Основы сопротивления материалов

Метод сечений для определения внутренних усилий. Понятие о напряжениях и деформациях. Расчет статически неопределимых систем по допускаемым нагрузкам. Составные балки и перемещения при изгибе. Расчет динамического коэффициента при ударной нагрузке.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 15.09.2017
Размер файла 3,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Разберем практически.важный случай, когда к стержню прямоугольного сечения (Рис. 4) приложена внецентренно сила Р в точке А, лежащей на главной оси сечения Оу. Эксцентриситет ОА равен е, размеры сечения b и d. Применяя полученные выше формулы, имеем:

Рис.4. Расчетная схема бруса прямоугольного сечения.

Напряжение в любой точке В равно

так как

Напряжения во всех точках линии, параллельной оси Oz, одинаковы. Положение нейтральной оси определяется отрезками

Нейтральная ось параллельна оси Oz; точки с наибольшими растягивающими и сжимающими напряжениями расположены на сторонах 1--1 и 3--3.

Значения и получатся, если подставить вместо у его значения . Тогда

Лекция № 28. Ядро сечения при внецентренном сжатии

При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие. Этого можно достигнуть, не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения, ограничивая величину эксцентриситета.

Конструктору желательно заранее знать, какой эксцентриситет при выбранном типе сечения можно допустить, не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так называемом ядре сечения. Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.

Рис.1. Комбинации положения сжимающей силы и нейтральной линии

Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки и и вычислить координаты и точки приложения силы по формулам, вытекающим из известных зависимостей:

это и будут координаты точек контура ядра и .

При многоугольной форме контура сечения (Рис.2), совмещая последовательно нейтральную ось с каждой из сторон многоугольника, мы по отрезкам и определим координаты и точек границы ядра, соответствующих этим сторонам.

При переходе от одной стороны контура сечения к другой нейтральная ось будет вращаться вокруг вершины, разделяющей эти стороны; точка приложения силы будет перемещаться по границе ядра между полученными уже точками. Установим, как должна перемещаться сила Р, чтобы нейтральная ось проходила все время через одну и ту же точку В (,) -- вращалась бы около нее. Подставляя координаты этой точки нейтральной оси в известное уравнение нейтральной оси (линии), получим:

Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной точки.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси. Таким образом, при многоугольной форме контура сечения очертание ядра между точками, соответствующими сторонам многоугольника, будет состоять из отрезков прямых линий.

Рис.3. Динамика построения ядра сечения

Если контур сечения целиком или частично ограничен кривыми линиями, то построение границы ядра можно вести по точкам. Рассмотрим несколько простых примеров построения ядра сечения.

При выполнении этого построения для прямоугольного поперечного сечения воспользуемся полученными формулами.

Для определения границ ядра сечения при движении точки А по оси Оу найдем то значение , при котором нейтральная ось займет положение Н1О1. Имеем:

откуда

Таким образом, границы ядра по оси Оу будут отстоять от центра сечения на 1/6 величины b (Рис.4, точки 1 и 3); по оси Oz границы ядра определятся расстояниями (точки 2 и 4).

Для получения очертания ядра целиком изобразим положения нейтральной оси и , соответствующие граничным точкам 1 и 2.

При перемещении силы из точки 1 в точку 2 по границе ядра нейтральная ось должна перейти из положения в положение , все время касаясь сечения, т. е. поворачиваясь вокруг точки D.

Рис.4. построение ядра для прямоугольного сечения.

Для этого сила должна двигаться по прямой 1 -- 2. Точно так же можно доказать, что остальными границами ядра будут линии 2--3, 3--4 и 4--1.

Таким образом, для прямоугольного сечения ядро будет ромбом с диагоналями, равными одной трети соответствующей стороны сечения. Поэтому прямоугольное сечение при расположении силы по главной оси работает на напряжения одного знака, если точка приложения силы не выходит за пределы средней трети стороны сечения.

Рис.5. Динамика изменения напряжений при изменении эксцентриситета.

Эпюры распределения нормальных напряжений по прямоугольному сечению при эксцентриситете, равном нулю, меньшем, равном и большем одной шестой ширины сечения, изображены на Рис.5.

Отметим, что при всех положениях силы Р напряжение в центре тяжести сечения (точка О) одинаково и равно и что сила Р не имеет эксцентриситета по второй главной оси.

Для круглого сечения радиуса r очертание ядра будет по симметрии кругом радиуса . Возьмем какое-либо положение нейтральной оси, касательное к контуру. Ось Оу расположим перпендикулярно к этой касательной. Тогда

Рис.6. Ядро сечения для двутавра -- а) и швеллера -- б)

Таким образом, ядро представляет собой круг с радиусом, вчетверо меньшим, чем радиус сечения.

Для двутавра нейтральная ось при обходе контура не будет пересекать площади поперечного сечения, если будет касаться прямоугольного контура ABCD, описанного около двутавра (Рис.6а). Следовательно, очертание ядра для двутавра имеет форму ромба, как и для прямоугольника, но с другими размерами.

Для швеллера, как и для двутавра, точки 1, 2, 3, 4 контура ядра (Рис.6 б) соответствуют совпадению нейтральной оси со сторонами прямоугольника ABCD.

Лекция № 29. Совместные действия изгиба и кручения призматического стержня

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).

Рис.1. Расчетная схема изогнутого и скрученного вала

Примем следующий порядок расчета.

1. Разлагаем все внешние силы на составляющие

P1x, P2x,..., Pnx и P1y, P2y,..., Pny.

2. Строим эпюры изгибающих моментов My и My. от этих групп сил.

У кругового и кольцевого поперечного сечений все центральные оси главные, поэтому косого изгиба у вала вообще не может быть, следовательно, нет смысла в каждом сечении иметь два изгибающих момента Mx, и My а целесообразно их заменить результирующим (суммарным) изгибающим моментом (рис. 2)

,

который вызывает прямой изгиб в плоскости его действия относительно нейтральной оси п--п, перпендикулярной вектору Мизг. Эпюра суммарного момента имеет пространственное очертание и поэтому неудобна для построения и анализа. Поскольку все направления у круга с точки зрения прочности равноценны, то обычно эпюру Мизг спрямляют, помещая все ординаты в одну (например, вертикальную) плоскость. Обратим внимание на то, что центральный участок этой эпюры является нелинейным.

Рис.2. Формирование результирующего изгибающего момента

3. Строится эпюра крутящего момента Мz.

