Повышение промышленной безопасности в цехе восстановления отработанных моторных масел
Очистка работающих и возобновление отработанных масел. Технические характеристики для регенерации масла: установка для обработки и очистки, масляные станции. Расчет по нормам количества отработанного масла и технологическая схема его переработки.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 27.11.2012 |
Размер файла | 4,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При эксплуатации турбин в маслобаках накапливается отстой масла, который периодически вымывается водой з приемную емкость мазутного хозяйства.
Образование отходов в цехе обусловлено применением масел и проведением зачисток проточной части паровых турбин и маслобаков. Основными отходами являются: отработанное турбинное масло, компрессорное масло, эмульсия от маслоловушки компрессорной, окалина, шлам регенерации масла, отработанные регенерационные материалы (фильтры, силикагель, цеолит), конденсат, содержащий нефтепродукты.
4.1.4 Химический цех
Назначение цеха - обеспечение качества технической воды, исходной воды, забираемой из водотоков (водоемов), для подготовки растворов и использования их в системе очистки котлов и поверхностей нагрева, для обеспечения очистки сточных вод от взвешенных веществ и качества очистки стоков на выпусках в открытые водные объекты.
Химическая очистка воды осуществляется в несколько ступеней и включает предварительное ее осветление в осветлителях с применением коагулянта и флокулянта, пропускание через механические катионитовые и анионитовые фильтры. Материал загрузки механических фильтров - кварцевый песок, антрацит; ионитовых фильтров -сульфоуголь (СК-01, СК-2), катиониты КУ-2 и КУ-2-8 в Na-форме, анионит АВ-17-8 и др.
На некоторых ТЭЦ в составе цеха функционируют установка очистки поверхностных стоков от нефтепродуктов и механических примесей и установка очистки конденсата водяного (острого) пара, используемого для подогрева мазута при его хранении в баках (резервуарах).
Состав типовой установки:
- распределительная камера для приема и распределения сточных вод;
- приемные баки;
- напорные баки для насыщения воды, подаваемой на флотаторы, воздухом;
- напорные флотаторы;
- промежуточный бак для сбора воды после нефтеловушки;
- механические фильтры двухкамерные для удаления из очищенной воды нефтепродуктов и взвешенных веществ. В фильтре предусмотрена двухслойная загрузка, состоящая из кварцевого песка и дробленного антрацита. Подстилочным слоем служит антрацит. Высота фильтрующей загрузки - около 1.0 м;
- угольные фильтры для глубокой доочистки сточных вод. Фильтры (адсорберы) загружены активным углем марки БАУ. Подстилающий слой - антрацит с высотой слоя 15 см. Регенерация адсорберов проводится путем взрыхления горячей водой, обработки острым паром и промывки горячей водой;
- бак сбора нефтепродуктов (с подогревом);
- бункер сбора осадка. Предназначен для обезвоживания осадка и отведения его в контейнер с последующим размещением;
- железобетонный резервуар для сбора очищенной воды;
- насосы для подачи воды в установку.
Зачистка флотатора, приемных баков, угольных и механических фильтров проводится (не проводится) в зависимости от условий эксплуатации установки и качества исходной воды. Осадок из приемных баков и флотатора собирается в бункере сбора осадка, из которого вывозится в золошламоотвал; при отсутствии такового вывозится в лицензированную организацию для обезвреживания. Всплывающие нефтепродукты собираются в баке сбора нефтепродуктов и насосом перекачиваются в приемную емкость мазута ТТЦ. Очищенная вода сбрасывается в городскую систему канализации.
Для установки характерны следующие отходы: осадки очистных сооружений (ОС), всплывающие нефтепродукты нефтеловушек, промасленная ветошь.
Основными отходами в цехе являются иониты, шлам гидроксидов цветных металлов и отработанные масла. Отходами ионитов являются, в основном, аниониты. Согласно [7, 23] срок службы анионита, в зависимости от марки, составляет 3.5 - 5.5 лет. По истечении этого срока анионит полностью заменяется свежим, а выгруженный из ионообменного аппарата материал становится отходом. В период эксплуатации ионообменных фильтров вследствие частичного износа и потерь ионитов (катионитов и анионитов) при регенерации производится их восполнение путем подсыпки свежего материала. Иониты, выносимые из ионнообменных аппаратов при регенерации потоком продувочной воды, обычно удаляются в канализацию, а на отдельных ТЭЦ направляются на установку очистки поверхностных сточных вод, где они улавливаются и рассматриваются, совместно с другими взвешенными веществами, как осадки сточных вод. Шлам гидроксидов цветных металлов образуется при осветлении воды с применением коагулянтов и флокулянтов; собирается из осветлителей при их периодической зачистке.
В состав химцеха входит химическая лаборатория. Фактически все отработанные реактивы (растворы) сливают в раковину, по возможности нейтрализуя (смешивая кислые и щелочные растворы). Отработанные растворители (тетрахлорид углерода, бензол, н-гексан и др.) собирают в бутыль и периодически сливают в приямок сбора нефтесодержащих стоков; при очистке стоков растворители переходят в состав всплывающих нефтепродуктов; при отсутствии возможности для сжигания отработанные растворители сдают для регенерации в лицензированную организацию или вывозят в лицензированную организацию для обезвреживания. Отработанная тара из-под реактивов промывается, высушивается и используется для нужд лаборатории (для приготовления растворов, хранения материалов, личных нужд). В процессе использования реактивов (1 раз в 3 года) образуются отработанные материалы, содержащие ртуть, а также ртутные термометры. При наличии на ТЭЦ оборотных систем использования воды, предусматривающих применение градирен, возможно образование отходов вследствие очистки продувочных вод и периодических обработок поверхностей нагрева теплообменников (конденсаторов) и градирен. Кроме того, отходы образуются при периодической зачистке баков условно-чистых вод, промежуточных резервуаров для сбора стоков, содержащих отработанные ионообменные смолы и фильтрующие материалы механической очистки воды.
К химическому цеху относится установка нейтрализации обмывочных вод наружных поверхностей нагрева. Обмывка поверхностей нагрева проводится перед длительными остановами котлов ПТВМ на средний и капитальный ремонты. Для обмывки применяется техническая вода. Обмывочные воды подаются в приемный бак и далее в бак - нейтрализатор. В качестве нейтрализующего реагента предусматривается кальцинированная сода или известковое молоко. При использовании мазута в качестве аварийного топлива и переводом котлов на газообразное топливо обмывка поверхностей нагрева производится реже.
Для установки характерны следующие отходы: шлам от очистки котлов на ТЭЦ.
На канализационных очистных сооружениях хозфекальных (бытовых) стоков (обычно относящихся к химцеху) производится очистка от взвешенных веществ минерального происхождения в песколовке и органического происхождения в отстойниках; последующая биологическая очистка стоков осуществляется в биофильтрах, а дезинфекция стоков в контактном резервуаре. Доочистка стоков проводится в песчаных фильтрах.
