Основы сопротивления материалов

Метод сечений для определения внутренних усилий. Понятие о напряжениях и деформациях. Расчет статически неопределимых систем по допускаемым нагрузкам. Составные балки и перемещения при изгибе. Расчет динамического коэффициента при ударной нагрузке.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 15.09.2017
Размер файла 3,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Необходимо лишь отметить, что в этом случае мы будем иметь избыточное число уравнений для определения постоянных интегрирования. Этот избыток равен числу лишних неизвестных. Избыточные уравнения при правильно найденных реакциях обратятся в, тождества, ибо они уже и были использованы при нахождении лишних неизвестных. Так для балки, с левым (А), жесткозащемленным и правым (В), шарнирноопертыми концами с пролетом l, получим следующее дифференциальное уравнение изогнутой оси:

Интегрируем:

(а)

(b)

Постоянных интегрирования две, условий же для их определения можно написать три, а именно:

в точке А при прогиб и угол поворота ;

В х=0 у = 0.

Третье из этих уравнений обратится в тождество, ибо оно уже было нами использовано при составлении дополнительного уравнения, из которого мы нашли для В значение . Заметим, что мы могли бы использовать уравнение изогнутой оси балки для нахождения лишней неизвестной. Приняв за лишнюю неизвестную реакцию В, составим и проинтегрируем дифференциальное уравнение изогнутой оси; получим формулы (а) и (b).

Используя граничные условия в точках А и В, получим три уравнения, из которых найдем реакцию В и постоянные интегрирования С и D.

Лекция № 37. Расчет статически неопределимых стержневых систем

Связи, накладываемые на систему. Степень статической неопределимости.

Для решения большинства статически неопределимых встречающихся на практике задач обозначенные приемы оказываются, однако, далеко не достаточными. Поэтому необходимо остановиться на более общих методах раскрытия статической неопределимости на примере стержневых систем.

Под стержневой системой в широком смысле слова понимается всякая конструкция, состоящая из элементов, имеющих форму бруса. Если элементы конструкции работают в основном на растяжение или сжатие, то стержневая система называется фермой (рис. 1).

Рис.1. Расчетная схема формы

Ферма состоит из прямых стержней, образующих треугольники. Для формы характерно приложение внешних сил в узлах.

Если элементы стержневой системы работают в основном на изгиб или кручение, то система называется рамой (рис. 2).

Особую, наиболее простую для исследования группу стержневых систем составляют плоские системы. У плоской рамы или фермы оси всех составляющих элементов до и после деформации расположены в одной плоскости. В этой же плоскости действуют все внешние силы, включая и реакции опор (см. рис. 2,а).

Наряду с плоскими рассматриваются так называемые плоско-пространственные системы. Для такого рода систем оси составляющих элементов в недеформированном состоянии располагаются, как и для плоских систем, в одной плоскости. Внешние же силовые факторы действуют в плоскостях, перпендикулярных к этой плоскости (рис. 2,в). Стержневые системы, не относящиеся к двум указанным классам, называются пространственными (рис.2,в).

Рамы и фермы принято разделять на статически определимые и статически неопределимые. Под статически определимой понимается такая кинематически неизменяемая система, для которой все реакции опор могут быть определены при помощи уравнений равновесия, а затем при найденных опорных реакциях методом сечений могут быть найдены также и внутренние силовые факторы в любом поперечном сечении. Под статически неопределимой системой имеется в виду такая, опять же кинематически неизменяемая система, для которой определение внешних реакций и внутренних силовых факторов не может быть произведено при помощи метода сечений и уравнений равновесия.

а) плоская, б) плоскопространственная. в) пространственная

Рис.2. Расчетные схемы рамных конструкций:

Разность между числом неизвестных (реакций опор и внутренних силовых факторов) и числом независимых уравнений статики, которые могут быть составлены для рассматриваемой системы, носит название степени или числа статической неопределимости. В зависимости от этого числа системы разделяются на один, два, три...., n раз статически неопределимые. Иногда говорят, что степень статической неопределимости равна числу дополнительных связей, наложенных на систему. Остановимся на этом вопросе подробнее.

Положение жесткого бруса в пространстве определяется шестью независимыми координатами, иначе говоря, жесткий брус обладает шестью степенями свободы. На брус могут быть наложены связи, т. е. ограничения, обусловливающие его определенное положение в пространстве. Наиболее простыми связями являются такие, при которых полностью исключается то или иное обобщенное перемещение для некоторых сечений бруса. Наложение одной связи снимает одну степень свободы с бруса как с жесткого целого. Следовательно, если на свободный жесткий брус наложено шесть связей, то положение его в пространстве как жесткого целого будет, за некоторыми исключениями, определено полностью и система из механизма, обладающего шестью степенями свободы, превращается в кинематически неизменяемую систему. То число связей, при котором достигается кинематическая неизменяемость, носит название необходимого числа связей. Всякую связь, наложенную сверх необходимых, называют дополнительной. Число дополнительных связей равно степени статической неопределимости системы.