Наибольшие напряжения изгиба возникают в точках k и k/, наиболее удаленных от нейтральной оси (рис. 3),

.

где Wизг -- момент сопротивления при изгибе.

В этих же точках имеют место и наибольшие касательные напряжения кручения

,

где Wр-- момент сопротивления при кручении.

а) эпюры напряжений б) распределение напряжений

Рис.3. Напряженное состояние вала:

Как следует из рис. 3, напряженное состояние является упрощенным плоским (сочетание одноосного растяжения и чистого сдвига). Если вал выполнен из пластичного материала, оценка его прочности должна быть произведена по одному из критериев текучести. Например, по критерию Треска--Сен-Венана имеем

.

Учитывая, что Wр=2 Wизг, для эквивалентных напряжений получаем

,

где --эквивалентный момент, с введением которого задача расчета вала на совместное действие изгиба и кручения, сводится к расчету на эквивалентный изгиб.

Аналогично для Мэкв по.критерию Губера--Мизеса получаем

Тогда условие прочности для вала из пластичного материала будет иметь вид

.

Для стержня из хрупкого материала условие прочности следует записать в виде

,

где Мэкв должен быть записан применительно к одному из критериев хрупкого разрушения. Например, по критерию Мора

где .

Обратим внимание на особенности расчета при сочетании изгиба, растяжения и кручения стержня прямоугольного поперечного сечения (рис. 4.) Для выявления опасной точки здесь должны быть сравнены напряжения косого изгиба с растяжением в точке А, с эквивалентными напряжениями в точках В и С.

Рис.4. Модель расчета напряжений при сочетании кручения, растяжения и изгиба.

Полученные соотношения приобретают крайнюю необходимость и востребованность при выполнении Вами курсового проекта по основам конструирования при расчете на прочность и жесткость валов передач.

Лекция № 30. Расчет балок переменного сечения

Подбор сечений балок равного сопротивления

Все предыдущие расчеты относились к балкам постоянного сечения. На практике мы имеем часто дело с балками, поперечные размеры которых меняются по длине либо постепенно, либо резко.

Ниже рассмотрено несколько примеров подбора сечения и определения деформаций балок переменного профиля.

Так как изгибающие моменты обычно меняются по длине балки то, подбирая ее сечение по наибольшему изгибающему моменту, мы получаем излишний запас материала во всех сечениях балки, кроме того, которому соответствует . Для экономии материала, а также для увеличения в нужных случаях гибкости балок применяют балки равного сопротивления. Под этим названием подразумевают балки, у которых во всех сечениях наибольшее нормальное напряжение одинаково и должно быть равно допускаемому.

Условие, определяющее форму такой балки, имеет вид

и

Здесь М(х) и W(x) -- изгибающий момент и момент сопротивления в любом сечении балки; W(х) для каждого сечения балки должен меняться пропорционально изгибающему моменту.

Эти условия справедливы и для сечения с наибольшим изгибающим моментом; если обозначить -- момент сопротивления балки в сечении с наибольшим изгибающим моментом , то можно написать:

(1)

Покажем ход вычислений на примере. Рассмотрим балку пролетом l, защемленную концом А и нагруженную на другом конце силой Р (Рис.1). Выберем сечение этой балки в виде прямоугольника; задачу о надлежащем изменении момента сопротивления можно решать, меняя высоту или ширину балки или тот и другой размер вместе.

Рис.1. Расчетная схема балки равного сопротивления

Пусть высота балки будет постоянной , а ширина переменной--. Момент сопротивления в сечении на расстоянии х от свободного конца будет , а изгибающий момент ; момент сопротивления опорного сечения , a наибольший изгибающий момент в опорном сечении . В расчете имеют значения лишь абсолютные величины М(х) и

По формуле (1) получаем:

откуда

т. е. ширина меняется по линейному закону в зависимости от х. При ширина равна .

Вид балки в фасаде и плане показан на Рис.1. Такое очертание балки получается, если учитывать ее прочность только по отношению к нормальным напряжениям; ширина в сечении В обращается в нуль.

Однако необходимо обеспечить прочность и по отношению к касательным напряжениям. Наименьшая ширина балки, требуемая этим условием, определится из уравнения

или, так как

Таким образом, исправленное очертание балки предопределяет минимальный размер ширины и утолщение свободного края консоли.

Определение деформаций балок переменного сечения

При определении прогибов и углов поворота для балок с переменным сечением надлежит иметь в виду, что жесткость такой балки является функцией от х. Поэтому дифференциальное уравнение изогнутой оси принимает вид

где J(x) -- переменный момент инерции сечений балки.

До интегрирования этого уравнения можно выразить J(x) надлежащей подстановкой через J, т. е. через момент инерции того; сечения, где действует ; после этого вычисления производятся так же, как и.для балок постоянного сечения.

Покажем это на примере, разобранном выше. Определим прогиб балки равного сопротивления, защемленной одним концом, нагруженной на другом конце силой Р и имеющей постоянную высоту. Начало координат выберем на свободном конце балки.

Тогда

Дифференциальное уравнение принимает вид:

Интегрируем два раза:

Для определения постоянных интегрирования имеем условия: точке А при прогиб и угол поворота или

и

отсюда

и

Выражения для у и принимают вид;

Наибольший прогиб на свободном конце балки В получится при : он равен

Если бы мы всю балку сделали постоянного сечения с моментом инерции J, то наибольший прогиб был бы

т. е. в 1 раза меньше.

Таким образом, балки переменного сечения обладают большей гибкостью по сравнению с балками постоянной жесткости при одинаковой с ними прочности. Именно поэтому, а не только ради экономии материала, они и применяются в таких конструкциях, как рессоры.

Лекция № 31. Расчет балки на упругом основании.

Общие понятия.

К числу статически неопределимых балок может быть отнесена балка на упругом основании. Так называется балка, опирающаяся по всей своей длине (Рис.1) на упругое основание, оказывающее в каждой точке на балку реакцию, пропорциональную у -- прогибу балки в этой точке. Коэффициент пропорциональности обозначается буквой k.

Введение предположения о пропорциональности реакций прогибу является приближением, хотя и достаточно близким к действительным условиям.

Рис.1. Расчетная схема балки на упругом основании.

Предложение ввести в расчет коэффициент пропорциональности к, именуемый «коэффициентом постели», было впервые сделано русским академиком Николаем Ивановичем Фуссом в 1801 году. Принимая это предположение, получаем, что интенсивность реакции основания в каждой точке сила равна ky и измеряется в единицах силы и длины; размерность коэффициента k при этом будет сила и квадрат длины. Будем считать, что основание оказывает реакцию при прогибах балки как вниз, так и вверх.

