднородных пластах при различных системах разработки и рассчитывать, к каким результатам могут приводить те или иные мероприятия по частичному изменению системы разработки или режимов работы скважин, т.е. мероприятия по регулированию разработки.
Подобные расчеты сводятся к решению двумерных и трехмерных задач вытеснения нефти водой на современных быстродействующих ЭВМ.
Как уже указывалось, проблема изучения влияния плотности сетки скважин и систем разработки на охват пластов заводнением решается в общем виде также с применением методов многофакторного анализа фактической разработки месторождений с различными параметрами . При этом получают только осредненные зависимости, которые весьма приближенно можно использовать для конкретных месторождений.
Для аппроксимации таких общих зависимостей используют формулу ВНИИ
, (6.96)
или формулу В. Н. Щелкачева
, (6.97)
где , и -- постоянные коэффициенты.
Для того чтобы использовать формулы (6.96) и (6.97) применительно к конкретным месторождениям, нужно именно для этих месторождений определить коэффициенты , или , например путем изучения зональных карт неоднородности и систем разработки месторождений.
Выше указывалось, что решение проблемы повышения охвата пластов заводнением существенным образом связано с возможностью эффективного регулирования разработки, которое, пожалуй, можно выделить в самостоятельную проблему.
Одним из первых вопросов, возникших при решении проблемы регулирования разработки нефтяных месторождений и повышения охвата пластов заводнением, является вопрос о выводе из эксплуатации, т.е. отключении, обводнившихся скважин. Так, по мере продвижения водонефтяного контакта по отдельным пропласткам разрабатываемого пласта добывающие скважины обводняются. Вопрос состоит в следующем: при какой обводненности продукции отключать добывающие скважины с тем, чтобы не допустить существенного снижения нефтеотдачи?
Если, например, при трехрядной системе разработки пласта средний низкопроницаемый пропласток выклинивается вблизи первого ряда добывающих скважин (рисунок 52), то вывод из эксплуатации первого ряда скважин при слишком низкой обводненности приведет к очевидному снижению нефтеотдачи, если средний пропласток содержит значительные запасы нефти.
В проблеме регулирования разработки нефтяных месторождений имеется и много других еще не решенных вопросов.
Рисунок 52 Схема разреза пласта, состоящего из трех пропластков, разрабатываемого при трехрядной схеме расположения скважин 1 -- нагнетательная скважина; 2 -- пропласток 1; 3 -- добывающая скважина первого ряда; 4 -- пропласток 2, выклинивающийся между первым и вторым рядом добывающих скважин; 5 -- добывающая скважина второго ряда; 6 -- пропласток 3
Помимо указанных общих проблем разработки нефтяных месторождений с применением заводнения известен и целый ряд специальных, таких, например, как создание эффективных методов разработки низкопроницаемых, сильно неоднородных пластов, водонефтяных зон месторождений, коллекторов с высокой глинистостью, трещиновато-пористых пластов с неоднородной трещиноватостью и т. д.
Указанные проблемы могут быть решены также путем использования вместо обычного заводнения иных методов разработки нефтяных месторождений.
Размещено на Allbest.ru
...Подобные документы
Внешне оптимистичные и проблемные тенденции в разработке нефтяных месторождений. Нарушения проектных систем разработки. Методы и основные направления повышения эффективности разработки нефтяных месторождений и обеспечения стабильной добычи нефти.
презентация [259,8 K], добавлен 30.03.2010Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.
отчет по практике [2,1 M], добавлен 30.05.2013Анализ результатов исследований скважин и пластов, характеристики их продуктивности и режимов эксплуатации Давыдовского и Южно-Сосновского нефтяных месторождений. Разработка межсолевой залежи, система поддержания пластового давления и ее эффективность.
курсовая работа [4,6 M], добавлен 11.01.2017Выделение эксплуатационных объектов. Системы разработки в режиме истощения, с искусственным восполнением пластовой энергии. Разработка нефтяных залежей с газовой шапкой, закачкой газа в пласт и многопластовых месторождений. Выбор плотности сетки скважин.
реферат [260,3 K], добавлен 21.08.2016Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.