Состав КОС:
- песколовка горизонтальная двухполочная. Песколовка рассчитана на задержание песка размером 0.25 мм, что составляет 65% всего количества песка в сточных водах;
- осветлители. Представляют железобетонный резервуар с коническим днищем для вывода выпадающего осадка. Выпадающий осадок отводится в перегниватель;
- высоконагружаемый биологический фильтр;
- насосная установка рециркуляции стоков;
- вторичные отстойники. Выпавший осадок отводится в иловый резервуар с периодичностью 1 раз в сутки;
- ершовый смеситель;
- контактный резервуар. Цилиндрический железобетонный резервуар. При дезинфекции сточных вод хлором происходит частичная коагуляция мелких взвесей и осаждение их в контактном резервуаре. Удаление осадка осуществляется по иловой трубе 1 раз в сутки;
- песчаные фильтры, загруженные кварцевым песком. Предназначены для улавливания взвешенных веществ и железа;
- насосная установка для загрузки и перемешивания осадка в перегнивателях;
- перегниватели. Предназначены для сбраживания осадка из осветлителя, вторичных отстойников и контактного резервуара. Представляет железобетонный резервуар с коническим днищем. Удаление сброженного ила на иловые площадки осуществляется под гидростатическим давлением по иловой трубе;
- иловые площадки. Предназначены для обезвоживания осадков. Дренажное устройство - слой щебенки. Сырой осадок с иловых площадок, по мере его обезвоживания, вывозится илососом в шламонакопитель (1 раз в квартал);
- насосная установка собственных нужд;
- хлораторная установка со складом хлора;
- насосная установка перекачки стоков на вторичные отстойники;
- контейнеры для сбора и транспортировки песка.
Для сбора песка на каждом отделении песколовки имеется свой бункер; песок с взвешенными веществами из бункеров удаляется самотеком в контейнеры и далее на иловые площадки. Сброс песка - 1 раз в сутки в дневную смену. После песколовки сточная вода поступает через распределительную камеру в осветлители. Осадок после осветлителя с влажностью 94 - 97% направляется в перегниватель и далее на иловые площадки.
Ил влажностью 95 - 97 %, накопившийся в осветлителях, отводится в перегниватели. Из вторичных отстойников и контактного осветлителя ил по иловым трубам сбрасывается в иловый резервуар, из которого направляется в перегниватели. Сброженный ил из перегнивателей сбрасывается на иловые площадки (влажность - 90%). Вода с иловых площадок собирается в резервуаре дренажных стоков, откуда подается в приемную камеру перед песколовкой.
Для КОС характерны следующие отходы: отработанные масла, промасленная ветошь, осадок с песколовок, ил ОС хозбытовых стоков.
На территории очистных сооружений отдельных ТЭЦ могут быть расположены: бассейн-накопитель твердого осадка и обмывочных вод РВП и бассейн-накопитель нейтрализованных вод кислотной промывки оборудования.
Шламонакопитель предназначен:
- для сбора шлама и сточных вод после очистки замазученных и замасленных стоков из нефтеловушки, флотаторов, после промывок механических и угольных фильтров ЗОС, при текущих и капитальных ремонтах оборудования ЗОС;
- для приема ила с иловых площадок КОС;
- для сбора шлама и сточных вод при проведении текущих и капитальных ремонтов оборудования КОС (перегнивателей, осветлителей, вторичных отстойников, контактного резервуара).
Бассейн - накопитель предназначен:
- для сбора загрязненных сточных вод, образующихся при промывке (обмывке) отложений с конвективных поверхностей нагрева воздухоподогревателей, экономайзеров и регенеративных воздухоподогревателей (РВП);
- для сбора загрязненных сточных вод, образующихся при проведении химических промывок котлов (после их нейтрализации в баках - нейтрализаторах);
- для сбора загрязненных сточных вод, образующихся после консервации котлов высокого, низкого давления и ПЭК.
4.1.5 Электроцех
Назначение цеха - обеспечение электроснабжения основных и вспомогательных цехов и распределение электроэнергии между потребителями.
Основной структурной единицей цеха является трансформаторная подстанция. На подстанциях ТЭЦ установлены масляные трансформаторы типа ТМ, ТЗС, ТДН, ТД, ТДТНГ, ЗРОМ, РДМР и др., а также масляные выключатели марок МКП-10, У-110, С-35, МКП-35, ВКШ-10, ВМП-10, К-5М, МГ-10 и др.
Для заливки трансформаторов и выключателей используют следующие масла: Т-1500, ГК, Т-750, ТМП; масла без присадок. При использовании масел с присадками в качестве последних применяются присадки: ВТИ-1 (параоксидифениламин) и ионол (2,6-дитретичный бутил-4-метилфенол) и др.
Капитальный ремонт трансформаторов проводится 1 раз в 8 - 10 лет. В процессе работы периодически, по мере необходимости, производится доливка масла в трансформаторы. Полная замена масла в выключателях проводится 1 раз в 5 - 6 лет. При замене масла оно должно подвергаться регенерации,
В цехе имеются закрытые аккумуляторы марок СН 720, СН 14, СН 504, СН 1008 и др. Замена аккумуляторов проводится 1 раз в 8 - 15 лет.
Цех принимает и временно хранит поступающие и отработанные люминесцентные лампы (трубчатые - типа ЛБ и для наружного освещения - типа ДРЛ).
Для водородного охлаждения генераторов в некоторых цехах устанавливают электролизеры.
Периодически цех проводит работы по проверке изоляции кабелей (подземных и наружных), их замене и ремонту.
Образование отходов в цехе обусловлено применением трансформаторных масел, аккумуляторов (с электролитами), люминесцентных ламп и повреждением кабелей. Основными отходами являются: отработанное трансформаторное масло, отработанные аккумуляторы и электролиты, обрезки кабеля, отработанные люминесцентные лампы, отработанные щелочные растворы из электролизеров.
4.1.6 Цех централизованного ремонта
Цех осуществляет ремонтные работы, в основном в котельном и турбинном цехах. При этом используются черные и цветные металлы, сварочные электроды, масла смазки. На балансе цеха может находится автотранспорт: автопогрузчики, авто-(электро-) кары. Кроме ремонтов цех может проводить работы по очистке котлов и газоходов от золо-сажевых отложений.
В число отходов входят остатки металлов, огарки электродов, отработанные масла, золо-сажевые отложения, шины с тканевым и металлическим кордом.
4.1.7 Ремонтно-механический цех
Назначение цеха - изготовление запасных частей для основного и вспомогательного оборудования.
Цех располагает станками для инструментальной обработки металлов: токарными, фрезерными, строгальными, долбежными, заточными, сверлильными. Для охлаждения режущих инструментов и обрабатываемых материалов используются смазочно-охлаждающие жидкости (СОЖ); для доливки в станки используются индустриальные масла.
Отходы образуются в виде стружки и лома металлов, отработанных СОЖ, остатков абразивных кругов и абразивной пыли, уловленной в пылеочистном оборудовании.
4.1.8 Ремонтно-строительный цех
Назначение цеха - выполнение работ по ремонту помещений, мелкий ремонт и подсобно-хозяйственные работы.
Основные сырьевые материалы: доски (обрезные и необрезные), цемент, песок, линолеум и другие стройматериалы, черный металл, трубы, батареи, стекло. Обычно такой цех располагает станками: рейсмусными, фуговочными, фрезерными, сверлильными, универсальными, комбинированными.