На практике задачи о расчете балки на упругом основании встречаются в железнодорожном деле (рельс, шпала), в строительстве -- фундаменты различных сооружений, передающие нагрузку на грунт.

Статически неопределимой такая балка будет потому, что условие статики-- сумма нагрузок равна всей реакции основания -- не дает возможности установить распределение этой реакции по длине балки, а значит, вычислить изгибающие моменты и поперечные силы.

Интенсивность реакции в каждой точке связана с прогибами балки. Поэтому для решения задачи необходимо найти сначала уравнение изогнутой оси , а уже затем формулы для вычисления изгибающего момента и поперечной силы. Ход решения оказывается обратным обычному.

Найдем уравнение изогнутой оси для балки постоянного сечения, лежащей на упругом основании и нагруженной сосредоточенными силами ... (Рис.1). Начало координат возьмем в любой точке, ось х направим вправо, ось у вертикально вверх. Направление нагрузок вверх будем считать положительным. Напишем обычное дифференциальное уравнение изгиба

Так как М(х) нам неизвестен, то постараемся связать прогибы непосредственно с нагрузкой, для этого дифференцируем дважды предыдущее уравнение:

(1)

где q(x)--интенсивность сплошной нагрузки, действующей на балку в сечении с абсциссой х.

Сплошной нагрузкой для нашей балки является лишь реакция упругого основания. Интенсивность ей пропорциональна прогибам; эта нагрузка направлена вверх, т. е. положительна, когда прогибы идут вниз, т. е. отрицательны, и наоборот. Таким образом, эта нагрузка имеет знак, обратный знаку прогибов:

Тогда

(2)

(3)

Если обозначить , то общий интеграл уравнения (25.3) имеет вид: (25.4)

Постоянные А, В, С, D должны быть определены в каждом частном случае нагрузки и длины балки. Величина имеет измерение обратное длине.

Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р

Наиболее просто решается задача об изгибе бесконечно длинной балки, нагруженной одной сосредоточенной силой (Рис.2). Помимо непосредственного практического значения решение этой задачи позволит путем последовательных приближений рассчитывать и балки конечной длины.

Рис.2. Расчетная схема балки бесконечной длины.

Начало координат расположим в точке приложения силы Р. Определим постоянные А, В, С и D. Так как вся реакция основания, равная силе Р должна быть конечной величиной, то прогибы балки в точках, бесконечно удаленных от точки приложения силы, должны обращаться в нуль:

(5)

При бесконечно больших значениях х два вторых слагаемых в правой части формулы (4) обращаются в нуль благодаря множителю , два же первых могут обратиться в нуль лишь при

и

таким образом,

(6)

Далее, по симметрии нагрузки и реакции основания, касательная к изогнутой оси в точке приложения силы должна идти параллельно оси абсцисс:

Дифференцируя (6), получаем:

Подставляя в это выражение и приравнивая результат нулю, находим:

D -- С = 0 и C=D;

таким образом, уравнения будут:

(7)

(8)

Для определения последней постоянной С имеем еще одно уравнение: нам известна величина поперечной силы в начале координат.

Разрезав балку сечением в точке О справа от силы Р и рассматривая правую часть балки, видим, что поперечная сита в этом сечении равна реакции основания, действующей на правую половину балки со знаком минус; так как реакция направлена вверх (для правой половины) и вся реакция основания равна Р, значит, поперечная сила в сечении при х = 0 равна

Но, с другой стороны

(9)

Таким образом,

(10)

Вычисляем, пользуясь (8), и :

(11)

(12)

Подставляя (12) в (10) и приравнивая х нулю, получаем:

и

Теперь значения у и ее производных получают вид

Таким образом, напряженное состояние и деформации балки на упругом основании всецело определяются нагрузкой и коэффициентом , зависящим от соотношения жесткостей балки и упругого основания.

Лекция № 32. Энергетические методы расчета деформаций

Постановка задачи

Кроме рассмотренных способов вычисления прогибов и углов поворота сечений балок существует более общий метод, пригодный для определения деформаций любых упругих конструкций. Он основан на применении закона сохранения энергии.

При статическом растяжении или сжатии упругого стержня происходит превращение потенциальной энергии из одного вида в другой; часть потенциальной энергии действующего на стержень груза полностью переходит в потенциальную энергию деформации стержня. Действительно, если мы будем нагружать стержень путем постепенного подвешивания к его нижнему концу очень малых грузов dP, то при добавлении каждого такого груза подвешенная уже часть нагрузки опустится и ее потенциальная энергия уменьшится, а потенциальная энергия деформации стержня соответственно увеличится.

Это явление имеет место при любом виде деформации всякой упругой конструкции при статической нагрузке; такую конструкцию можно рассматривать как своеобразную машину, преобразующую один вид потенциальной энергии в другой.

Мы условились называть «статической» такую нагрузку, которая возрастает постепенно и таким образом, что ускорениями элементов конструкции можно пренебречь; передача давлений (сил) от одной части конструкции на другую не меняет характера движения, этих частей, т. е. их скорость остается постоянной и ускорение отсутствует.

При этих условиях деформация конструкции не будет сопровождаться изменением кинетической энергии системы, и будет иметь место лишь преобразование потенциальной энергии из одного вида в другой. При этом мы пренебрегаем магнитными, электрическими и тепловыми явлениями, сопровождающими упругие статические деформации тела лишь в очень слабой мере.

Так как характер движения всех элементов конструкции с течением времени не меняется, то в каждый момент времени будет иметь место равновесие как для каждой части конструкции в целом под действием внешних сил и реакций, так и для каждого элемента этой части под действием внешних сил и напряжений, приложенных к этому элементу. Деформации конструкции, напряжения в ее частях и реакции, передающиеся от одной части на другую, успевают следовать за ростом нагрузки.

Таким образом, можно сказать, что полное преобразование одного вида потенциальной энергии в другой имеет место, если деформация происходит без нарушения равновесия системы. Мерой энергии, превратившейся в другой вид, является величина работы, произведенной силами, действующими на конструкцию.

Обозначим величину накопленной потенциальной энергии деформации через U, а уменьшение потенциальной энергии внешних нагрузок . Тогда величина измеряется положительной работой этих нагрузок , с другой стороны, накоплению потенциальной энергии деформации U соответствует отрицательная работа внутренних, междучастичных сил А, так как перемещения точек тела при деформации происходят в обратном по отношению к внутренним силам направлении.

