Теоретические основы БЖД

Принципы и методы обеспечения безопасности. Рациональные режимы труда и отдыха. Защита водной среды от загрязнений. Технические способы и средства защиты от поражения электрическим током. Понятие о чрезвычайных ситуациях (ЧС) и их классификация.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курс лекций
Язык русский
Дата добавления 27.11.2012
Размер файла 566,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Одним из основных санитарных требований, предъявляемых к качеству воды водоемов, является содержание в ней необходимого количества растворенного кислорода (~8 мг/л). Вредны все загрязнения, которые способны уменьшить содержание кислорода в воде. ПАВ, жиры, масла, нефть, смазочные материалы образуют на поверхности пленку, которая препятствует газообмену между водой и атмосферой, что уменьшает насыщаемость воды кислородом.

Источники органических загрязнений: предприятия химической, пищевой и легкой промышленности, животноводческие хозяйства, речные и морские суда, поверхностные стоки, бытовые отходы, аварии судов и танкеров с нефтью.

3.4.3 Защита водной среды от загрязнений

Самое эффективное - применение технологий, которые позволяют многократно использовать техническую воду. В настоящее время система защиты водной среды включает следующие элементы:

1. контроль за уровнем содержания вредных примесей;

2. очистка сточных вод от нежелательных элементов;

3. сокращение сброса в водную среду вредных примесей вплоть до перехода на безотходное производство.

Защита водных ресурсов регламентируется «Основами водного законодательства СССР и союзных республик». Установлено ПДК на более чем 500 вредных веществ в водоемах.

3.5 Очистка сточных вод

Очистка сточных вод - это разрушение или удаление из них определенных загрязняющих веществ. Обеззараживание сточных вод предусматривает удаление из них патогенных микроорганизмов.

По химическому составу, количеству и скорости разложения загрязнители делят на 2 типа:

1. Стойкие (неразлогающиеся) загрязнители: соли ртути, дипольные соединения, ДДТ и др. Очистка от таких загрязнителей затруднена. Как правило, токсичность таких стоков уменьшают многократным разбавлением их водой. Применяется также огневой метод: испарение распыленных сточных вод при высокой температуре в продуктах горения органического топлива. При этом органические вещества окисляются с образованием продуктов полного сгорания, а минеральные вещества улавливаются.

2. Загрязнители поддающиеся органическому разложению.

3.6 Методы очистки сточных вод

Механический, биологический, химический, дезинфекция.

1. Механическая очистка заключается в извлечении из сточных вод нерастворимых веществ. При этом используются решетки, песколовки, сита, улавливатели, отстойники. При механической очистке сточные воды разделяют только на жидкую и твердую фазы.

2. Химическая очистка состоит в добавлении в сточные воды реагентов, которые вступают в реакцию с загрязняющими веществами, образуя безвредные соединения или вещества, выпадающие в осадок. Разработаны способы химической очистки сточных вод от красителей, цианидов, хроматов, кислот и др. После химической очистки жидкая часть сточных вод обычно содержит еще значительное количество нежелательных компонентов. Для их удаления или обеззараживания загрязненную воду подвергают биологической очистке.

3. Биологическая очистка заключается в использовании естественных или искусственных водоемов, в которых под действием солнца и воздуха в присутствии соответствующих микроорганизмов происходит естественный процесс очистки сточных вод.

Очистка может быть естественная и искусственная. Естественная биологическая очистка сточных вод осуществляется на полях фильтрации, полях орошения, в биологически окислительных прудах и т.д. Для искусственной биологической очистки применяют специальные сооружения. На них при очистке образуется биомасса микроорганизмов-деструкторов (активный ил), который периодически удаляют и обрабатывают. Эти сооружения называются биологическими фильтрами.

Биофильтр состоит из емкости из кирпича или железобетона, фильтрующей загрузки, распределительного устройства, днища с дренажем, через которое отводится очищенная вода. Проходя через фильтрующую загрузку, грязная вода оставляет в ней вследствие адсорбции взвешенные и коллоидные органические вещества, не осевшие в первичных отстойниках. Они образуют биопленку, густо населенную микроорганизмами, которые окисляют органические вещества и получают необходимую для своей жизнедеятельности энергию. Так из сточной воды удаляют органические вещества, а в теле биофильтра увеличивается масса активной биологической пленки. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из емкости.

Для очистки сточных вод используется также и аэрофильтры. В отличие от биофильтров они интенсивно продуваются снизу вверх воздухом и конструктивно оформлены в виде аэротенков.

Аэротенк - это резервуар, в котором для лучшего и непрерывного контакта постоянно перемешивается с помощью сжатого воздуха или специальных приспособлений смесь активного ила и очищаемой сточной жидкости.

Активный ил представляет собой массу микроорганизмов, образуется при аэрировании сточных вод. Он состоит из бактерий и простейших водорослей, способных эффективно сорбировать, окислять и разрушать органические вещества сточной жидкости до простейших соединений, используемых клетками для жизнедеятельности и интенсивного развития.

Показателем интенсивности аэробного окисления органических веществ и степени очистки сточных вод служит показатель биохимического потребления кислорода (БПК), растворенного в воде. В чистых районах морей или водоемов БПК не превышает 2-5 (мг кислорода)/л. В загрязненных - БПК достигает 50 (мг кислорода)/л. Когда бактерии минерализуют почти все органические примеси БПК резко падает. БПК определяют через временные интервалы, например через 5, 10, 20 суток, поэтому соответственно употребляют БПК5, БПК10, БПК20. Показатель БПК - основной критерий качества воды. Согласно правилам вода хозяйственно-питьевого назначения должна иметь БПК при 20 градусах Цельсия не больше 3 (мг кислорода)/л, а для спорта, отдыха и купания не больше 6 (мг кислорода)/л. Для оценки качества природных вод или степени очистки воды от загрязнения применяют показатель химического потребления кислорода (ХПК).

3.7 Безотходные технологии

Это самое радикальное решение проблемы охраны вод от загрязнений. Под безотходными технологиями понимают комплекс мероприятий, сокращающих до минимума количество примесей в сточных водах. Безотходные технологии развиваются в нескольких направлениях:

1. Создание бессточных технологических систем и водооборотных циклов.

2. Разработка и внедрение систем утилизации отходов производства и потребление их как вторичных материальных ресурсов; это исключает их попадание в водную среду.

3. Создание принципиально новых процессов получения традиционных видов продукции.

Примером предприятия с безотходным технологическим процессом может служить Усть-Каменогорский свинцово-цинковый комбинат.

3.8 Загрязнение почв

Наиболее активный и экологически значимый загрязнитель почв - пестициды - химические средства защиты растений и животных от различных вредителей и болезней.