Цех может иметь свой транспорт.
Для выполнения лакокрасочных и других работ в цех поступают: лаки, эмали, белила, пигменты, клеи.
Отходы в цехе образуются вследствие: использования в станках и транспорте масел, обработки древесины, применения лакокрасочных материалов, замены стекол и линолеума, ремонта и замены тепловых батарей, эксплуатации транспорта и др. Основными отходами являются: опилки и стружки, кусковые отходы древесины, отработанные масла, жестяные банки из-под краски, шины с тканевым и металлическим кордом, обрезки линолеума, бой стекла, мусор промышленный (строительный), отработанные аккумуляторы, отработанные электролиты, лом и стружка черных металлов, лом чугуна.
4.1.9 Цех тепловой автоматики измерений
Назначение цеха - осуществление автоматического контроля и регистрации параметров работы основного оборудования. Основными приборами контроля являются потенциометры. Для заправки потенциометров используется диаграммная бумага (масса 1 м2 - 50 г).
Отходами в цехе являются исчерпавшие срок эксплуатации (7-8 лет) потенциометры и другие приборы (лом черных металлов), драгоценные металлы (входят в состав приборов), использованная диаграммная бумага (срок хранения - 3 года).
4.1.10 Медпункт
Назначение - оказание оперативной медицинской помощи.
Для подразделения характерны следующие отходы (отходы медпункта): шприцы одноразовые после дезинфекции, отработанный перевязочный материал, фасовки из-под реактивов.
4.1.11 Столовая
Назначение - обеспечением питанием работников ТЭЦ. Основным отходом столовой являются пищевые отходы.
4.2 Характеристика отходов. Условия их сбора и размещения
Условия образования, сбора и размещения отходов рекомендуется рассматривать в проекте нормативов ПДРО по подразделениям (цехам). Отходы, общие для некоторых цехов, могут быть рассмотрены в отдельном разделе (например, «Общие отходы» - люминесцентные лампы, сварочные электроды, лом черных металлов, бытовые отходы и др.).
Количество и число отходов, их состав определяются видом и количеством сжигаемого топлива, технологией сжигания, технологией водоподготовки, условиями эксплуатации основного и вспомогательного оборудования, наличием вспомогательных операций.
Ниже приводится характеристика отдельных отходов.
Отработанные масла, подлежащие регенерации
В соответствии с ГОСТ 21046-75 «Нефтепродукты отработанные», отработанные индустриальные, компрессорные, турбинные, трансформаторные и моторные масла подлежат регенерации. Отработанные индустриальные, а также компрессорные, турбинные и трансформаторные масла должны регенерировать сами потребители на соответствующих регенерационных установках.
Отходы турбинного масла. Образуются после использования для смазки оборудования и при сливах из турбин (иногда компрессоров). Химический состав (%) [1, 5, 26]: масло - 79, продукты окисления - 13, вода - 4, механические примеси - 2, присадка - 2. Плотность масла на 1.15 - 1.16 % больше плотности свежего масла. Общие показатели: вязкость - 28.2 - 28.4 мм2/с (при 50е С); кислотное число - 0.15 - 2.68 мг КОН/г; смолы -1.5 - 9.0 %; зольность - 0.004 - 0.005%.
Отработанное электротехническое масло, трансформаторное. Образуется при текущих ремонтах трансформаторов и выключателей, при доливе масла в оборудование, при операциях слива. Химический состав (%) [1,5]: масло - 82, продукты разложения (окисления) - 15, вода - 2, механические примеси - 1. Общие показатели: вязкость до 25.77 мм2/с (при 50 °С); кислотное число - 0.16 - 0.25 мг КОН/г; зольность - 0.005%.
Отработанное компрессорное масло. По химическому составу и свойствам близко к моторным и индустриальным маслам (смесь этих масел). Химический состав (%): масло - 80, продукты окисления - 11, вода до 7, механические примеси - 2. Общие показатели: вязкость - 9.1 - 13.6 мм2/с (при 100° С); кислотное число - 0.19 - 0.23 мг КОН/г; зольность - 0.078 - 0.208%.
Отработанное моторное масло. Образуется после истечения срока службы и вследствие снижения параметров качества при использовании в транспорте. Химический состав (%) [1, 5, 26]: масло - 78, продукты разложения - 8, вода - 4, механические примеси - 3, присадки - 1, горючее - до 6. Общие показатели: вязкость - 36 - 94 мм2/с (при 50°С); кислотное число - 0.14 - 1.19 мг КОН/г; смолы - 3.72 - 5.98; зольность - 0.28 - 0.60 %; температура вспышки - 165 - 186 °С.
Отработанное индустриальное масло. По химическому составу близко к моторным маслам. Образуются после использования в системах смазки станков, машин и механизмов. Общие показатели: вязкость - 23.0 - 43.0 мм2/с (при 50 °С); кислотное число - 0.07 - 0.37 мг КОН/г; зольность - 0.019 -1.288%.
Отработанные масла плохо растворимы в воде (не более 5 %), пожароопасны (температура вспышки в зависимости от типа и марки масла составляет 135 - 214 °С), в условиях хранения химически неактивны.
Для временного размещения масел предусматриваются специальные емкости с закрывающимися крышками в помещениях цехов, масляного хозяйства или на территории топливно-транспортного цеха.
Нефтешлам при зачистке резервуаров
Образуется при периодических (1 раз в 5 - 10 лет) зачистках мазутных баков и резервуаров. Представляет собой тяжелые фракции мазута в смеси с водой. Состав: нефть - 68 - 80 %; вода - 32 - 20 %. пожароопасен, нерастворим в воде; в обычных условиях химически неактивен, плотность 1.07 - 1.40 т/м3.
После зачистки осадок вывозится с территории ТЭЦ; для временного размещения (на случай аварии) следует предусматривать специальную площадку, исключающую попадание осадка при его хранении в почву.
Осадки очистных сооружений
Образуются при очистке сточных вод (после мазутонасосных, с площадок приема мазута, после смывов с поверхности полов в цехах, гараже и т.п.), загрязненных нефтепродуктами. Состав образующегося при механической очистке стоков осадка зависит от схемы очистки, условий работы очистной установки и применяемого оборудования. При совместной очистке нефтесодержащих сточных вод и промывочных вод от регенерации механических фильтров осадок имеет следующий состав (%): антрацит-16.0, кварцевый песок - 8.9, активированный уголь (ДАК или КАД) - 5.8, нефтепродукты - 12.5, механические примеси - 8.8, вода - 48,0.
Осадок не пожароопасен, устойчив к действию щелочей, нерастворим в воде. Временно размещается в специальной емкости; по мере накопления вывозится с территории.
Зола ТЭЦ от сжигания мазута
Мазутная зола образуется при периодических (1 раз в 4 года) снятиях золо-сажевых отложений с наружных поверхностей нагрева котлоагрегатов. Отход характерен для котлов, работающих на мазуте. Основной загрязненной поверхностью является поверхность воздухоподогревателей.