Закон сохранения энергии при деформациях упругих систем принимает вид:

заменяя в этой формуле величины и U численно равными им значениями работ и --А, получаем иную формулировку этого закона:

или

Эта формулировка закона сохранения энергии совпадает с так зазываемым «началом» возможных перемещений в применении к упругим системам. Последнее равенство выражает, что при перемещениях без нарушения равновесия сумма работ всех сил, приложенных к точкам тела, равна нулю.

Таким образом, начало возможных перемещений в применении к упругим системам является следствием закона сохранения энергии.

Таким образом, потенциальная энергия деформации численно равна работе внешних сил , проделанной ими этой деформации:

Вычисление потенциальной энергии

При вычислении потенциальной энергии будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейно с ними связаны и растут постепенно вместе с ними.

Известно, что при статическом растяжении или сжатии стержня силами Р величина работы , а следовательно, и величина энергии U равняется:

В случае сдвига

При кручении

Так же как и при кручении, может быть вычислена потенциальная энергия при чистом изгибе.

Концевые сечения балки под действием изгибающих моментов(Рис.1) повернутся на угол , где -- центральный угол изогнувшейся по дуге радиусом р оси балки.

Рис.1. Модель расчета потенциальной энергии при чистом изгибе.

Тогда

так как из общей теории изгиба а

Из полученных выражений следует, что потенциальная энергия деформации равна половине произведения силы или пары сил на перемещение по ее направлению того сечения, где эта сила приложена. Условимся называть термином «обобщенная сила» всякую нагрузку, вызывающую соответствующее нагрузке перемещение, т. е. и сосредоточенную силу, и пару сил, и т. п.; перемещение же, соответствующее этой силе, будем называть «обобщенной координатой».

«Соответствие» заключается в том, что речь идет о перемещении того сечения, где приложена рассматриваемая сила, причем о таком перемещении, что произведение его на эту силу дает нам величину работы; для сосредоточенной силы это будет линейное перемещение по направлению действия силы -- прогиб, удлинение; для пары сил -- это угол поворота сечения по направлению действия пары.

Иначе: потенциальная энергия деформации численно равна половине произведения обобщенной силы на соответствующую ей координату.

,

где Р--обобщенная сила, -- обобщенная координата.

Полученные соотношения также показывают, что потенциальная энергия является функцией второй степени от независимых внешних сил, так как в эти формулы не входят реакции, зависящие от приложенных к элементу сил и связанные с ними уравнениями равновесия. Из тех же формул видно, что величина потенциальной энергии деформации является функцией второй степени от «обобщенных координат» системы и вполне ими определяется. Таким образом, порядок приложения нагрузок в этом отношении безразличен, важна лишь окончательная форма деформированного элемента. Поэтому, хотя результаты этого параграфа получены в предположении, что нагрузка возрастает статически, при сохранении равновесия в течение всего процесса нагружения, однако выведенные формулы сохраняют силу и при любом способе приложения нагрузок, лишь бы значения сил и деформаций были связаны линейной зависимостью и относились к тому моменту, когда установится равновесие конструкции.

Известно также, что в общем случае изгиба изгибающий момент М(х) является величиной переменной. В любом сечении ему будет сопутствовать поперечная сила Q(х). Поэтому рассматривать следует уже,не всю балку в целом, а лишь бесконечно малый элемент балки длиной dx.

Рис.2. Энергетическая модель поперечного изгиба

Под действием изгибающих усилий сечения элемента (рис.2, а) поворачиваются и образуют между собой угол (Рис.2, б). Касательные же усилия стремятся вызвать (Рис.2, в) перекос элемента; таким образом перемещения от нормальных напряжений идут перпендикулярно к направлению касательных напряжений, и наоборот.

Это позволяет независимо вычислять работу изгибающих и касательных усилий.

Обычно работа касательных усилий оказывается малой по сравнению с работой нормальных, поэтому мы пока ею будем пренебрегать. Элементарная работа нормальных усилий (как и в случае чистого изгиба) равна:

или

Рис.3. Расчетная схема примера расчета потенциальной энергии при поперечном изгибе.

Вся потенциальная энергия изгиба получится суммированием по длине балки

Знак предела интегрирования условно указывает, что интегрирование должно охватить всю балку; в тех случаях, когда для М(х) мы имеем несколько участков, то интеграл приходится разбивать на сумму интегралов.

Вычислим потенциальную энергию балки на двух опорах, нагруженной силой Р (Рис.3). Эпюра моментов имеет два участка; поэтому

Лекция № 33. Теорема Кастильяно

Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.

Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3,... действуют только сосредоточенные силы , )... и т. д. Под действием этих сил балка прогнется по кривой и останется в равновесии.

Прогибы сечений 1, 2, 3,..., в которых приложены силы , , ,..., обозначим ,, ,... и т. д. Найдем один из этих прогибов, например -- прогиб сечения, в котором приложена сила .

Переведем балку, не нарушая равновесия, из положения в смежное положение , показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д.

Мы представим себе, что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка (Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно.

Расчетная модель к теореме Кастильяно.

При переходе от состояния балки к состоянию все нагрузки Р опустятся, значит, их потенциальная энергия уменьшится. Так как равновесие не нарушалось, то уменьшение, энергии нагрузок целиком преобразовалось в увеличение потенциальной энергии деформаций балки dU. Величина измеряется работой внешних сил при переходе балки из положения в положение II:

Изменение dU потенциальной энергии деформации, являющейся функцией сил , , ,..., произошло за счет очень малого приращения одной из этих независимых переменных , поэтому дифференциал такой сложной функции равен:

Что касается величины , то эта работа в свою очередь является разностью работы нагрузок Р для положений и :

Работа при одновременном и постепенном возрастании сил Р равна:

При вычислении работы учтем, что ее величина всецело определяется окончательной формой деформированной балки и не зависит от порядка, в котором производилась нагрузка.

Предположим, что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется (Рис.2, положение III), и прогибы ее в точках 1, 2, 3 будут . Работа статически приложенной нагрузки будет равна . После этого начнем постепенно нагружать балку одновременно возрастающими грузами , , .

Рис.2. Расчетная модель к теореме Кастильяно.

К первоначальным прогибам добавятся прогибы (Рис.2). При этой стадии нагружения силы , , произведут работу , кроме этого, произведет работу уже находившийся на балке груз ; он пройдет путь , и так как при втором этапе нагружения он оставался постоянным, то его работа равна Балка займет положение , показанное на Рис.2 пунктиром.