В мире в среднем на 1 Га вносится 300 г химических средств защиты. В зависимости от объекта воздействия пестициды делятся на следующие группы:

1. Гербициды - для уничтожения сорной растительности;

2. Инсектициды - для уничтожения вредных насекомых;

3. Зооциды - для борьбы с грызунами;

4. Фунгициды - для борьбы с возбудителями грибковых заболеваний растений;

5. Бактерициды - для борьбы с бактериальными возбудителями болезней растений;

6. Лимациды - для борьбы с моллюсками;

7. Дефолианты - для удаления листьев;

8. Десиканты - для высушивания листьев на корню;

9. Дефлоранты - для удаления излишних цветков и завязей;

10. Ретарданты - регуляторы роста растений;

11. Репеллянты - для отпугивания насекомых, грызунов и других животных;

12. Аттрактанты - для привлечения насекомых с последующим их уничтожением.

Для некоторых видов химических веществ установлены ПДК в почве, мг/кг почвы.

Для оценки токсичности пестицидов принято пользоваться средней смертельной дозой (ЛД_50), вызывающей гибель 50% подопытных животных при поступлении препарата в организм. В зависимости от величины ЛД_50 пестициды, поступающие в кишечный тракт, делятся на:

1. Сильнодействующие - ЛД_50 <= 50 мг/кг веса;

2. Высокотоксичные - ЛД_50 = 50 - 200 мг/кг веса;

3. Среднетоксичные - ЛД_50 = 200 - 1000 мг/кг веса;

4. Малотоксичные - ЛД_50 = > 1000 мг/кг веса. Неумеренное применение пестицидов негативно влияет на качество почвы. Остатки пестицидов поступают в виде примесей в естественные воды, включаются в пищевые цепи, попадают в продукты питания и оказываются очень вредными для человека.

3.9 Радиоактивное загрязнение почвы

В последнее время (после 50-х годов) появился еще один опасный вид загрязнения атмосферы, воды и почвы - радиоактивные вещества, количество которых в биосфере заметно повышается в результате ядерных взрывов, развития атомной промышленности и энергетики, использования Радиоактивных препаратов и изотопов в медицине и биологии. Уже зафиксировано > 150 аварий на АЭС с утечкой радиоактивности.

Основную опасность при этом представляют долгоживущие радионуклиды. Их влияние на атмосферу, воду и почву различно и обусловлено не только скоростью рассеивания, но и их склонностью к концентрированию в водных организмах, к накоплению в почве.

Пример: распределение вредных радиоизотопов между составляющими пресноводного водоема, %

Изотоп

Вода

Грунт

Биомасса

32 P

10

28

62

60 Co

21

58

21

90 Sr

48

27

25

131 J

58

13

29

137Cs

6

90

4

Приведенные показатели свидетельствуют о том, что вода (85% массы всей Земли) содержит лишь 27% радиоизотопов, а биомасса (0.1% массы Земли) накапливает до 28% радиоизотопов.

Миграция радиоактивных веществ в почве определяется в основном ее гидрологическим режимом и химическим составом. Меньшей сорбционной емкостью обладает песчаная почва, большей - глинистая, суглинки, черноземы. Высокой прочностью удержания в почве обладают 90 Sr и 137 Cs.

Контроль за содержанием радиоактивных элементов в воде, атмосфере и почвах осуществляется с помощью специальных приборов - дозиметров (дозиметрический контроль), которые измеряют уровень радиоактивного загрязнения. При малых радиоактивных загрязнениях исследуемые образцы могут подвергаться специальной обработке для повышения содержания радиоактивного препарата (концентрирование).

В целях недопущения контакта человека с загрязненными радиоактивными веществами почвами и водой последние должны быть удалены или захоронены. Наиболее безопасными в экологическом и гигиеническом отношении считаются два способа захоронения:

1. Захоронение в изолированном виде, при котором вещество переводится в стекловидное состояние, перемешивается с цементом и заключается в контейнеры, выдерживающие большие давления, а затем сбрасывается на большие глубины.

2. Захоронение в разбавленном виде, при котором в море сбрасываются предварительно разбавленные радиоактивные отходы.

3.10 Тепловое загрязнение среды

Вызвано сжиганием огромного количества угля, нефти, газа и других видов топлива.

Тепловое воздействие оказывает отрицательное влияние на биосферу. Так, вместо обычной флоры появляются сине-зеленые водоросли: в теплой воде понижается содержание кислорода вследствие меньшей его растворимости и нарушается биологический режим водоемов.

Кроме того при тепловом загрязнении увеличивается испарение влаги с искусственных водохранилищ и оросительных систем, что приводит к изменению водного баланса в атмосфере.

Под влиянием теплового загрязнения уменьшается площадь снежно-ледяного покрова, повышается температура земной поверхности.

3.11 Шумовое загрязнение среды

Шум - одна из форм физического загрязнения окружающей среды, адаптация к которому физически невозможна. Шум характеризуется уровнем давления и частотой. Чем больше уровень давления, тем значительней отрицательный физиологический эффект. Для сна и отдыха уровень звукового давления не должен быть больше 35 дБ.

Экологически значимы и частотные характеристики. Инфразвуковые шумы создают ощущение дискомфорта, вызывают паники среди животных (и людей). Чем больше частота, тем больше вредность. У нас в стране введено нормирование шума.

Защита от шума производится несколькими путями:

1. Снижение шума в источнике;

2. Создание шумозащитных экранов в виде зданий, создающих акустическую тень внутри микрорайонов;

3. Применение растений в виде живых изгородей и др.

3.12 Электромагнитные излучения

Электромагнитные поля (ЭМП), создаваемые человеком, во много раз выше среднего уровня естественных полей. Радиопередающие устройства, ЛЭП и другие устройства создают ЭМП, оказывающие влияние на объекты биосферы.

Неблагоприятные последствия действия ЭМП на организм могут проявляться при напряженности 1000 В/м. ПДУ для населенных мест 2-10 В/м. Под ЛЭП напряженность может достигать нескольких тысяч.

Время пребывания человека в зоне действия электромагнитного поля, создаваемого токами промышленной частоты напряжением больше 400 кВ, необходимо ограничивать, так как появляется головная боль, расстройство сна, ухудшение памяти, раздражительность, депрессия, функциональные нарушения ЦНС и сердечно-сосудистой системы.

ГОСТ 12.1.002-84 - нормирует нахождение персонала в зоне электроустановок для электрических полей 50 Гц.

ГОСТ 12.1.045-84 - нормирует допустимые уровни напряженности электростатических полей.