При снятии отложений сухим способом отход имеет следующий состав (%):
сажа - 36.9, зола - 63.1. Состав золы (%): V2O5 - 43.0; Ni2O3 - 9.0; MnO2- 1.0; PbO2 - 0.5; Cr2O3 - 0.5; ZnO - 0.5; Al2O3 - 10.0; Fe2O3 - 7.0; MgO - 2.0; SiO2 - 10.0. Состав сажи (%): углерод - 85, водород - 12, азот - 1, прочие - 2.
Мазутную золу следует собирать в специальную емкость (V = 0.2 - 1.0 м3); после зачистки котла зола вывозится с территории или используется на собственные нужды,
Шлам от очистки котлов на ТЭЦ
При снятии отложений путем смыва их водой последняя подвергается нейтрализации в специальной емкости и отстаиванию. Шлам, образующийся при этом, имеет следующий состав (%): V2O5 - 19.04; NI2O3 - 5.04; МnО2 - 0.56; РbО2 - 0.28; Сr2О3 -0.28; ZnO - 0.28; Аl2О3 - 5.6; Мg(ОН)2 - 1.4; Са(ОН)2 - 1.5; Fe2O3 - 3.92; прочие -0.50; вода - остальное.
Зола каменноугольная ТЭЦ
При сжигании углей также имеет место накопление золо-сажевых отложений в газоходах и электрофильтрах. Для удаления золы применяют гидравлический и пневматический способы. Последний применяется редко. Состав и свойства угольной золы зависят от происхождения угля, а также особенностей его сжигания. В зависимости от марки угля и его месторождения состав золы может быть определен из справочной литературы [21]. Например, при сжигании Кузнецкого угля (ТЭЦ - 2 АО "Ленэнерго") зола имеет следующий состав (%): SiO2 - 61.1; А12О3 - 21.1; Fe2O3 - 6.6; СаО - 4.3; МgО - 2.2; прочие - 5.8.
Угольная зола в виде пульпы гидравлически транспортируется в золошлаконакопитель (золошлакоотвал).
Шлак каменноугольный
Образуется в результате термохимических реакций неорганической части топлива. Удаляется из котлоагрегатов специальными шлакоудаляющими устройствами, охлаждается и обычно гидравлически транспортируется в золошлакоотвал. Состав и свойства шлака, также как и золы, зависят от месторождения и марки угля, условий его сжигания и устанавливается экспериментально или из справочной литературы [21].
Примечание. В соответствии с нормативными документами [37, 38] золошлакоотвалы (ЗШО) для приема зол и шлаков, образующихся при сжигании твердых топлив, рассчитываются на накопление отходов в течение 5 лет (в отдельных случаях - до 10 лет). Однако при использовании твердого топлива как резервного, этот срок может быть увеличен. Для обоснования продления сроков эксплуатации ЗШО могут быть использованы следующие данные:
Годовой выход золошлакового материала/1О3.т |
<100 |
100-500 |
500- 1000 |
1000-1500 |
>1500 |
|
Площадь ЗШО (S), -104м2 |
10-80 |
20-200 |
60-300 |
100-400 |
200 - 500 |
Средняя высота (Н) ЗШО составляет около 20 м, максимальная - 35 - 40 м. Более точно высота принимается в зависимости от класса ЗШО: для 1-го класса - >50 м, 2 -го класса - 50 - 25 м, 3 - го класса - 25 -15 м, 4 - го класса - < 15 м. Продолжительность (т) дополнительного приема золошлаковых материалов (ЗШМ) может быть рассчитана по формуле:
t = (Yзшо - Yзшм)·р·(100-W)/ Мзш ·100 (год),
где Y зшо - объем ЗШО, м3 (Y зшо = S·H); Y зшм - объем ЗШМ, накопленного в ЗШО, м3; Мзш - масса ЗШМ, поступающего в ЗШО, т.; W - средняя влажность уплотненного ЗШМ, %; р - плотность уплотненного при хранении ЗШМ, т/м3.
Значения плотности в уплотненном состоянии при хранении в ЗШО (р, т/м3) с учетом влажности уплотненного ЗШМ, приведены в [21].
Гранулометрический и химический составы ЗШМ в ЗШО определяются в зависимости от марки топлива, способа транспортировки ЗШМ, типа ЗШО по данным, приведенным в [21].
Полиизобутилен (отходы при использовании герметика)
Полиизобутилен является основным компонентом отхода при использовании герметиков типа АГ-4, АГ-4И. Образуется при периодической (1 раз в 3 - 4 года) чистке аккумуляторных баков и состоит из антикоррозионной "пленки" (которую снимают со стен баков при чистке) и осадка, образующегося вследствие частичного окисления (разложения) и осаждения тяжелых фракций основного вещества герметика - индустриального масла. Состав отхода (%): бутилкаучук (основа - полиизобутилен) -60.0; осадок - масляный продукт - 30.0; минеральные компоненты - 10.0. Температура вспышки - не менее 184 °С, не пожароопасен. Растворяется в некоторых органических растворителях. Устойчив к действию разбавленных кислот и щелочей.
После зачистки аккумуляторных баков вывозится с территории; допускается временное размещение на специально оборудованной открытой площадке (исключающей контакт материала с почвой) или в металлической емкости.
Примечание: отходы при использовании герметика в более общем виде могут быть классифицированы как «Шлам от зачистки оборудования».
Герметики и компоциды
Образуются при замене герметика в баках - аккумуляторах (1 раз в 4 - 6 лет). Состав (%): индустриальное масло - 60, каучук - 30, минеральные соединения - 10. Пожаропасен. Передается на переработку в лицензированную организацию.
Всплывающие нефтепродукты нефтеловушек
Образуются при отстаивании нефтесодержащих сточных вод во флотаторе. Состав (%): нефтепродукты - около 70, вода - около 30. Пожароопасны, химически и биологически неактивны. Отводятся в приемную емкость мазутного хозяйства ТТЦ.
Отработанные растворители
Образуются после использования при химическом анализе. В состав отхода входят четыреххлористый углерод, бензол, н-гексан и др. Сливается в емкость объемом 10 л и более. Периодически сливается в приемную емкость мазута ТТЦ или вывозится в лицензированную организацию с целью регенерации или обезвреживания. Пожароопасен, токсичен, в воде практически нерастворим.
Отходы обмуровки
Образуются в основном при периодических ремонтах котлов. Включают в себя отходы огнеупорных материалов и теплоизоляции, которые после разделения представляют собой самостоятельные отходы. Состав отхода зависит от марки котла и типа обмуровки [11]. Характеристики конструкций обмуровок приведены в табл. 4.1.
Таблица 4.1. Характеристика конструкций обмуровок
Конструкция обмуровки |
Толщина слоя, мм |
|||||
Шамотный бетон или кирпич |
Теплоизоляц бетон |
Теплоизоляц слой |
Уплотнительная обмуровка |
Обшивка |
||
натрубная |
20-25 (шамотн. бетон) |
0-50 |
80-125 |
15-20 |
4 |
|
щитовая |
40-80 |
0-126 |
125-150 |
15-20 |
4 |
|
облегченная |
113 |
65-195 |
70-100 |
- |
4 |
|
Натрубная газоплотная |
- |
- |
150 |
15 |
4 |
Примерные составы обмуровок (%):
- натрубная - кирпич (или шамотный бетон) - 13.4 - 16.7; бетон - 0 - 33.5; теплоизоляционный слой - 53.6 - 83.7; уплотнительная обмуровка - 10.0 -13.4; обшивка - 2.7.