Таким образом, полная работа, проделанная внешними нагрузками при переходе балки из недеформированного состояния в положение, будет равна.

Теперь вычислим

Пренебрегая слагаемым второго порядка малости, получаем:

Подставляя полученные значения dU и в исходное уравнение, находим

или

Таким образом, в рассмотренном случае прогиб точки приложения сосредоточенной силы , равен частной производной потенциальной энергии деформации по этой силе.

Полученный результат можно обобщить. Пусть на балку помимо сосредоточенных сил Р действуют в разных сечениях еще пары сил М (Рис.3). Мы можем повторить предыдущие рассуждения, считая, что балка переводится из положения в положение путем добавки к паре . Весь ход рассуждений остается без изменений, надо будет лишь при вычислении работы моментов , ... умножать их не на прогибы, а на углы поворота , ,... тех сечений, где эти пары приложены. Тогда dU будет равно станет , и в итоге получим:

Рис.3. Обобщенная расчетная модель к теореме Кастильяно.

Так как -- это перемещение, соответствующее силе , a -- перемещение, соответствующее силе то полученные нами результаты можно формулировать так: производная потенциальной энергии деформации по одной из независимых внешних сил равна перемещению, соответствующему этой силе. Это и есть так называемая теорема Кастильяно, опубликованная в 1875 г.

Заметим, что присутствие на балке сплошной нагрузки не меняет предыдущих выводов, так как всякую сплошную нагрузку можно рассматривать как состоящую из большого числа сосредоточенных сил.

Предыдущий вывод был сделан для балки, но совершенно ясно, что его можно повторить для любой конструкции, деформации которой следуют закону Гука.

Для случая изгиба нами была получена формула, связывающая величину потенциальной энергии U с изгибающими моментами:

Изгибающий момент является линейной функцией нагрузок , …, , ,..., q, приложенных к балке:

в этом легко убедиться, просмотрев формулы для вычисления изгибающих моментов при построении эпюр. Следовательно, потенциальная энергия является функцией второй степени от независимых внешних нагрузок.

Вычислим частную производную от U по одной из внешних сил, например . Получаем:

Здесь мы имеем дело с так называемым дифференцированием определенного интеграла по параметру, так как М(х)-- функция и и х, интегрирование производится по х, а дифференцирование по параметру . Как известно, если пределы интеграла постоянны, то следует просто дифференцировать подинтегральную функцию.

Таким образом, прогиб в точке приложения сосредоточенной силы равен:

а угол поворота сечения с парой

Напомним, что знак предела l условно показывает, что интеграл должен охватить всю балку.

Примеры приложения теоремы Кастильяно

Определим (Рис.4) прогиб свободного конца В балки, защемленной другим концом А. Балка нагружена сосредоточенной силой, приложенной в точке В. В данном случае возможно непосредственное применение теоремы Кастильяно, так как отыскивается прогиб сечения, где приложена сосредоточенная сила Р

Рис.4. Пример расчетной схемы для расчета перемещений.

Начало отсчета абсциссы х сечения можно выбирать произвольно, лишь бы формула для М (х) была возможно проще. Отсчитывая х от точки В, получаем для момента в любом сечении балки

и

Подставляя эти значения в формулу для и интегрируя, чтобы охватить всю длину балки от 0 до l, получаем:

Лекция № 34. Теоремы о взаимности работ и Максвелла -- Мора

Пользуясь понятием о потенциальной энергии, можно установить следующую зависимость между деформациями в различных сечениях балки.

Если к балке, нагруженной силой приложить затем статически силу в сечении 2, то к прогибу точки приложения силы от этой же силы прибавится (Рис.1) прогиб от силы , равный ; первый значок у буквы у указывает точку, для которой вычисляется прогиб; второй -- обозначает силу, вызывающую этот прогиб.

Рис.1. Расчетная схема к теореме о взаимности работ

Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе , т. е. , работы силы на вызванном ею прогибе ее точки приложения , т. е. , наконец, работы силы на прогибе ее точки приложения от силы , т. е. .

Таким образом, накопленная в стержне при действии обеих сил энергия будет равна:

Это количество энергии деформации зависит лишь от конечных значений сил и прогибов и не зависит от порядка нагружения.

Если к балке, загруженной силой , приложить затем силу то, повторив цепь вычислений, получим:

Сравнивая оба значения U, получаем:

т. е. работа силы (или первой группы сил) на перемещениях, вызванных силой (второй группой сил), равна работе силы на перемещениях, вызванных силой .

Это и есть теорема о взаимности работ. Ее можно сформулировать и иначе: работа первой силы () при действии второй () равна работе второй силы при действии первой.

Теорема Максвелла--Мора

Прогиб балки в точке приложения сосредоточенной силы Р равен:

аналогичное выражение мы имеем и для угла поворота с заменой производной на . Выясним, что представляют собой эти производные.

Если на балке расположена какая угодно нагрузка из сосредоточенных сил , , ,..., моментов , ,..., сплошных нагрузок ,..... то момент М(х) в любом сечении такой балки выражается линейной функцией от нагрузок:

Рис.2. Частная расчетная модель метода Максвелла -- Мора.

Коэффициенты , ,..., , …, , ... являются функциями пролета балки, расстояний точек приложения сил и моментов от опор и абсциссы х взятого сечения. Пусть мы отыскиваем прогиб точки приложения силы ; тогда

так как , ,..., , ,..., ,..., , ,..., , …, , ... при этом дифференцировании постоянны. Но можно рассматривать как численную величину момента М в любом сечении балки от действия так называемой единичной нагрузки, т. е. силы ; действительно, подставляя в формулу вместо его частное значение, единицу, и приравнивая все остальные нагрузки нулю, получаем .

Например, для балки, изображенной на Рис2, а, изгибающий момент равен:

Производная ; но это как раз и будет выражение изгибающего момента нашей балки, если мы ее нагрузим силой 1, приложенной в той же точке В, где расположена сила Р (Рис.2, б), и направленной в ту же сторону.

Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону. Таким образом, вычисление производных изгибающего момента можно заменить вычислением изгибающих моментов от единичной нагрузки. Эти моменты мы будем обозначать буквой .