отчет по практике [4,5 M], добавлен 23.10.2011Первичный, вторичный и третичный способы разработки нефтяных и газовых месторождений, их сущность и характеристика. Скважина и ее виды. Наклонно-направленное (горизонтальное) бурение. Искусственное отклонение скважин. Бурение скважин на нефть и газ.
курсовая работа [1,8 M], добавлен 18.12.2014Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.
курсовая работа [1,9 M], добавлен 07.07.2015Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.
отчет по практике [2,0 M], добавлен 20.03.2012Общие сведения о промысловом объекте. Географо-экономические условия и геологическое строение месторождения. Организация и производство буровых работ. Методы увеличения производительности скважин. Текущий и капитальный ремонт нефтяных и газовых скважин.
отчет по практике [1,0 M], добавлен 22.10.2012Роль проектно-технологической документации (ПТД) в нефтегазовой промышленности. Общие требования к содержанию проектных документов. Технологическая или техническая часть ПТД. Основные геолого-физические характеристики месторождения. Запасы нефти и газа.
курсовая работа [37,5 K], добавлен 07.03.2015Краткая история развития нефтегазового дела. Понятие и назначение скважин. Геолого-промысловая характеристика продуктивных пластов. Основы разработки нефтяных и газовых месторождений и их эксплуатация. Рассмотрение методов повышения нефтеотдачи.
отчет по практике [1,6 M], добавлен 23.09.2014Изучение и оценка ресурсов углеводородного сырья в статическом и динамическом состоянии; геологическое обеспечение эффективной разработки месторождений; методы геолого-промыслового контроля. Охрана недр и природы в процессе бурения и эксплуатации скважин.
курс лекций [4,4 M], добавлен 22.09.2012Понятие о нефтяной залежи, ее основные типы. Источники пластовой энергии. Пластовое давление. Приток жидкости к скважине. Условие существования режимов разработки нефтяных месторождений: водонапорного, упругого, газовой шапки, растворенного газа.
презентация [1,0 M], добавлен 29.08.2015Характеристика пластовых флюидов. Состояние разработки месторождения. Методы вскрытия продуктивного пласта. Техника и технология гидропескоструйной перфорации. Анализ технологической эффективности проведения ГПП на скважинах Смольниковского месторождения.
дипломная работа [3,8 M], добавлен 11.03.2017Особенности, которые определяют специфику разработки нефтяных месторождений. Процесс поиска и разведки месторождений нефти и газа. Схема прогнозирования геологоразведочных работ. Распределение затрат при проведении поисковых и геологоразведочных работ.
презентация [1,4 M], добавлен 29.02.2016Извлечение нефти из пласта. Процесс разработки нефтяных и газовых месторождений. Изменение притока нефти и газа в скважину. Механические, химические и тепловые методы увеличения проницаемости пласта и призабойной зоны. Гидравлический разрыв пласта.
презентация [1,8 M], добавлен 28.10.2016Запасы, производство и потребление нефти по странам мира. Современные тенденции мирового рынка нефти. Организационно-экономические мероприятия, направленные на повышение эффективности разработки месторождений в условиях истощения нефтяных ресурсов.
курсовая работа [147,3 K], добавлен 25.12.2013Информация о предприятии, общие сведения о районе нефтяных и газовых месторождений. Контроль и поддержание оптимальных режимов разработки и эксплуатации скважин. Технологии термометрирования и расходометрии. Безопасность условий труда на месторождениях.
отчет по практике [187,7 K], добавлен 20.05.2015Геологическое строение месторождения. Стратиграфия и литология осадочного разреза. Физико-химические свойства и состав нефти, газа и вод. Анализ технологических показателей разработки залежи. Анализ современного этапа разработки, проводимых мероприятий.
дипломная работа [1,6 M], добавлен 11.12.2013Основные проектные решения по разработке месторождения. Обоснование выделения эксплуатационных объектов по геолого-физическим характеристикам пластов. Геолого-промысловое обоснование расчетной модели, варианты, проекты разработки объектов.
курсовая работа [7,2 M], добавлен 27.03.2011