- щитовая - кирпич (или шамотный бетон) - 15.5 - 31.1; бетон - 0 - 49.0; теплоизоляционный слой - 48.6 - 58.3; уплотнительная обмуровка - 5.8 - 7.8; обшивка - 1.5.
- облегченная - кирпич (или шамотный бетон) - 33.2; бетон - 19.1 - 57.3; теплоизоляционный слой - 20.6 - 29.4; обшивка - 1.2.
- натрубнаягазоплотная - теплоизоляция - 88.2; уплотнительная обмуровка - 8.8; обшивка - 3.0.
К отходам обмуровки могут быть отнесены отходы, образующиеся при сухой очистке поверхностей нагрева и представляющие собой по химическому составу в основном карбонат кальция (95 - 98 %).
Временно размещаются на открытой площадке.
Шлам нейтрализации
Образуется после очистки основного оборудования ТЭЦ (в основном котлов) от накипей и отложений путем промывки водой и водными растворами химических реагентов. Для промывок применяются растворы неорганических кислот (соляной, серной, плавиковой), органические соединения (адипиновая, дикарбоновая, ортофталевая, лимонная кислоты, моноаммонийцитрат, смеси низкомолекулярных органических кислот (НМК) и др.), комплексоны и композиции на их основе (ЭДТА, трилон Б, фториды), моющие препараты (ОП-7, ОП-10), а также ингибиторы коррозии (уротропин, формальдегид, каптакс, ПБ-5).
Количество загрязняющих веществ в сточных водах после химических промывок зависит от технологической схемы промывки, типа котла, дозы реагента. Для приема промывочных сточных вод предусматриваются емкости (бассейны-отстойники). Примерный состав примесей, поступающих в емкости, приведен в табл. 3.6.
Шлам образуется после нейтрализации промывочных стоков. Состав шлама может быть определен экспериментально по данным анализа загрязняющих веществ в промывочных стоках, расхода стока и эффективности осаждения загрязняющих веществ. С учетом данных табл. 3.6 при нейтрализации каустической или кальцинированной содой (с учетом проведения промывки соляной кислотой) шлам имеет следующий примерный состав (в пересчете на сухое вещество, %): Fe(OH)2 + Fe(OH)3 - 77,5; Cu(ОН)2 - 11.2; Zn(OH)2 - 11.3. В пересчете на рабочие условия шлам имеет следующий состав (%): Fe(OH)2 + Fe(OH)3 - 0.77 - 4.65; Cu(OH)2 - 0.11 - 0.67; Zn(OH)2 - 0.11 - 0.68; H2O - 94.0 - 99.0.
При проведении промывки адипиново-кислотным или гидразино-кислотным способами основным компонентом шлама являются гидроксиды железа.
При нейтрализации промывочных стоков (сернокислотная промывка) известью в составе шлама присутствуют, кроме гидроксидов металлов, сульфат и карбонат кальция.
Шлам не пожароопасен, практически нерастворим в воде; возможно растворение шлама при существенном изменении величины рН.
Временное размещение возможно в емкостях и открытым способом.
Для временного размещения отхода предусматривается отдельная емкость с закрывающейся крышкой из кислотоупорного материала. На некоторых ТЭЦ промывочные воды поступают в канализацию (при условии соблюдения нормативов ПДС).
Отходы катионитовой смолы
Образуется при полной замене анионитов, проводимой, в зависимости от марки анионита, 1 раз в 3.5 - 5.5 года [7,23]. Химический состав (%): стирол - 87.0; дивинилбензол - 3.0; функциональные группы - 10.0. В воде набухает, не растворяясь в ней, не пожароопасен. Устойчив к действию кислот и щелочей. Отход целесообразно вывозить сразу после образования, возможно временное размещение открытым способом на территории ТЭЦ.
Примечание. Согласно [23] полная замена анионитов и катионитов производится только при снижении сорбционной активности; в других случаях потери ионита компенсируются путем подсыпки.
Грунт, содержащий нефтепродукты
Образуется вследствие проливов мазута при перекачке его в резервуары и засыпке его песком. Состав (%): песок - 35 - 45; грунт - 35 - 45; мазут - до 30. Влажность -15 - 90 %. В условиях образования химически неактивен, пожароопасен. Обычно размещается в отдельных емкостях (бочках). Вывозится совместно с нефтешламом при зачистке резервуаров.
Древесные опилки, загрязненные нефтепродуктами
Образуется вследствие засыпки проливов масел на площадках размещения транспорта и других местах. Состав (%): опилки - 80, масло - 20. Влажность отхода - 15 -90 %. Пожароопасен, нерастворим в воде, химически неактивен.
Шлам гидроксидов цветных металлов
Образуется на стадии предварительной очистки воды в осветлителях вследствие добавок коагулянта и флокулянта; накапливается в осветлителях, которые периодически (2 раза в год) подвергаются чистке.Состав осадка может быть определен экспериментально, а также расчетным путем с учетом расходов глинозема и коагулянта, концентрации взвешенных веществ и ионов кальция и магния в природной воде, эффективности очистки воды.
Примерный состав осадка (прокаленного) [22] (%): SiO2 - 8 - 28; А12О3 - 15 - 25; Fe2O3 - 0.2 -1.8; СаО - 0.2 - 0.5; МgО - 0.2 - 0.6. Влажность осадка - 96 - 99.5 %.
Лом черных металлов
Образуется при ремонте котлоагрегатов, турбоагрегатов, вспомогательного оборудования, авто- и железнодорожного транспорта, замене газоходов, трубопроводов и сантехнического оборудования; вследствие истечения эксплуатационного срока службы приборов (7-9 лет).
Типичный состав (%): железо - 95 - 98; оксиды железа - 2 - 1; углерод - до 3. Для временного размещения на территории ТЭЦ предусматриваются открытые площадки. По мере накопления лом вывозится с территории.
Стружка черных металлов
Образуется при инструментальной обработке металлов. По химическому составу представляет собой железо со следами масел. Не пожароопасна, химически инертна.
Для временного размещения отхода предусматриваются контейнеры. Вывозится совместно с ломом черных металлов.
Лом цветных металлов.
Образуется при инструментальной обработке металлов, ремонте приборов КИПиА, автотранспорта; содержится в поврежденном кабеле.
Химический состав лома и стружки (%): латунь - 70; бронза - 30; (медь - 69.3; цинк - 28.8; алюминий -1.9).