Таким образом, для отыскания перемещения (прогиба или угла поворота) любого сечения балки, вне зависимости от того, приложена или не приложена в этом сечении соответствующая сила, необходимо найти выражение для изгибающего момента М от заданной нагрузки и момента от соответствующей единичной нагрузки, приложенной в сечении, где ищем перемещение ; тогда это перемещение выразится формулой

Эта формула была предложена Максвеллом в 1864 г. и введена в практику расчета О. Мором в 1874 г. Если мы в полученном выражении под подразумеваем прогиб, то момент надо вычислять от сосредоточенной единичной силы, приложенной в той точке, где мы отыскиваем прогиб; при вычислении же угла поворота в качестве единичной нагрузки прикладывается пара сил с моментом, равным единице.

Для примера рис.2 имеем:

(рис.2,а)

(рис.2, б)

Знак плюс означает, что направление перемещения совпадает с направлением единичной нагрузки, знак минус -- наоборот.

Если при определении изгибающих моментов придется делить балку на участки, то соответственно и интеграл в формуле распадется на сумму интегралов.

Сравнивая формулу Кастильяно с формулой Мора, нетрудно заметить, что они отличаются лишь одним множителем. В теореме Кастильяно или , в теореме Мора .

Следовательно, производная от изгибающего момента по обобщенной силе -- это то же самое, что изгибающий момент от силы .

Метод Верещагина

Способ Максвелла -- Мора в значительной степени вытеснил на практике непосредственное применение теоремы Кастильяно. В справочниках обычно приводятся таблицы интегралов для наиболее часто встречающихся типов нагрузки.

Наш соотечественник А. Н. Верещагин в 1924 г. предложил упрощение вычислений. Так как единичной нагрузкой бывает обычно либо сосредоточенная сила, либо пара сил, то эпюра оказывается ограниченной прямыми линиями. Тогда вычисление при любом очертании эпюры М можно произвести следующим образом. Пусть эпюра М (Рис.3) имеет криволинейное очертание, а эпюра -- прямолинейное. Произведение Mdx можно рассматривать, как элемент площади эпюры М, заштрихованный на чертеже.

Так как ордината равна , то произведение , а весь интеграл представляет собой статический момент площади эпюры М относительно точки А, умноженный на .

Рис.3. Расчетная модель метода Верещагина.

Но этот статический момент равен всей площади эпюры М, умноженной на расстояние от ее центра тяжести до точки А. Таким образом,

но величина равна ординате эпюры под центром тяжести эпюры М. Отсюда

и искомое перемещение равно

Таким образом, для определения перемещения надо вычислить -- площадь эпюры М, умножить ее на ординату эпюры от единичной нагрузки под центром тяжести площади и разделить на жесткость балки.

Определим этим способом угол поворота сечения D балки, изображенной на Рис.4, а; Балка загружена моментом М, приложенным в сечении В к консоли АВ. Эпюра М показана на Рис.4, б. Прикладываем в сечении D единичную пару, выбирая ее направление произвольно (Рис.4, в). Эпюра моментов от единичной нагрузки показана на рис.4, г. Так как М на участках DC и СВ равен нулю, то остается лишь один интеграл для участка АВ.

а) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента

Рис.4. Иллюстрация метода Верещагина:

Площадь равна ; ордината эпюры под центром тяжести площади равна отсюда искомый угол поворота равен

Знак плюс показывает, что вращение происходит по направлению единичной пары, т. е. по часовой стрелке.

Лекция № 35. Расчет статически неопределимых балок. Способ сравнения деформаций

Общие понятия и метод расчета

До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходимым увеличить число опорных закреплений; тогда мы получаем так называемую статически неопределимую балку.

Рис.1. Схемы статически неопределимых балок

Например, для уменьшения пролета балки АВ на двух опорах (Рис.1, а) можно поставить опору еще посредине, а для уменьшения деформаций балки, защемленной одним концом (Рис.1, б), можно подпереть ее свободный конец.

Для подбора сечения таких балок, так же как и в рассмотренных ранее задачах, необходимо построить обычным порядком эпюры изгибающих моментов и поперечных сил, а стало быть, определить опорные реакции.

Во всех подобных случаях число опорных реакций, которые могут возникнуть, превышает число уравнений статики, например, для балок рис.2. Соответственно: четыре, четыре и пять опорных реакций.

Рис.2. Механизм появления дополнительных связей

Поэтому необходимо составить дополнительные уравнения, выражающие условия совместности деформаций, которые вместе с обычными уравнениями равновесия и дадут возможность определить все опорные реакции.

Определим опорные реакции и построим эпюру моментов для балки, находящейся под действием равномерно распределенной нагрузки q рис.3. Сначала изобразим все реакции, которые по устройству опор могут возникнуть в этой балке. Таких реакций может быть на опоре А три: вертикальная А, горизонтальная и опорный момент , на опоре В возможно появление лишь одной реакции В. Таким образом, число опорных реакций на одну больше, чем уравнений статики.

Одна из реакций является добавочной, как говорят, «лишней» неизвестной. Этот термин прочно укоренился в технической литературе; между тем, принять его можно лишь условно.

Рис.3. Исходная расчетная схема статически неопределимой балки.

Действительно, добавочная реакция и соответствующее ей добавочное опорное закрепление являются «лишними» только с точки зрения необходимости этих закреплений для равновесия балки как жесткого целого. С точки же зрения инженера добавленное закрепление во многих случаях не только не является лишним, а наоборот, позволяет осуществить такую конструкцию, которая без него была бы невозможна. Поэтому мы будем пользоваться термином «лишняя опорная реакция», «лишняя неизвестная» лишь условно.

Составим все уравнения статики для нашей балки, приравнивая нулю сумму проекций всех сил на направление оси балки, на перпендикуляр к ней, и сумму моментов относительно точки А. Получим систему:

,

Из первого уравнения сразу определяется опорная реакция Для определения трех других остаются лишь два уравнения.

За лишнюю реакцию можно взять любую из этих трех: попробуем взять реакцию опоры В. В таком случае мы должны считать, что рассматриваемая балка получилась из статически определимой балки АВ, защемленной концом А, у которой потом поставили добавочную опору в точке В. Эта статически определимая балка, которая получается из статически неопределимой при удалении добавочного, лишнего опорного закрепления, называется основной системой. Выбрав какую-либо из реакций за лишнюю неизвестную, мы тем самым выбираем основную систему.

Попробуем теперь превратить основную систему без опоры В в систему, полностью совпадающую с заданной статически неопределимой балкой (Рис.3).