Санитарные нормы СН 1742-77 нормируют напряженность магнитного поля на рабочем месте (<= 8 кА/м)

4. БЖД в производственных условиях

4.1 Электробезопасность

4.1.1 Действие эл. тока на организм человека

Проходя через организм человека эл. ток производит термическое, электролитическое, механическое и биологическое воздействие.

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве до высокой температуры органов, лежащих на пути тока, вызывая в них серьезные функциональные расстройства.

Электролитическое действие выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава.

Механическое действие выражается в расслоении разрыве тканей в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара от перегретой током тканевой жидкости в крови.

Биологическое действие проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов.

Перечисленные действия эл. тока на организм нередко приводят к различным электротравмам, которые условно разделяют на местные и общие.

К местным эл. травмам относятся:

1) ожоги;

2) металлизация кожи;

3) эл. знаки;

4) механические повреждения;

5) электроофтальмия.

К общим эл. травмам относится: эл. удар, при котором происходит возбуждение различных групп мышц тела человека, что может привести к судорогам или к остановке дыхания или сердца. Последнее связано с фибрилляцией - хаотическим сокращением отдельных волокон сердечной мышцы (фибрилл).

1. Ожоги возникают вследствие термического эффекта при прохождении тока через тело человека, а также при внешнем воздействии на него эл. дуги. Внешний вид ожогов - от покраснения кожи до образования пузырей и обугливания биологической ткани.

2. Металлизация кожи связана с проникновением в нее мельчайших частиц металла при его расплавлении под действием эл. дуги. С течением времени больная кожа сходит и происходит заживление.

3. Эл. знаки - это четко очерченные пятна серого или бледно-желтого цвета диаметром 1-5 мм на поверхности кожи человека, подвергшегося действию тока. Эл. знаки безболезненны и лечатся благополучно.

4. Механические повреждения обусловлены возбуждением и судорожным сокращением мышц тела, что может вызвать разрыв кожи, кровеносных сосудов и нервных тканей, а также вывих суставов и даже перелом костей.

5. Электроофтальмия - воспаление наружных слизистых оболочек глаз вследствие мощного ультрафиолетового излучения эл. дуги.

6. Электрический удар - это возбуждение живых тканей организма проходящим через него эл. током, сопровождающееся непроизвольными судорожными сокращениями мышц. Различают следующие 4 степени ударов:

а) судорожное сокращение мышц без потери сознания;

б) судорожное сокращение мышц с потерей сознания;

в) потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого)

г) клиническая смерть, то есть отсутствие дыхания и кровообращения.

Поражающее действие эл. тока зависит от следующих факторов:

1. напряжение прикосновения;

2. значение и длительность протекания тока;

3. род и частота тока;

4. состояние кожного покрова человека и сопротивление человека;

5. индивидуальных особенностей человека;

6. пути протекания тока;

7. состояния внешней среды;

8. схемы сети. Рассмотрим эти факторы.

1. Напряжение прикосновения Uпр(В) - это потенциалов двух точек цепи, которых одновременно касается человек или, иначе говоря, падение напряжения в сопротивлении тела человека Rчел (Ом):

Uпр = Iчел * Rчел

где Iчел - ток, проходящий через человека по пути рука-ноги.

ГОСТ 12.1.038-82 устанавливает предельные допустимые напряжения и токи, протекающие через тело человека для путей тока от одной руки к другой и от руки к ногам при нормальном (неаварийном) режиме работы эл. установки производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц.

2. Значение и длительность протекания тока. Чем больше ток, тем опаснее его действие. Человек начинает ощущать протекающий через него ток промышленной частоты (50 Гц) при I = 0.6-1.5 мА. Этот ток называется ПОРОГОВЫМ ОЩУТИМЫМ ТОКОМ. Этот ток не поражает человека, но может стать косвенной причиной несчастного случая (например, при работе на высоте).

Ток 10-15 мА (при 50 Гц) вызывает сильные и весьма болезненные судороги мышц рук, которые человек преодолеть не в состоянии. Такой ток называется пороговым неотпускающим.

При 25-30 мА действие тока распространяется и на мышцы грудной клетки, что приводит к затруднению и даже прекращению дыхания. При длительном воздействии такого тока (в течение нескольких минут) может наступить смерть от прекращения работы легких.

При 100 мА ток оказывает влияние на мышцы сердца, вызывая его остановку или фибрилляцию, при которой сердце перестает работать как насос и поставлять кровь органам. В итоге - смерть.

Длительность протекания тока на исход поражения вследствие того, что со временем резко возрастает ток за счет уменьшения сопротивления тела и накапливаются отрицательные последствия воздействия тока на организм.

3. Род и частота тока в значительной мере определяют степень поражения. Наиболее опасным является переменный ток с частотой 20 - 1000 Гц. При частоте меньше 20 Гц или больше 1000 Гц опасность поражения током заметно снижается. Токи частотой более 500 000 Гц эл.удара не вызывают но могут быть причиной термического ожога.

При постоянном токе пороговый ощутимый ток составляет 6-7 мА (вместо 0.6-1.5 мА при 50 Гц), а пороговый неотпускающий ток равен 50-70 мА, фибриляционный - 300 мА.

4. Состояние кожного покрова человека и сопротивление человека; Эл. сопротивление человека складывается из сопротивления кожи и сопротивления внутренних тканей

5. Индивидуальные особенности человека. На сопротивление тела человека оказывают также влияние физическое и психическое состояние. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводит к уменьшению величины сопротивления тела, т.е. поражение током будет более тяжелым, чем в нормальном состоянии. Сопротивление тела человека - величина непостоянная. Оно уменьшается в результате действия тока и при увеличении приложенного напряжения проходящего тока. С увеличением времени воздействия тока сопротивление тела падает (рис 2) за счет возникающих ответных реакций организма (расширение сосудов кожи, повышение потоотделения).

6. Путь протекания тока. Из всех возможных путей протекания тока через тело человека (голова-руки, голова-ноги, рука-нога, нога-рука и т.д.) наиболее опасными являются те, при которых поражается головной или спинной мозг (голова-руки, голова-ноги) сердце и легкие (руки-ноги).

7. Состояние внешней среды. Сопротивление тела зависит от состояния внешней среды: влажности, температуры, запыленности и т.д. При повышении температуры влажности, уменьшения подвижности воздуха изменяется влагоотделение (в т.ч. выделение пота) и уменьшается сопротивление кожного покрова, т.е. увеличивается вероятность поражения током.

8. Влияние схемы сети. Действие эл. тока на человека сказывается при включении тела в эл. сеть (прикосновение к токоведущим частям или нетоковедущим при при повреждении изоляции). Прикосновения возможны двухполюсные (фаза-фаза) и однополюсные (фаза-земля).