Состав отработанного кабеля в свинцовой оболочке (%): свинец - 58.8; жила - алюминий (или медь) - 36.3; бумажная промасленная изоляция - 4.9. Более детальный состав (%): Рb - 58.30; Sb - 0.47; Те - 0.03; Сu - 0.047; Al (или Сu) - 36.30; бумага - 3.43; масло - 1.20; канифоль - 0.26. Состав кабеля АВРГ (%): алюминий - 40, пластмасса (ПВХ) - 60. Состав кабеля АСБУ (%): свинец - 58.30, алюминий (медь) - 36.35, бумага - 3.43, масло - 1.20, прочие - 0.76. Состав кабеля АКВГ (%): медь - 40, резина (РТИ-2, РШ-1) + пленка (ПЭТФ) - 60. Состав кабеля ААШБ (%): медь - 40, пластмасса (ПВХ) - 60. Основные компоненты кабеля - цветные металлы. Периодически разделывается с целью извлечения меди и алюминия с последующим использованием для электрических работ или вывоза. Изоляция вывозится обычно совместно с промышленным мусором.
Отход не пожароопасен, нерастворим в воде; в условиях хранения химически неактивен. Размещается в отдельном контейнере, ящике. По мере накопления вывозится с территории.
Огарки сварочных электродов
Отход представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Состав (%): железо - 96.0 - 97.0; обмазка (типа Ti(CO3)2) - 2.0 - 3.0; прочие - 1.0.
Размещаются обычно совместно со стружкой черных металлов. По мере накопления вывозятся совместно с ломом черных металлов.
Отработанные аккумуляторы
Образуются после истечения срока годности (2-3 года).
Типичный состав (%): свинец - 90 - 98; пластмассы - 2 - 10.
Не пожароопасны, в воде нерастворимы, устойчивы к действию воздуха (при хранении на воздухе покрываются матовой пленкой оксида свинца); реагируют с азотной кислотой любой концентрации с образованием соли Рb(NО3)2; с щелочными растворами при обычной температуре не реагируют.
Временно размещаются на территории ТЭЦ в ящиках, контейнерах, земле; обычно в гараже или возле него.
Отработанные электролиты аккумуляторных батарей
Образуются при сливе из аккумуляторов (при их замене или ухудшении свойств).
Состав (%): серная кислота - 26.0 - 33.3; вода - 63.7 - 71.0; прочие - 3.0.
Не пожароопасны. Реагируют со щелочами с образованием менее токсичных солей.
Временно размещаются (не более суток) в аккумуляторах или специальных емкостях (нейтрализаторах).
Шины с тканевым кордом
Образуются после истечения срока годности.
Состав (%): синтетический каучук - 96; сталь - 3; тканевая основа - 1. Не пожароопасны, устойчивы к действию воды, воздуха и атмосферным осадкам. Для временного размещения предусматриваются открытые площадки (с навесом). По мере накопления вывозятся.
Шины с металлическим кордом
Состав (%): синтетический каучук - 96; сталь - 4.
Не пожароопасны, устойчивы к действию воды, воздуха и атмосферным осадкам. Временно размещаются на открытых площадках (с навесом) или в гараже. По мере накопления вывозятся.
Окалина
Образуется при прохождении природного газа через механические фильтры; при регенерации фильтров окалина собирается. Окалина образуется также при чистке проточной части турбин.
Состав (%): железо - 90 - 95; оксиды железа - 5 - 10; Fe - 50 - 55; Fe2O3 - 5 - 10; SiO2 - 45.
Временно размещается на территории, по мере накопления вывозится. Отход не пожароопасен. Химически инертен.
Пыль абразивно-металлическая
Образуется при заточке инструментов и деталей на заточных станках. Пыль улавливается в циклоне (или в не типовом газоочистном оборудовании) и собирается в бункере циклона. По мере накопления вывозится с территории.
Состав (%): диоксид кремния - 80 - 90; железо - 10 - 20.
Не пожароопасна, нерастворима в воде, устойчива к действию кислот.
Лом абразивных изделий
Образуется в результате использования абразивных кругов для заточки инструмента и деталей в виде их остатков. Основной компонент - диоксид кремния (85 - 90 %), вспомогательный - связующее.
Не пожароопасен, нерастворим в воде, устойчив к действию кислот.
Осадки очистных сооружений мойки автотранспорта
Образуются при зачистке отстойника сточных вод мойки автотранспорта. Состав осадка [5] (%): механические примеси - 56.7, нефтепродукты - 9.3, вода - 34. Пожароопасен, химически неактивен. Накапливается в отстойнике; по мере накопления вывозится на обезвреживание.
Отходы теплоизоляции
Представляют собой остатки после снятия, повторного использования и замены теплоизоляции. Примерный состав отхода (%): маты (например, ТИБ) - 19.8; минеральная вата - 80.2. Не пожароопасны, нерастворимы в воде. По мере накопления вывозятся с территории.
Мусор промышленный
Образуется после ремонта помещений и оборудования, проведения штукатурных и облицовочных работ. В состав отхода могут входить, например, остатки цемента -10 %, песок - 30 %, бой керамической плитки - 5 %, штукатурка - 55 %. По мере накопления вывозится с территории.
Паронит
Представляет собой обрезки новых паронитовых прокладок и старые прокладки, подлежащие замене. Размещается и вывозится совместно с промышленным мусором или бытовыми отходами.
Бой стекла
Входит в состав бытовых отходов. Вывозится совместно с бытовыми отходами.
Обрезки линолеума
Образуются при ремонте полов. Вывозятся на МПБО (ПТО).
Рубероид
Образуется при ремонте кровли. Вывозится на ПТО.
Отработанные накладки тормозных колодок
Образуются в результате износа и замены. По химическому составу представляют собой графит. Относятся к классу малоопасных отходов. Вывозятся на МПБО (ПТО).
Прочие строительные отходы
Образуются при замене потолочных перекрытий в котельном отделении и ремонте зданий. Представляют собой цементный бетон. Не пожароопасны, нерастворимы в воде. Вывозится на ПТО.
Отработанные щелочные растворы
Представляют собой отработанный электролит электролизеров производства водорода. Используются для нейтрализации кислотных электролитов или кислых стоков. Состав (%): КОН - 30.0; вода - 70.0. Не пожароопасны.
Зола древесная
Образуется при сжигании древесных отходов, макулатуры, органосодержащих осадков, промасленной ветоши и др. Химический состав (%): карбонаты и оксиды натрия, кальция, магния, железа - 90, прочие - 10. Не пожароопасна, нерастворима в воде, растворима в соляной кислоте. По мере накопления вывозится или используется для подсыпки территории.
Жестяные банки из-под краски
Образуются при выполнении малярных работ. Состав отхода (%): жесть - 94 - 99, краска - 5 - 1. Не пожароопасны, химически неактивны.
Ветошь промасленная
Образуется в процессе использования тряпья для протирки механизмов, деталей, станков и машин.
Состав (%): тряпье - 73; масло - 12; влага - 15.
Пожароопасна, нерастворима в воде, химически неактивна.
Для временного размещения предусматривается специальная емкость. По мере накопления сжигается или вывозится на обезвреживание.
Шлам от зачистки оборудования
Образуется вследствие осаждения в баках условно-чистых вод, приемных баках и другом оборудовании шлама, фильтровальных и других материалов, выносимых из механических фильтров или другого оборудования. Состав отхода может быть определен расчетным путем с учетом технологических особенностей поступления в баки потоков и образования в них взвешенных веществ. Отход не пожароопасен, нерастворим в воде. Временно размещается в баках (1-5 лет). Может быть использован для подсыпки территории.