Рис.4. Эквивалентная система

Для этого загрузим ее сплошной нагрузкой q и в точке В приложим лишнюю реакцию В (Рис.4).

Однако этого мало: в балке, представленной на рис.4, точка В может перемещаться по вертикали под действием нагрузок q и В; между тем, в нашей статически неопределимой балке точка В не имеет этой возможности, она должна совпадать с опорным шарниром. Поэтому, чтобы привести к окончательному совпадению, надо к последней добавить условие, что прогиб точки В основной системы под действием нагрузок q и В должен быть равен нулю:

Это и будет добавочное уравнение, определяющее реакцию В; оно является условием совместности деформаций в рассматриваемом случае: конец В балки не отрывается от опоры.

Решение этого добавочного уравнения возможно несколькими способами.

Способ сравнения деформаций

Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом.

Прогиб точки В основной системы под действием нагрузок q и В складывается из двух прогибов: одного , вызванного лишь нагрузкой q, и другого , вызванного реакцией В. Таким образом,

(1)

Остается вычислить эти прогибы. Для этого загрузим основную систему одной нагрузкой q (рис.4, а).

Рис.4. Расчет прогиба от исходной нагрузки -- а) и реакции -- б)

Тогда прогиб точки В будет равен:

При нагружении основной системы реакцией В (Рис.4,б) имеем:

Подставляя эти значения прогибов в уравнение (1), получаем:

Отсюда

В этом способе мы сначала даем возможность основной системе деформироваться под действием внешней нагрузки q, а затем подбираем такую силу В, которая бы вернула точку В обратно. Таким образом, мы подбираем величину неизвестной дополнительной реакции В с тем расчетом, чтобы уравнять прогибы от нагрузки q и силы В. Этот способ и называют способом сравнения деформаций.

Рис.5. Эпюры поперечных сил и внутренних изгибающих моментов.

Подставляя значение лишней реакции В в уравнения статики, получаем

Выражение изгибающего момента получаем, рассматривая правую часть балки (Рис.4) и подставляя значение В:

Поперечная сила Q выражается формулой

Эпюры моментов и поперечных сил изображены на рис.5. Сечение с наибольшим положительным моментом соответствует абсциссе , определяемой равенством

т.е.

Отсюда соответствующая ордината эпюры моментов, равна:

Лекция № 36. Применение вариационных методов

Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.

«Лишнюю» опорную реакцию В (Рис.1, а) заменяем «лишней» неизвестной силой В, действующей вместе с заданной нагрузкой q на основную статически определимую балку АВ (фиг. 361, б).

Рис.1. Исходная, а) и основная -- б) расчетные схемы

Дифференцируя по силе В потенциальную энергию и вычисляя таким образом прогиб , следует приравнять нулю.

(1)

Остается вычислить М и , установить пределы интеграла и взять его.

Будем считать, что сечение балки не меняется по длине. Тогда уравнение (1) примет вид:

или

отсюда

Далее решение не отличается от описанного в способе сравнения деформаций.

Раскрытие статической неопределимости возможно выполнить также и по теореме Мора. При решении по Мору, кроме первого состояния нагружения основной балки заданной нагрузкой и лишней неизвестной силой (Рис.2, а), следует показать ту же балку во втором состоянии загружения -- силой (Рис.2,б).

Вычисления при обозначениях, принятых на Рис. 2, дают:

а) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции В, д) единичная эпюра моментов

Рис.2. Решение методом Мора и Верещагина

т.е. то же, что и при использовании теоремой Кастильяно.

При решении того же примера по способу Верищагина к двум схемам состояний загружения (Рис.2 а и б) следует построить эпюры моментов: от нагрузки q (Рис.2, в) от силы B (Рис.2 г), и от силы (Рис.2, д).

Величина моментных площадей:

от нагрузки q:

от нагрузки В:

Ординаты эпюр единичной нагрузки:

для умножения на :

для умножения на :

Прогиб в точке В

Отсюда

Совпадение результатов расчета опорной реакции очевидно.

Выбор лишней неизвестной и основной системы

В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В. Мы могли бы выбрать и момент . Соответственно изменилась бы основная система и ход решения. Окончательный же результат, конечно, получился бы прежним. Возьмем за лишнюю неизвестную опорный момент (Рис.3, а). Какой будет основная система? Чтобы получить ее, надо отбросить то опорное закрепление, которое создает момент , т. е. защемление конца А. Чтобы на конце А не было опорного момента, там следует поставить шарнирно-неподвижную опору.

Основной системой будет балка, изображенная на Рис.3, б. Загрузим ее внешней нагрузкой и опорным моментом (фиг. 363, в).

Чтобы эти балки работали одинаково, надо для балки Рис.3, в написать дополнительное условие, что сечение А под действием изображенных нагрузок не может поворачиваться; накладываем это ограничение на перемещение, соответствующее выбранной лишней неизвестной:

Далее, применив для решения уравнения теорему Кастильяно, имеем

а) заданное. б) основная, в) эквивалентная

Рис.3. Расчетные схемы:

следовательно,

Для нахождения М и выразим реакцию В основной системы через и произведем все обычные вычисления:

.

находим:

Отсюда

,

т. е. той же величине, которая была получена раньше. Дальнейший ход решения не отличается от разобранного выше.

Решение той же основной системы (Рис.4, а) с применением способа Верещагина потребует изображения второго состояния загружения основной системы моментом (Рис.4, б) и построения эпюр изгибающего момента: от заданной нагрузки q (Рис.4, в), от момента (Рис.4, г) и от единичной нагрузки; (Рис.4, д). Вычисляем :

а)исходная схема, б) нагружение единичным моментом, в) грузовая эпюра, г) моментная эпюра, д) единичная эпюра моментов

Рис.4. Динамика расчета по методу Верещагина:

Как видно, уравнение для определения полностью совпадает с найденным по теореме Ка-стильяно.

Сравнивая два варианта решения поставленной задачи с лишней неизвестной В и с лишней неизвестной , видим, что при применении способа Кастильяно первый вариант менее сложен по вычислениям. Это объясняется тем, что основной системой в первом варианте является балка, защемленная одним концом, во втором же -- балка на двух опорах; для второй -- вычисления сложнее. Таким образом, лишнюю неизвестную и, следовательно, основную систему надо выбирать с таким расчетом, чтобы выкладки (вычисление изгибающих моментов и т. д.) были проще.

Если бы мы выбрали за лишнюю неизвестную реакцию А, то основную систему следовало бы так устроить, чтобы опора А не давала возможности поворота сечения и горизонтальных перемещений, но допускала бы вертикальные движения.