а) двухполюсное

б) однополюсное с несовершенной изоляцией

в) однополюсное при пробое на корпус

г) однополюсное при одновременном замыкании на землю одной из двух других фаз.

При прикосновении ток через тело человека I чел зависит не только от схемы внешней цепи, но и от схемы включения человека в электрическую цепь, от состояния изоляции токопроводящих частей установки, от режима нейтрали источника питания и др. обстоятельств.

Наиболее опасной является схема двухполюсного прикосновения. При этом ток идет по пути рука-рука (самый опасный путь) и будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека, т.е.

I чел = Uл/Rчел,

где Uл = sqrt(3)*Uфаз

При однополюсном прикосновении, которое случается чаще, в исходе поражения немаловажную роль играет режим работы нейтрали, сопротивление изоляции, емкость проводов относительно земли, сопротивление обуви, пола и т.д.

При прикосновении к одной из фаз последовательно с сопротивлением человека оказываются включенными сопротивление изоляции и емкости относительно земли двух других фаз. В этом случае ток через тело человека ограничивается включенным последовательно с человеком эквивалентным сопротивлением изоляции фаз, состоящим из активной и емкостной составляющей.

При наличии одновременного замыкания на землю другой фазы, т.е. когда сопротивление этой фазы становится маленьким, человек оказывается под линейным напряжением аналогично случаю с 2-х полюсным прикосновением.

Iчел = Uфаз * sqrt(3)/(R чел+r зм)

где r зм - малое сопротивление

При пробое изоляции часть тока замыкания на землю проходит через тело человека.

Система с изолированной нейтралью чаще применяется на предприятиях, где сети небольшой протяженности, а следовательно небольшая емкость и высокий уровень сопротивления изоляции фаз относительно земли.

На предприятиях с разветвленной сетью и большой ее протяженности с т. зр. электробезопасности предпочтение отдается сети с заземленной нейтралью (особенно в электроустановках до 1000В).

Человек оказался включенным под фазное напряжение, которое меньше линейного в 1,73 раза (sqrt(3)).

Выводы:

1. Прикосновение человека к исправной фазе в сети с заземленной нейтралью в аварийном режиме (при замыкании другой фазы на землю) более опасно, чем при нормальном режиме.

2. В период нормальной работы сети более безопасной является, как правило, сеть с изолированной нейтралью, а в аварийный период - сеть с заземленной нейтралью.

3. Сеть с заземленной нейтралью следует применять там, где невозможно обеспечить хорошую изоляцию проводов (из-за высокой влажности, агрессивной среды и т.д.), когда нельзя быстро отыскать или устранить повреждение изоляции (напр. на крупных предприятиях).

4. Сеть с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддержать высокий уровень изоляции проводов и когда емкость сети относительно земли незначительна, т.е. сеть малоразветвленная (напр. электротехнические лаборатории, малые предприятия).

5. При напряжении более 1000В по технологическим требованиям сети напряжением до 35кВ включительно имеют изолированную нейтраль, а выше 35кВ - заземленную.

4.1.2 Шаговые напряжения

Напряжение шага или шаговое напряжение Uш(В) есть разность потенциалов Fx и F(x+a) двух точек на поверхности земли в зоне растекания тока, которые находятся одна от другой на расстоянии шага «а»и на которых одновременно стоит человек. При этом длина шага принимается = 0,8м. Таким образом:

Uш = Fx - F(x+a) (1)

Шаговое напряжение представляет собой также падение напряжения в сопротивлении тела человека Rчел

Uш = Iчел * Rчел

где Iчел - ток, проходящий по пути нога-нога

Uш меняется от max до нуля. Максимальное значение Uш.max будет при наименьшем расстоянии от заземлителя, т.е. когда человек одной ногой стоит непосредственно на заземлителе, а другой - на расстоянии шага от него.

Наименьшее значение Uш будет при бесконечно большом удалении от заземлителя, а практически за пределами поля растекания тока, т.е. дальше 20м, В этом месте Uш=0.

4.1.3 Прикосновение в 2х-проводных линиях. Категорирование помещений по электробезопасности

Окружающая среда и окружающая обстановка усиливают или ослабляют опасность поражения током. С учетом этого «Правила устройства электроустановок» (ПУЭ) по степени опасности поражения током делят все помещения на 3 класса:

I. Помещения без повышенной опасности - это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например с деревянными) полами. Например конторские помещения, инструментальные, лаборатории и т.д.

II. Помещения с повышенной опасностью характеризуются наличием одного из следующих 5-ти условий, создающих повышенную опасность:

1.сырость, когда относительная влажность длительно >75% т.е. сырые помещения.

2.высокая температура, когда длительно Т>30 С т.е. жаркие помещения.

3.токопроводящие пыли (угольная, металлическая и т.д.), когда она оседает на проводах, проникает внутрь машин, т.е. пыльные помещения с токопроводящей пылью.

4.токопроводящие полы- металлический, земляной, железобетонный, кирпичный и т.д.

5.возможность одновременного прикосновения человека к заземленным металлоконструкциям и механизмам с одной стороны и металлическим корпусом электрооборудования - с другой стороны. Например складские неотапливаемые помещения.

III. Помещения особо опасные

1. особо сырые (влажность примерно 100%)

2. химически активные среды, пары или отложения, разлагающие изоляцию и токоведущие части электрооборудования.

3. одновременное наличие 2х и больше условий, свойственных помещениям с повышенной опасностью. Например гальванические цехи, мастерские, испытательные станции, участки работ под открытым небом или под навесом.

4.2 Технические способы и средства защиты от поражения электрическим током

1. Изоляция токоведущих частей - одна из важнейших задач обслуживающего персонала электроустановок. Состояние изоляции должно находиться в строгом соответствии с ПУЭ. Эти правила предусматривают для всех видов электроизделий совершенно определенное значение сопротивления изоляции, требуют соответствия класса изоляции изделия номинальному напряжению сети или установки, условиям окружающей среды и т.д.

Для своевременного выявления дефекта ПУ предусматривают периодические испытания изоляции и внешний осмотр.

Для переносного инструмента применяется двойная изоляция - устройство в одном токоприемнике двух независимых одна от другой ступеней изоляции, каждая из которых рассчитана на номинальное напряжение. Повреждение одной из них не должно приводить к появлению потенциала на доступных прикосновению металлических частях (например, покрытие металлического корпуса слоем изоляционного материала с хорошей механической и электрической прочностью). На корпусе изделия с двойной изоляцией на видном месте наносится геометрический знак - квадрат в квадрате, что отличает его от обычных изделий.

2. Применение малых напряжений. Для устранения опасности поражения током применяют пониженное напряжение < 36V.