Отработанные материалы
Представляют остатки химических реактивов в стеклянной таре. Периодически (не менее 1 раза в 3 года) сдаются на лицензированное предприятие по переработке. Хранятся в лаборатории. Централизованное место хранения не предусмотрено.
Ртуть металлическая
Образуется при периодических сливах ртути из дифманометров в специальную емкость, в которую затем доливают воду. Сдается на лицензированное предприятие по переработке. Централизованное место хранения не предусмотрено.
Ртутные термометры
Образуются вследствие появления дефектов в стекле. Хранятся в картонных футлярах в лаборатории. Сдаются на лицензированное предприятие по переработке ртутьсодержащих материалов.
Отработанные люминесцентные лампы
Образуются вследствие исчерпания ресурса времени работы.
Состав ламп типа ЛБ (%): стекло - 92; ножки - 4.1; цоколевая мастика - 1.3; гетинакс - 0.3; люминофор - 0.3; металлы - 2.0 (из них Al - 84.6 %, Сu - 8.7 %, Ni - 3.4 %, Pt - 0.3 %, W - 0.6 %, Hg - 2.4 %),
Размещаются в контейнере, в упаковке, в помещении цехов (обычно в электроцехе). Вывозятся с территории.
Макулатура
Образуется после использования рулонной диаграммной бумаги.
Состав (%): бумага - 90 - 95; наполнитель и пигменты (поливинилбутираль или др.) - до 5.0; прочие - 5.0.
Пожароопасна, нерастворима в воде (набухает), химически неактивна.
Место временного размещения - архив. По мере накопления используется на собственные нужды или вывозится.
Бытовые отходы
Образуются в непроизводственной сфере деятельности персонала ТЭЦ, а также при уборке помещений цехов и территории.
Состав отходов (%): бумага и древесина - 60.0; тряпье - 7.0; пищевые отходы -10.0; стеклобой - 6.0; металлы - 5.0; пластмассы - 12.0.
Отходы накапливаются в контейнерах; по мере накопления вывозятся с территории.
В состав отходов ТЭЦ включаются также и другие отходы, образующиеся в незначительных количествах и обычно временно размещаемые и вывозимые совместно с другими отходами: отходы пищевые, образуются при наличии пищеблока; отходы медпункта, бой стекла, обрезки линолеума, отходы фанеры и ДСП (ДВП), цеолит после адсорбции воды из масел, конденсат, загрязненный нефтепродуктами, промасленные фильтры, отработанные накладки тормозных колодок и др.
4.3 Расчет нормативов образования отходов
4.3.1 Отходы турбинного масла
Общая норма расхода турбинного масла в расчетном году слагается из расхода масла на долив в оборудование при его эксплуатации и замену отработанного масла при капитальном ремонте, а для турбоагрегатов - дополнительно на безвозвратные потери масла при их ремонте.
Годовая норма расхода масла на долив (Д) для данной ТЭЦ определяется по формуле:
(1)
где I - число видов оборудования; р - число типов данного вида оборудования (турбины, насосы, дымососы и т.д.); di- норма расхода масла на долив в оборудование i-го типа (турбина, насос, дымосос и т.д.). Принимается по данным табл. 1-3 [27]; ni, - количество оборудования данного типа, шт.
Расход масла на замену Z (т/год) определяется по формуле:
(2)
Где? i - количество масла (т/год), заливаемого в единицу оборудования i-го типа, принимается по табл. 1-3 [27]; пi - количество оборудования i-го типа, в котором производится замена масла, шт.; тi - число замен масла для оборудования со сроком службы 0.5 года, принимается равным 2.
Расход масла на возмещение потерь при капитальном ремонте турбин (К) вычисляется по формуле:
(3)
где n - число типов турбин, выводимых в ремонт, ед.; Ki - норма расхода масла при капитальном ремонте турбины i-го типа. Принимается по табл.1 [27], т/год; пi -количество турбин i-го типа, подлежащих капитальному ремонту в расчетном году, шт.; С - межремонтный период турбин. Принят равным 4 годам.
Общий расход масла в год рассчитывается по формуле:
M1 = Д + Z + K (4)
Количество масла (Q), сливаемого из всего парка ремонтируемого оборудования, вычисляется по формуле:
(5)
где Si - норма сбора отработанного масла (или сливаемого во время ремонта, если масло не подлежит замене) в оборудовании i-го типа. Принимается по табл. 1-3 [27], т/год; ni - количество оборудования i-го типа, выводимого в ремонт, шт.; ?, -срок службы масла в оборудовании i-го типа. Принимается по п. 1.4 [27], год. Количество повторно используемого турбинного масла (М2) определяется по формуле:
М2 = Q - (Q1 - Q2 - О3), (6)
где Q1 - количество масла, непригодного для регенерации и подлежащего использованию в качестве котельно-печного топлива, сдаче на нефтебазу или на технологические нужды. Определяется по формуле (4) для парка оборудования, в котором масло сильно окислено, т/год; Q2 - потери при очистке масла, слитого из оборудования. Определяются по формуле (7), т/год; Q3 - потери при регенерации масла, слитого из оборудования. Определяются по формуле (7), т/год.
Потери масла при его очистке или регенерации вычисляются по формулам:
Q2 = Q·B2·K2·0.01, Q3 = Q·B3·K3·0.01, (7)
где В2, В3 - доля слитого масла, подлежащего очистке или регенерации. Определяется на основании данных сокращенного химического анализа масла; K2, K3 - потери масла при его очистке или регенерации, соответственно составляют 5 и 15%.Полная потребность в свежем турбинном масле определяется по формуле:
М3 = М1 - М2 (8)
где М1 и М2 - соответственно общая потребность в турбинном масле и количество повторно используемого турбинного масла. Определяется по формулам (4) и (6).
Для ТЭЦ доля повторно используемого масла, слитого при капитальных ремонтах оборудования, зависит от состава оборудования и состояния масла в нем.
Усредненные результаты расчета по вышеприведенным формулам приведены в табл. 3.