Связи в рамах и стержневых системах делят обычно на связи внешние и связи внутренние, или взаимные. Под внешними связями понимаются условия, накладываемые на абсолютные перемещения некоторых точек системы.

а)внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае

Рис.3. Схемы эквивалентных связей

Если, например, на левый конец бруса (рис. 3, а) наложено условие, запрещающее вертикальное перемещение, говорят, что в этой точке имеется одна внешняя связь. Условно она изображается в виде двух шарниров или катка. Если запрещено как вертикальное, так и горизонтальное смещение, говорят, что наложены две внешние связи (рис. 3, б). Заделка в плоской системе дает три внешние связи. Пространственная заделка соответствует шести внешним связям (рис. 3, б). Внешние связи часто, как уже упоминалось, делят на необходимые и дополнительные. Например, на рис. 4, а и б показана плоская рама, имеющая в первом случае три внешние связи, а во втором -- пять внешних связей. Для того чтобы определить положение рамы в плоскости как жесткого целого, необходимо наложение трех связей. Следовательно, в первом случае рама имеет необходимые внешние связи, а во втором, кроме того, две дополнительные внешние связи.

а) три внешних связи, б) пять внешних связей

Рис.4. Плоская рама

Под внутренними, или взаимными, связями понимаются ограничения, накладываемые на взаимные смещения элементов рамы. Здесь также можно говорить как о необходимых, так и о дополнительных связях. Так, например, плоская рама, показанная на рис. 5, а, имеет необходимое количество как внешних, так и внутренних связей между элементами. Это -- кинематически неизменяемая система. Если будут заданы внешние силы, мы сможем найти как реакции опор, так и внутренние силовые факторы в любом поперечном сечении рамы. В той же раме, показанной на рис. 5, б, дополнительно наложены две дополнительные внутренние связи, запрещающие взаимное вертикальное и горизонтальное смещения точек А и В. Система в данном случае дважды статически неопределима (иногда добавляют: «внутренним образом»).

В раме рис. 4, а и б также имеются внутренние дополнительные связи. Контур рамы полностью замкнут. Разрезая его в любом сечении (рис.5 в), мы, не нарушая кинематической неизменяемости, получаем возможность при заданных силах найти внутренние силовые факторы в каждом сечении рамы. Следовательно, разрезая замкнутую раму, мы снимаем дополнительные связи, т.е. позволяем сечениям А и В поворачиваться и смещаться в двух направлениях друг относительно друга. Обобщая, можно сказать, что замкнутый плоский контур имеет три дополнительные взаимные связи-- трижды статически неопределим. Таким образом, рама, показанная на рис. 4, а, трижды статически неопределима. Рама, показанная на рис. 4, б, пять раз статически неопределима (три раза внутренним образом и два раза -- внешним).

а) кинематически неизменяемая, б) неопределимая внутренним образом, в)со снятием дополнительных связей

Рис.5. Классификационные признаки рам:

Рассмотрим теперь несколько примеров определения степени статической неопределимости стержневых и рамных систем. На рис. 6 показано несколько рам. Последовательно рассмотрим их.

а) Рама имеет четыре дополнительные внешние связи и три взаимные связи, т. е. семь раз статически неопределима.

б) Полагаем сначала, что шарнир А отсутствует. Тогда имеются две внешние и три внутренние дополнительные связи. Система без шарнира А была бы пять раз статически неопределимой.

Шарнир А принадлежит одновременно трем стержням. Его можно рассматривать как два совпавших шарнира (рис. 7). Так как каждый шарнир снимает одну связь, т. е. разрешает поворот одного сечения относительно другого, то можно сказать, что шарнир А снимает две связи. Система становится, таким образом, вместо пяти -- три раза статически неопределимой.

Обобщая сказанное, можно сделать вывод, что шарнир снимает число связей, на единицу меньшее числа сходящихся в нем стержней. В данном случае в шарнире А сходятся три стержня и шарнир снимает две связи.

а) статически неопределимая -- семь, б) -- три, в) -- четыре, г) -- три, е) -- двенадцать, ж) -- семь, д) -- три, и) -- тринадцать раз статически неопределима

Рис.6. Примеры рамных конструкций:

в) Если бы шарнир А отсутствовал, система была бы четыре раза внешним образом и три раза внутренним образом статически неопределимой, т. е. всего семь раз. Шарнир А снимает число связей, на единицу меньшее числа сходящихся в нем стержней, т. е. три связи. Рама четыре раза статически неопределима.