В особо опасных помещениях при особо неблагоприятных условиях (работа в металлическом резервуаре, на токопроводящем полу лежа и т.п.) для переносных ламп требуется напряжение 12V.

3. Электрическое разделение сетей. В разветвленной электрической сети с большой протяженностью исправная изоляция может иметь малое сопротивление и большую величину емкости проводов. Это крайне нежелательно, так как в сетях до 1000V с изолированной нейтралью утрачивается защитная роль изоляции проводов и усиливается угроза поражения током.

Этот существенный недостаток можно устранить путем защитного разделения сети, т.е. разделения разветвленной цепи на отдельные небольшие участки, электрически не связанные между собой.

Разделение осуществляется с помощью специальных разделительных трансформаторов. Тогда у изолированных участков увеличивается сопротивление изоляции и уменьшается емкость проводов.

4. Обеспечение недоступности прикосновения к токоведущим частям осуществляется размещением их на недоступной высоте, ограждением, размещением на изоляторах и т.д. с выполнением регламентированных ПУЭ изоляционных расстояний по воздуху от токоведущих частей до защитных сооружений.

При этом должны быть приняты доступные меры предосторожности: например,

1) на высоте - соответствующие ограждения;

2) блокировки;

3) знаки безопасности;

4) предупреждающие плакаты;

5) защитное заземление - это соединение с землей металлических частей оборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки. Его назначение - устранить опасность поражения людей током.

Принцип действия - уменьшение до безопасных значений напряжений прикосновения и шага. Это достигается уменьшением потенциала заземленного оборудования и выравниванием потенциалов за счет увеличения потенциала основания, на котором стоит человек, до потенциала, близкого по величине к потенциалу заземленного оборудования.

Область применения - трехфазные сети с U <= 1 кВ с изолир. нейтралью и > 1000В с любым режимом нейтрали - с изолированной нейтралью с заземленной нейтралью.

Различают два вида заземления: выносное (сосредоточенное) и контурное (распределенное).

Нельзя применять для заземления трубопроводы горючих жидкостей и газов и взрывоопасных газов, а также трубопроводов, покрытых защитной изоляцией (от коррозии).

Согласно ПУЭ сопротивление защитного заземления в любое время года не должно превышать:

а) 40 ма - в установках до 1000 В (если мощность источника тока < 100 кВ А, то сопротивление заземления допускается 10 Ом);

б) 0,5 Ом в установках > 1000 В с большими токами замыкания на землю (> 500 А);

в) 250/I3, но не более 10 Ом - в установках > 1000 В с малыми токами замыкания на землю и без компенсации емкостных токов.

Если заземляющее устройство используется одновременно для U < 1000 В, то сопротивление заземления не должно превышать 125/I3, но не более 10 Ом.

Контроль защитного заземления. Недостатки защитного заземления:

а) Не защищает от поражения электрическим током при непосредственном прикосновении к токоведущим частям.

б) При U < 1000 В с заземленной нейтралью не всегда обеспечивает надежную защиту, что требует достаточно быстрого отключения поврежденного участка.

6) защитное зануление - присоединение к неоднократно заземленному нулевому проводу металлических частей электрооборудования, которые могут оказаться под напряжением при повреждении их изоляции или однофазного КЗ в электроустановках до 1000 В с глухозаземленной нейтралью.

Принцип действия: превращение пробоя на корпус в однофазном КЗ (то есть между фазным и нулевым проводом) с целью создания большого тока, способного обеспечить срабатывание защиты и автоматического отключения поврежденной установки.

Скорость отключения с момента появления напряжения на установке: 5-7 сек. - при плавких предохранителях, 1-2 сек. при защите автоматами.

Область применения: трехфазные четырехпроводные сети до 1000 В с глухозаземленной нейтралью. Это сети 380/220 В и 220/127 В.

По правилам ПУЭ нулевой провод должен иметь проводимость не более 1/2 проводимости фазного провода.

Назначение заземления нейтрали - уменьшение до безопасного значения напряжения относительно земли нулевого провода при случайном замыкании фазы на землю.

Назначение повторного заземления нулевого провода - уменьшение опасности поражения током при обрыве нулевого провода и замыкании фазы на корпус за местом обрыва.

Согласно ПУЭ Rп должно быть <= 10 Ом, лишь в сетях с трансформаторами W = 100 кВ А и меньше, сопротивление каждого повторного заземления может достигать 30 Ом при условии, что в этой сети число повторных заземлений не менее трех.

7) защитное отключение - устройство, быстро (не более 0,2 сек) автоматически отключающее участок электрической сети при возникновении в нем опасности поражения человека током.

Основными частями устройства являются прибор и автоматический выключатель.

Прибор - совокупность элементов, реагирующих на изменение параметров электрической цепи и дающих сигнал на отключение автоматического выключателя. Это датчики, реле, усилители.

8) защитные средства, применяемые на электроустановках, условно делятся на три группы:

а) изолирующие;

б) ограждающие;

в) вспомогательные.

а) Изолирующие средства делятся на основные и дополнительные:

Основные - способны длительное время выдерживать рабочее напряжение и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на них. (Диэлектрические резиновые перчатки, инструмент с изолированными рукоятками, токоискатели для U < 1000 В, для U > 1000 В - штанги, изолирующие и токоизмерительные клещи, указатели высокого напряжения.)

Дополнительные - обладают недостаточной электрической прочностью и не могут самостоятельно защитить человека от поражения током. Их назначение - усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться.

Для U < 1000В - диэлектрические калоши, коврики и изолирующие подставки.

Для U > 1000В - диэлектрические перчатки, боты, коврики и изолирующие подставки.

б) Ограждающие защитные средства предназначены:

- для временного ограждения токоведущих частей (переносные ограждения, щиты, изолирующие накладки и т.д.);

- для предупреждения ошибочных операций (предупредительные плакаты);

- для временного заземления отключенных токоведущих частей (временные защитные заземления).

в) Вспомогательные защитные средства предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий (защитные очки, противогазы, специальные рукавицы и т.д.)

Исправность защитных средств должна проверяться осмотром перед каждым применением, а также периодически через 6-12 месяцев.

4.3 Организация безопасности работ на электроустановках

Организация безопасности работ утверждена «Правилами технической эксплуатации электроустановок» (ПТЭ) и «Правилами техники безопасности при эксплуатации электроустановок» (ПТБ).

Основой организации безопасной эксплуатации является высокая техническая грамотность и сознательная дисциплина обслуживающего персонала.

Персонал, обеспечивающий нормальную эксплуатацию электроустановок условно делится на три группы:

1. Оперативный персонал - дежурный, несущий дежурство в электроустановке непосредственно или на дому. Его обязанность - оперативное обслуживание.