Таблица 3
Тип оборудования |
Удельная масса сбора масла в системе |
|
Турбины типа К, Т, П, ПТ, Р, ПР |
0.18 |
|
Питательные электро- и турбонасосы типа П, ПЭ, СВПЭ, ОВПТ |
0.14 |
|
Сетевые насосы СЭ-800-100, СЭ-1250-70, СЭ-1250-140, СЭ-2500-60, СЭ-2500=80, СЭ-2500-100 |
1.7 |
|
Сетевые насосы СЭ-5000-70 |
1.6 |
|
Сетевые насосы 18 СД-13 СЭ-5000-160 |
2.1 |
|
Циркуляционные насосы типа ОПВ, ОП, ПРВ, В, ДПВ |
2.8 |
|
Конденсатные насосы и насосы технической воды типа КС, ЦН, КСВ, НД, К, КМ, ЗВ, НДВ, Д, НДС, Н, КСМ, КсД, КсВ, ЦНС |
1.71.8 |
|
Нефтяные насосы типа Н |
1.5 |
|
Нефтяные насосы типа НК, 8НД-6?1, 10НД-6?1 |
1.6 |
|
Нефтяные насосы типа НА, 8НД-9?3, 8НД-10?5, 8НД-9?2 |
1.75 |
|
Вентилятор ВДДОД-31,5; ВДН-36?2 |
0.43 |
|
Вентиляторы ВДН, ВД, ВГДН, ВГДУ, ВГД, ВМ, ВВСМ |
0.85 |
|
Дымососы типа ДОД, ДО |
0.43 |
|
Дымососы типа ДН, Д |
0.85 |
|
Дымососы типа ДРЦ, ДЦ |
0.85 |
|
Дымососы типа ДН |
0.85 |
|
Дымососы типа ГД-20, ГД-31 |
0.85 |
|
Дымососы типа ГД-26?2 |
0.42 |
4.3.2 Отработанное компрессорное масло
Годовой выход отработанного масла для компрессорных установок, где в системе и механизме движения используются масла различных марок, определяется по следующим формулам [28]:
для системы сжатия:
где Мсж. - норматив образования конденсата, содержащего нефтепродукты, кг;
Nсж - часовой расход масла в системе сжатия, г. Часовой расход масла для систем сжатия принимается в соответствии с РД 34.10.561-88 (см. таблицу 3.1.) или технической документацией завода-изготовителя;
?- время работы компрессорной установки в году, ч,
В- содержание влаги, % (В ? 30?50 %).
...Подобные документы
Последовательность технологических процессов, применяемых для очистки и восстановления отработанных масел. Технология и установка восстановления свойств отработанных нефтяных масел. Сущность способов регенерации (очистки) отработанных моторных масел.
реферат [28,2 K], добавлен 13.12.2009Сущность коагуляции, адсорбции и селективного растворения как физико-химических методов очистки и регенерации отработанных масел. Опыт применения технологии холодной регенерации дорожных покрытий в США. Вяжущие и технологии для холодного ресайклинга.
реферат [30,1 K], добавлен 14.10.2009Теоретические основы процесса и методы очистки масла. Особенности проектирования и расчета параметров установки непрерывной адсорбционной очистки масел месторождения Алибекмола производительностью 500 000 тонн в год. Оценка ее экономической эффективности.
дипломная работа [108,0 K], добавлен 06.06.2012Решение инженерных задач по совершенствованию отдельных методов регенерации моторных масел. Регламент, матрица патентно-информационных исследований. Анализ выбранных аналогов, обоснование прототипа. Функционально-физическая схема технического предложения.
курсовая работа [1,4 M], добавлен 21.04.2013Процесс селективной очистки масел. Назначение, сырье и целевые продукты. Аппаратурное оформление блока регенерации экстрактного раствора и осушки растворителя. Регенерация растворителя из экстрактного раствора. Монтаж технологических трубопроводов.
отчет по практике [1,6 M], добавлен 22.10.2014Групповой состав и физико-химические свойства масляных погонов, деасфальтизата и базовых масел на их основе. Материальный баланс установки селективной очистки, технологическая схема установки. Расчет системы регенерации растворителя, отпарной колонны.
курсовая работа [236,6 K], добавлен 06.11.2013Технологічна схема й параметри установки мікрофільтрації масла. Методика дослідження процесу мікрофільтрації масла. Режими робочого процесу мікрофільтрації відпрацьованих шторних масел. Дослідження стабільності технологічного процесу та його результати.
реферат [15,7 M], добавлен 19.03.2010Обоснование выбора нефти для производства базовых масел. Групповой состав и физико-химические свойства масляных погонов. Выбор и обоснование поточной схемы маслоблока. Расчет колонн регенерации растворителя из раствора депарафинированного масла.
курсовая работа [187,2 K], добавлен 07.11.2013Область применения трансмиссионных масел, их классификация и маркировка, характеристика и виды присадок. Основные и вспомогательные показатели качества масел, критерии их выбора. Анализ достоинств и недостатков методики подбора трансмиссионных масел.
реферат [251,3 K], добавлен 15.10.2012Требования к физико-химическим и эксплуатационным свойствам смазочных материалов в классификациях и спецификациях. Смазочно-охлаждающие жидкости и нефтяные масла. Классификация нефтяных масел и область их применения. Стандарты рансформаторных масел.
контрольная работа [26,3 K], добавлен 14.05.2008Особенности и применение эфирного масла лимона. Процесс получение и специфика состава эфирного масла апельсина. Народное применение мандаринового эфирного масла, его место и роль в парфюмерии. Характеристика и преимущества эфирного масла бергамота.
презентация [4,3 M], добавлен 19.05.2019Автоматизированные системы управления процессами очистки. Процессы удаления из масляных фракций смолистых веществ, полициклических и ароматических углеводородов, целевые продукты при селективной очистке масел. Описание технологической схемы установки.
курсовая работа [271,2 K], добавлен 21.06.2010Анализ принятого технологического решения отечественного и зарубежного опыта дезодорации жиров и масел. Знакомство с нормативной документацией на сырье и готовую продукцию. Сущность материального, теплового, энергетического балансов соевого масла.
дипломная работа [135,9 K], добавлен 19.12.2011Выбор и обоснование нефти для производства базовых масел и продуктов специального назначения. Групповой состав и физико-химические свойства масляных погонов и базовых масел на их основе. Потенциальное содержание дистиллятных и остаточных базовых масел.
реферат [32,6 K], добавлен 11.11.2013Общие понятия об очистке нефтепродуктов, ее цели и задачи. Технические характеристики тяжелых моторных топлив: вязкость, содержание серы, теплота сгорания и пр. Основные эксплуатационные свойства трансмиссионных масел. Пластификаторы и мягчители.
реферат [62,9 K], добавлен 06.06.2011Основные стадии переработки минеральных базовых масел, технология их гидроочистки. Синтетическое моторное масло, его свойства и физико-химические характеристики. Классификация смазок, выпускаемых в России, их сравнительный анализ и изучение свойств.
реферат [134,6 K], добавлен 22.12.2010Составление и применение фотографических растворов. Очистка воды для химико-фотографической обработки фотоматериалов. Проявляющие, останавливающие и фиксирующие растворы. Обесцвечивающие и фиксирующие растворы из отработанных фотографических растворов.
курсовая работа [224,4 K], добавлен 11.10.2010Характеристика природного газа, турбинных масел и гидравлических жидкостей. Технологическая схема компрессорной станции. Работа двигателя и нагнетателя газоперекачивающего агрегата. Компримирование, охлаждение, осушка, очистка и регулирование газа.
отчет по практике [191,5 K], добавлен 30.05.2015Технические данные системы охлаждения циркуляционного масла главного судового дизеля. Назначение системы автоматического регулирования температуры масла, ее особенности и описание схемы. Определение настроечных параметров регулятора температуры масла.
курсовая работа [1,9 M], добавлен 23.02.2013Обмен веществам между сервовитной пленкой и смазочным материалом. Эксплуатационные свойства смазочных масел. Окисление масла кислородом воздуха. Основные причины обводнения масла в смазочных системах. Антифрикционные свойства подшипников скольжения.
реферат [310,4 K], добавлен 03.11.2017