За лишнюю неизвестную нельзя брать лишь ту реакцию, при отбрасывании которой мы получим изменяемую, неустойчивую основную систему.

Общий план решения статически неопределимой задачи

Таким образом, общий метод решения, статически неопределимых задач распадается на ряд отдельных этапов.

В дух предыдущих лекциях приведены два варианта решения задачи: с лишней реакцией В и с лишней реакцией . Для развертывания добавочного условия даны также два варианта решения: способом сравнения деформаций и с применением теоремы. Кастильяно.

Если бы число реакций статически неопределимой балки было нe четыре, как в рассмотренном примере, а больше, то соответственно увеличилось бы число лишних неизвестных; загрузив основную систему внешней нагрузкой и этими лишними неизвестными, мы можем написать дополнительные условия, ограничивающие деформации балки в тех сечениях, где эти лишние реакции приложены. Таким путем будет получено столько же дополнительных уравнений, сколько лишних неизвестных.

Следовательно, общий метод определения добавочных опорных реакций в статически неопределимых балках основан на том, что якая дополнительная опора, вводя лишнюю неизвестную реакцию, в то же время накладывает дополнительное ограничение в основной статически определимой системе на перемещение, соответствующее лишней неизвестной реакции. Выражая уравнением это ограничение, получаем столько дополнительных уравнений, сколько добавлено новых опорных закреплений.

Определение деформаций статически неопределимых балок

После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем- не отличается от таких же вычислений для статически определимой балки.

...

Подобные документы

  • Понятие прикладной механики. Эпюры внутренних усилий при растяжении-сжатии и кручении. Понятие о напряжениях и деформациях. Свойства тензора напряжений. Механические характеристики конструкционных материалов. Растяжение (сжатие) призматических стержней.

    учебное пособие [1,5 M], добавлен 10.02.2010

  • Системы подвижных взаимосвязанных и параллельных сил. Методы расчета на подвижную нагрузку. Построение линий влияния усилий простой балки в статически определимых системах. Построение линий влияния при узловой передаче нагрузки, определение усилий.

    презентация [136,2 K], добавлен 24.05.2014

  • Краткое описание металлоконструкции крана. Выбор материалов и расчетных сопротивлений. Построение линий влияния. Определение расчетных усилий от заданных нагрузок в элементах моста, подбор его сечений. Расчет концевой балки, сварных швов, прогиба балки.

    курсовая работа [1,3 M], добавлен 12.06.2010

  • Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.

    контрольная работа [1,4 M], добавлен 18.05.2015

  • Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.

    контрольная работа [1,5 M], добавлен 29.01.2014

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Кинематический анализ статически определимых стержневых систем, проектирование их поэтажных схем. Вычисление степени статической неопределимости. Расчет опорных реакций и усилий в стержнях. Построение эпюр участков, моментов, поперечных и продольных сил.

    контрольная работа [3,6 M], добавлен 07.02.2014

  • Анализ напряженно-деформированного состояния элементов стержневой статически неопределимой системы. Определение геометрических соотношений из условия совместности деформаций элементов конструкции. Расчет балки на прочность, усилий в стержнях конструкции.

    курсовая работа [303,5 K], добавлен 09.11.2016

  • Решение задачи определения напряженно-деформированного состояния сооружения, ее этапы. Особенности статически определимой системы. Определение опорных реакций. Внутренние усилия стержневой системы. Алгоритм метода простых сечений. Метод вырезания узла.

    лекция [75,6 K], добавлен 24.05.2014

  • Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.

    контрольная работа [477,1 K], добавлен 02.04.2014

  • Расчет подредукторной фермы вертолета. Ее геометрические параметры. Определение усилий в стержнях фермы и их проектировочный расчет. Расчет кругового кольца при плоском изгибе. Определение внутренних силовых факторов и поперечного сечения шпангоута.

    курсовая работа [776,7 K], добавлен 17.04.2010

  • Теоретические основы создания балки. Построение эпюр и подбор сечений, оценка их экономичности. Создание балки из конкретного металла с заданными характеристиками. Раскрытие статической неопределимости. Расчет нагрузки на элементы и размеров рам.

    курсовая работа [994,2 K], добавлен 27.07.2010

  • Калибровка сварной трубы методом раздачи внутренним гидравлическим давлением и гидравлическим испытанием. Условия эксплуатации гидромеханического пресса. Понятие о напряжениях и деформациях. Методика определения и работы раздачи в толстостенном цилиндре.

    реферат [1,3 M], добавлен 01.11.2014

  • Определение нагрузки и расчетных усилий, воспринимаемых балками настила до и после реконструкции здания. Подбор сечения балки настила. Усиление балки увеличением сечения. Расчет поясных швов и опорного узла. Проверка прочности и жесткости усиленной балки.

    контрольная работа [49,2 K], добавлен 20.01.2015

  • Определение геометрических характеристик поперечного сечения бруса. Расчет на прочность и жесткость статических определимых балок при плоском изгибе, построение эпюры поперечных сил. Расчет статически не определимых систем, работающих на растяжение.

    контрольная работа [102,8 K], добавлен 16.11.2009

  • Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.

    контрольная работа [1,1 M], добавлен 26.05.2014

  • Выполнение проектировочного расчета на прочность и выбор рациональных форм поперечного сечения. Выбор размеров сечения балки при заданной схеме нагружения и материале. Определение моментов в характерных точках. Сравнительный расчет и выбор сечения балки.

    презентация [100,2 K], добавлен 11.05.2010

  • Расчетная схема сварной подкрановой балки. Расчет конструкции и краткая технология изготовления балки. Построение линий влияния и определение величины изгибающего момента для различных сечений балки от веса тяжести. Конструирование опорных узлов балки.

    курсовая работа [835,8 K], добавлен 05.03.2013

  • Определение сил, действующих на зубчатые колёса (тангенсальной, осевой и радиальной). Расчет сосредоточенного момента и силы зацепления. Построение эпюр внутренних усилий. Поиск диаметров поперечных сечений вала. Подбор сечения вала по условию жесткости.

    курсовая работа [938,7 K], добавлен 24.06.2015

  • Рассмотрение теоретических вопросов, связанных с расчетом балки на прочность при прямом изгибе. Способы определения напряжения в поперечном сечении. Расчет балки с двусвязным поперечным сечением аналитическим способом и с помощью программы APM Beam.

    курсовая работа [1,6 M], добавлен 19.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.