2. Ремонтный персонал - выполняет ремонт, монтаж, наладочные, строительные и другие работы на электроустановках.

3. Оперативно-ремонтный персонал - лица электротехнической квалификации. Их обязанность - оперативное обслуживание электроустановок, не имеющих дежурного персонала, и их ремонт (по необходимости).

Эти три группы должны пройти соответственно медосмотр и обучение со сдачей экзамена по ПТБ. Проверяемому присваивается одна из пяти квалификационных групп.

Все работы на электроустановках (ремонт, монтаж, установка, строительные и т.п.) должны производиться при обязательном соблюдении следующих условий:

а) на работу должно быть выдано разрешение уполномоченным на это лицом (наряд, устное или телефонное распоряжение);

б) работа должна производиться, как правило, не менее, чем двумя лицами;

в) должны быть выполнены организационные и технические мероприятия, обеспечивающие безопасность персонала.

4.4 Первая помощь пострадавшим от действия тока

4.4.1 Защита от статического электричества (СЭ)

СЭ - явление, вызванное накоплением и концентрацией электрических зарядов в процессе электризации, (т.е. явления, сопровождающего процессы трения некоторых материалов, находящихся в твердой, жидкой и газообразной фазе и во взаимном перемещении).

Хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала.

СЭ в значительной степени зависит от влажности окружающей среды, т.к. степень ионизации воздуха определяется min содержанием влаги.

СЭ создает электростатическое поле - частную форму проявления электромагнитного поля.

Его особенность (электростатич.поле) - большое внутреннее электрическое сопротивление, проявляющееся, как правило, в образовании электрического тока в виде разрядов и сильной ионизации окружающей среды.

Опасности, связанные с образованием СЭ, не всегда в достаточной мере учитываются на производстве, поэтому несчастные случаи бывают неожиданными и тяжелыми.

СЭ не всегда можно сразу обнаружить и устранить, поэтому не всегда ответственные за работу лица могут дать соответствующие инструкции.

Электризация является также одним из наиболее трудно контролируемых процессов, что увеличивает брак, уменьшает производительность и создает опасные условия работы (с человеческими жертвами и тяжелыми травмами).

Ежегодные потери, связанные с СЭ, составляют в США примерно 500 млн. долларов.

Эксплуатация установок, в которых возможно образование СЭ, требует принимать обязательные меры к устранению самопроизвольной электризации обрабатываемого продукта и различных деталей технологического оборудования.

Можно указать следующие основные методы:

1. Заземление корпусов технологического оборудования (даже в ущерб технологии). Оно выполняется по общим правилам заземления, но вследствие малой мощности «генератора» зарядов допустимо сопротивление заземления до 100 Ом. Но полной гарантии искл. безопасности процесса нет (отводится лишь часть заряда).

2. Увеличение влагосодержания обрабатываемого продукта и окружающей среды. Это радикальный способ, но он не является эффективным и невозможен в процесса обработки материалов в аппаратах с дисперсными системами «газ - тв. фаза», вследствии изменения технологического процесса и ухудшения качества продукции, а также вследствии слабой адсорбции влаги на поверхности частиц порошкообразных материалов.

3. Антистатическая обработка поверхностей диэлектрических аппаратов и продуктов с помощью определенных химических составов. Эти покрытия 1) снижают трение между обрат. материалами внутренними поверхностями технологического оборудования, 2) увеличивают электропроводность трущихся поверхностей и 3) создают химическое сродство и хорошую гигроскопичность. Но этот способ находится еще в стадии разработки.

Антистатические покрытия применяются в текстильной, полиграфической, нефтехимической и резиновой промышленности.

4. Проведение технологических процессов в среде инертных газов. При этом уменьшается количество кислорода в смеси и тем самым уменьшается вероятность взрыва.Но способ дорогостоящий.

5. Нейтрализация СЭ путем создания в окружающей газовой среде ионов противоположного знака:

а) ионизация воздуха излучением (с помощью р-а препаратов)

б) ионизация воздуха с использованием электрических разрядов. Допустимые уровни напряженности электростатического поля устанавливаются ГОСТ 12.1.045-84 в зависимости от времени пребывания персонала на рабочих местах.

4.5 Характеристики магнитного поля

Характеризуется векторами напряженности эл. Е(В/м) и магнитного Н(А/м) полей. Эти векторы взаимно перпендикулярны. При распространении в проводящей среде они связаны соотношением:

w . m -кz

Е = Н v ----- е

б

w - круговая частота электромагнитных колебаний

б - удельная проводимость в-ва экрана

m - магнитная проницаемость этого в-ва экрана

к - коэф. затухания

z - расстояние от вход. плоскости экрана до рассматриваемой точки. При распространении в вакууме или воздухе Е = 377Н

Распространение электромагнитных волн связано с переносом энергии в поле. Вектор плотности потока энергии (интенсивность) электромагнитных волн J(Вт/м¤) называется вектором Умова-Пойтинга и определяется по формуле:

I = E * H

Согласно теории электромагнитного поля пространство около источника переменного или магнитного полей делится на две зоны:

1. ближняя зона (зона индукции), которая находится на расстоянии

л

R = ---

6 л

2. зона излучения на расстоянии R > 6

В зоне индукции еще не сформировалась бегущая электромагнитная волна и электрическое и магнитное поле можно считать независящими друг от друга, поэтому нормирование в этой зоне ведется как по электрической, так и по магнитной составляющей поля.

В зоне излучения (волновая зона) поле характеризуется бегущей электромагнитной волной, наиболее важным параметром которой является плотность потока мощности и нормирование в этой зоне ведется по интенсивности, которая обратно пропорциональна квадрату расстояния до точечного источника:

R ист

J = --------

4¶ R¤

R ист - мощность излучения источника

Для источника направленного действия (антенна)

R ист * б

J = -----------

4¶ R¤

б - коэффициент усиления антенны (по расчету)

4.6 Воздействие электромагнитного поля на человека

Зависит от напряженности электрического и магнитного полей, интенсивности потока энергии, частоты колебаний, локализации облучений на поверхности тела и индивидуальных особенностей организма.

Механизм этого воздействия заключается в поляризации молекул тела человека и их ориентации по направлению внешнего поля. Появляются ионные токи. Переменное электрическое поле вызывает нагрев тканей за счет переменной поляризации диэлектриков, так и за счет появления токов проводимости.

Поглощение энергии и возникновение ионных токов сопровождается нарушением тонкой структуры электрических потенциалов и циркуляции жидкости в клетках и внутренних органах.

Переменное магнитное поле приводит к изменению ориентации магнитных моментов атомов и молекул.

Чем больше напряженность поля и чем больше время воздействия, тем указанные эффекты сильнее.

Увеличение частоты приводит к увеличению проводимости тела, доли поглощенной энергии и уменьшению глубины проникания волн. Волны с л < 10 см. в значительной степени поглощаются кожей, а л = 10-30 см. - во внутренних органах (но это излучение наиболее вредно).

4.7 Гигиена труда и производственная санитария

4.7.1 Тепловой обмен человека с окружающей средой

Жизнедеятельность организма сопровождается непрерывным выделением теплоты в окружающую среду.

Величина тепловыделения зависит от степени физического напряжения в определенных климатических условиях и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа).

Для нормального физиологического процесса в организме теплота должна отводиться. Нарушение теплового баланса может привести к перегреву, потере трудоспособности и тепловой смерти.

Одним из важных интегральных показателей теплового состояния человека является средняя температура тела (внутренних органов) ў 36,5°С.

При выполнении работы средней тяжести и тяжелой в условиях высокой температуры воздуха температура тела людей может повышаться от нескольких десятых градуса до 1-2°С. Наивысшая температура внутренних органов, которую выдержал человек, составляла +43°С, а минимальная +25°С.

Температура кожи объективно отражает реакцию организма на действие термического фактора, т.к. ее температурный режим играет основную роль в теплопередаче. Она меняется в довольно широких пределах и при нормальных условиях под одеждой = 30-34°С. При неблагоприятных метеоусловиях на отдельных участках тела она может понижаться до 20°С, а иногда и ниже.

Нормальное тепловое самочувствие имеет место при тепловом балансе с окружающей средой.

Qтв = Qт.ср.

где Qтв - тепловыделение организма,

Qт.ср. - тепловыделение окружающей среды. В этом случае температура внутренних органов постоянна и = 36,5°С.

При Qтв > Qт.ср. повышается температура внутренних органов (становится «жарко»). Так, теплоизоляция человека в состоянии покоя (отдых сидя, лежа) от окружающей среды приведет к повышению температуры внутренних органов уже через 1 час на 1,2 °С.

При переноске небольших тяжестей (до 10 кг) и работе стоя повышение температуры уже на 5°С, (т.е. будет максимально допустимой).

При Qтв < Qт.ср. окружающая среда отбирает тепло от человека и происходит переохлаждение (понятие «холодно»).

Уравнение теплового баланса «человек - окружающая среда» впервые проанализировано в 1884г. профессором Флавицким. Теплообмен осуществляется конвекцией в результате омывания тела воздухом (q к), теплопроводностью через одежду (q m), излучением на окружающей поверхности (q и) и в процессе тепломассообмена (q mм) при испарении влаги, выводимой на поверхность кожи потовыми железами (q n) и при дыхании (q g).

Q т.ср. = q л + q m + q и + (q mм = q n + q g)

Конвективный теплообмен - перенос теплоты в жидкостях или газах перемещающимися частицами. Он определяется законом Ньютона:

q к = a к * Fэ (t пов - t о.ср.)

где t пов - температура поверхности тела человека (зимой ў27,5°С, летом ў 31°С),

t о.ср. - температура воздуха (окружающей среды), омывающего тело человека,

Fэ - эффективная пов-ть тела человека (зависит от положения тела в пространстве и ў 50-80% геометрической внешней поверхности тела человека). Для практических расчетов Fэ принимается = 1,8 м¤,

a к - коэффициент теплоотдачи конвекцией (в нормальных параметрах микроклимата принимают a к ў 4,06 Вт/м¤*град). Приближенно можно определить a к ў л г / б, где л г - коэффициент теплопроводности газа пограничного слоя, Вт/м*град, б - толщина пограничного слоя омывающего газа, м.

На поверхности тела человека имеется пограничный слой воздуха (= 4-8 мм при скорости движения воздуха W = 0). При повышении барометрического давления и в подвижном воздухе при W = 2 м/с толщина пограничного слоя составляет ў 1 мм.

Чем меньше температура воздуха и чем больше W, тем больше передача теплоты конвекцией. При t о.ср. > 36,5°С происходит нагрев тела.

На конвективный теплообмен заметное влияние оказывает и относительная влажность воздуха (Ф), т.к. q к = f (Р мм.рт.ст. и влагосодержания).

Передача теплоты через одежду человека q m можно условно представить как передачу тепла от частице к частице при их контакте. Можно написать УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ (уравнение Фурье):

q m = л о / _о * Fэ * (t пов - t о.ср.),

где л о - коэффициент теплопроводности тканей одежды человека Вт/м * град,

_о - толщина тканей одежды человека, м.

Теплообмен излучением q и происходит при помощи электромагнитных волн. Тепловая энергия, превращаясь на поверхности горячего тела в лучистую, передается на другую (холодную поверхность), где вновь превращается в тепловую. Лучистый поток q л может быть определен с помощью обобщенного закона Стефана-Больцмана:

q л = Спр * F1 * Ф1-2 [ (Т1/100) - (Т2/100) ]

Т1 - средняя температура поверхности тела и одежды человека,

К°, Т2 - средняя температура окружающих поверхностей, К°,

Ф1-2 - коэффициент облучаемости, зависящий от расположения и размеров поверхностей F1 и F2 и показывающий долю лучистого потока, приходящуюся на поверхность F2 от всего потока, излучаемого поверхностью

F1, С1 * С2 2 4

Спр = ------- - приведенный коэффициент излучения Вт/м К

С0 С1 и С2 - коэффициенты излучения теплообменных поверхностей,

2 4 С0 = 5,7 Вт/м К - коэффициент излучения абсолютно черного тела. 2 4

Для практических расчетов при t = 10-60°С Спр ў 4,9 Вт/м К ; Ф1-2 = 1. В этом случае количественное и качественное значение q л зависят в основном от степени черноты e и температуры окружающих человека предметов, т.е. q л = f (t о.ср., e).

Теплообмен при испарении влаги потовыми железами q п

q п = в п * r,

где в п - количество выделяемой и испаряющейся влаги, кг/с,

r - скрытая теплота испарения выделяющейся влаги, Дж/кг.

q п зависит от температуры воздуха, физической нагрузки, скорости движения воздуха W и относительной влажности.

Теплообмен от дыхания q д В технических расчетах можно принимать, что выдыхаемый воздух имеет температуру 37°С и полностью насыщен водяными парами.

q д = Vлв * Рвд * Ср (tвыд - tвд),

где Vлв - «легочная вентиляция», м /с

Рвд - плотность вдыхаемого влажного воздуха, кг/м

Ср - удельная теплоемкость вдыхаемого воздуха, Дж/кг*град

tвыд - температура выдыхаемого воздуха, °С

tвд - температура вдыхаемого воздуха, °С

«Легочная вентиляция» - это объем воздуха, вдыхаемого человеком в единицу времени. Она определяется как произведение объема вдыхаемого за один вдох воздуха (Vв-в, м3) на число циклов (n) дыхания в секунду:

Vлв = Vв-в * n

Частота дыхания непостоянна и зависит от нагрузки. При покое она = 12-15 вдохов в минуту, а при тяжелой физической нагрузке - 20-25.

Объем одного вдоха-выдоха зависит от физической нагрузки. При покое при каждом вдохе в легкие поступает ў 0,5л воздуха, а при тяжелой работе до 1,5-1,8л. Среднее значение Vлв при покое ў 0,4-0,5 м.куб/с, а при физической нагрузке >= 4 м.куб/с. ВЫВОД:

...

Подобные документы

  • Индивидуальные средства защиты органов слуха от вибрации и шума. Классификация помещений по характеру окружающей среды и опасности поражения электрическим током. Правила безопасности обслуживания электрических установок в производственных помещениях.

    реферат [380,3 K], добавлен 05.05.2015

  • Виды поражений электрическим током, электрическое сопротивление тела человека, основные факторы, влияющие на исход поражения током. Виды защиты от опасности поражения электрическим током и принцип их действия, мероприятия по электробезопасности.

    контрольная работа [37,6 K], добавлен 01.09.2009

  • Сущность и значение электробезопасности, законодательные требования к ее обеспечению. Особенности действия электрического тока на организм человека. Анализ факторов, влияющих на исход поражения электрическим током. Способы защиты от этого вида поражения.

    контрольная работа [34,7 K], добавлен 21.12.2010

  • Виды поражения электрическим током. Основные факторы, влияющие на исход поражения током. Основные меры защиты от поражения. Классификация помещений по опасности поражения током. Защитное заземление. Зануление. Защитные средства. Первая помощь человеку.

    доклад [8,7 K], добавлен 09.04.2005

  • Виды поражения электрическим током. Задачи и функции защитного заземления и зануления. Первая помощь человеку, пораженному электрическим током, виды защитных средств. Воздействие на организм человека вредных веществ, содержащихся в воздухе рабочей зоны.

    контрольная работа [30,8 K], добавлен 28.02.2011

  • Понятие о чрезвычайных ситуациях (ЧС) и их классификация. Основные направления профилактической деятельности. Способы защиты населения при ЧС. Коллективные, индивидуальные и медицинские средства защиты. Права, обязанности и ответственность граждан при ЧС.

    контрольная работа [320,8 K], добавлен 12.09.2011

  • Виды инструктажа персонала. Тепловые излучения, их воздействие на человека. Меры защиты от тепловых излучений. Классификация шумов. Классификация производственных помещений по опасности поражения электрическим током. Условия возникновения горения.

    контрольная работа [28,9 K], добавлен 31.08.2012

  • Средства индивидуальной защиты, применяемые при производстве электросварочных работ. Меры безопасности при использовании баллонов с сжиженным газом. Первая помощь при отравлении парами аммиака. Опасность поражения электрическим током при сварке.

    шпаргалка [82,6 K], добавлен 28.05.2012

  • Пожары, их классификация. Сеть наблюдения и лабораторного контроля. Предупреждение о возникновении чрезвычайных ситуаций, меры защиты, меры безопасности, наблюдение. Характеристика очагов поражения. Классификация превентивных мер защиты по цели.

    курсовая работа [2,1 M], добавлен 24.06.2015

  • Понятие и виды средств коллективной защиты. Нормализация воздушной среды и освещения. Обеспечение защиты от различных излучений и поражения электрическим током. Устройства для защиты от шума, вибраций, ультразвука и прочих неблагоприятных факторов.

    презентация [2,1 M], добавлен 21.04.2014

  • Гигиеническое нормирование шума, вибрации, инфра-, ультразвук. Озоновый слой: местонахождение, защитные функции, динамика. Биологические, химические, физические загрязнения водоема. Защита от поражения электрическим током. Средства индивидуальной защиты.

    контрольная работа [42,7 K], добавлен 07.08.2010

  • Электротравматизм на производстве и в быту. Воздействие электрического тока на организм человека. Электротравма. Условия поражения электрическим током. Технические способы и средства электробезопасности. Оптимизация защиты в распределительных сетях.

    реферат [609,9 K], добавлен 04.01.2009

  • Величина тока и его действие на организм, электрическое сопротивление тела человека. Степени электрических ударов, их характеристика. Причины смерти от электрического тока. Правила электробезопасности и методы защиты от поражения электрическим током.

    реферат [19,8 K], добавлен 16.09.2012

  • Классификация чрезвычайных ситуаций (ЧС) по причинам их возникновения. Защита людей в ЧС, порожденных природными стихиями. Обеспечение безопасности в ЧС антропогенного и социально-политического характера. Общие принципы оповещения и защиты людей в ЧС.

    реферат [27,2 K], добавлен 01.02.2012

  • Какие условия труда считаются вредными. Обеспечение электробезопасности на строительной площадке. Наружные электропроводки временного электроснабжения. Опасность поражения людей электрическим током. Классификация принципов обеспечения безопасности.

    контрольная работа [17,6 K], добавлен 09.06.2011

  • Контроль за состоянием охраны труда на предприятии. Виды инструктажа, порядок и сроки проведения. Меры защиты от поражения электрическим током. Мероприятия по защите от шума и вибрации. Применяемые средства тушения пожаров. Чрезвычайные ситуации.

    шпаргалка [1,7 M], добавлен 08.06.2009

  • Принципы, методы, средства обеспечения безопасности. Эволюция среды обитания под воздействием деятельности человека. Загрязнение почвы, гидро- и атмосферы и средства их защиты. Техногенные опасности и их воздействие на человека. Организация охраны труда.

    курс лекций [468,0 K], добавлен 19.12.2012

  • Электробезопасность; основные понятия: электротравма, электроудар, виды токов, категории помещения. Опасность поражения электрическим током. Химическое оружие; зоны химического заражения, очаги поражения от отравляющих веществ; средства защиты населения.

    контрольная работа [21,8 K], добавлен 17.01.2010

  • Осуществление государственного надзора и контроля, его органы и их обязанности. Технические способы защиты от поражения электрическим током, сущность зануления. Промышленная безопасность опасных производственных объектов, декларация безопасности.

    контрольная работа [409,9 K], добавлен 26.06.2010

  • Понятие и особенности электротравм. Действие электрического тока на человека. Факторы окружающей среды, электрического и неэлектрического характера, влияющие на опасность поражения человека током. Методы безопасной эксплуатации электроустановок.

    реферат [54,0 K], добавлен 22.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.