г) Рама три раза статически неопределима.

д) Внешние связи не удовлетворяют условиям кинематической неизменяемости. Это -- механизм, точнее говоря, мгновенный механизм. Система имеет возможность поворачиваться относительно верхней опоры как жесткое целое Понятно, что угол поворота будет небольшим. Нижняя связь заклинится и будет достигнуто какое-то положение равновесия, но новое положение связей будет зависеть от жесткости системы. К раме неприменимы основные принципы сопротивления материалов: принцип неизменности начальных размеров и принцип независимости действия сил.

Рис.7. модель двух совпадших шарниров

е) Рама -- пространственная. Имеется шесть дополнительных внешних связей (лишняя заделка) и шесть дополнительных взаимных связей (замкнутый контур) Система 12 раз статически неопределима.

ж) Система семь раз статически неопределима (один раз внешним образом и шесть раз -- внутренним).

з) Здесь для плоской рамы не показаны внешние связи, но дана система внешних сил, удовлетворяющая условиям равновесия. В таком случае условились считать, что дополнительных внешних связей нет, и положение рамы в пространстве считается определенным; рассматриваются только внутренние связи. Система три раза статически неопределима.

и) Здесь также рассматриваются только внутренние связи, поскольку система указанных внешних сил удовлетворяет условиям равновесия. Нужно подсчитать, сколько сечений необходимо сделать в раме, чтобы, с одной стороны, она не «рассыпалась», а с другой, чтобы в ней не осталось ни одного замкнутого контура. Таких сечений следует сделать пять (см. рис. 6, и). Система 30 раз статически неопределима.

Лекция № 38. Метод сил

Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается так, чтобы перемещения в системе соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом, при указанном способе решения неизвестными оказываются силы. Отсюда и название «метод сил». Такой прием не является единственно возможным. В строительной механике широко применяются и другие методы, например метод деформаций, в котором за неизвестные принимаются не силовые факторы, а перемещения в элементах стержневой системы.

Итак, раскрытие статической неопределимости любой рамы методом сил начинается с отбрасывания дополнительных связей. Система, освобожденная от дополнительных связей, становится статически определимой. Она носит название основной системы.

а-д) модификации основной системы

Рис.1. пример стержневой рамы:

Для каждой статически неопределимой стержневой системы можно подобрать, как правило, сколько угодно основных систем. Например, для рамы, показанной на рис. 1, можно предложить основные системы, а), б),..., которые получены путем отбрасывания семи дополнительных связей в различных комбинациях. Вместе с тем нужно помнить, что не всякая система с семью отброшенными связями может быть принята как основная. На рис. 2 показано три примера для той же рамы, в которой также отброшено семь связей, однако сделано это неправильно, так как оставшиеся связи не обеспечивают кинематической неизменяемости системы, с одной стороны, и статической определимости во всех узлах,-- с другой.

Рис.2.Некорректные преобразования заданной системы в основные по причине кинематической изменяемости- а) б), или статической определимости во всех узлах -- в)

После того как дополнительные связи отброшены и система превращена в статически определимую, необходимо, как уже говорилось, ввести вместо связей неизвестные силовые факторы. В тех сечениях, где запрещены линейные перемещения, вводятся силы. Там, где запрещены угловые смещения, вводятся моменты. Как в том, так и в другом случае неизвестные силовые факторы будем обозначать Xi-, где i -- номер неизвестного. Наибольшее значение i равно степени статической неопределимости системы. Заметим, что для внутренних связей силы Xi, -- являются взаимными. Если в каком-либо сечении рама разрезана, то равные и противоположные друг другу силы и моменты прикладываются как к правой, так и к левой частям системы.

а)-д) по отношению к заданной системе

Рис.3. Пять разновидностей основных систем

Основная система, к которой приложены все внешние заданные силы и неизвестные силовые факторы, носит название эквивалентной системы. На рис. 3 показано пять эквивалентных систем, которые соответствуют приведенным выше основным системам (рис. 1). Принцип приложения неизвестных силовых факторов становится ясным без дальнейших пояснений.

Теперь остается составить уравнения для определения неизвестных.

Обратимся к некоторому конкретному примеру. Рассмотрим, например, первую эквивалентную систему из числа представленных на рис. 3,4. Тем, что рассматривается конкретно взятая семь раз статически неопределимая система, общность рассуждений не будет нарушена.

Перейдем теперь к составлению уравнений для определения неизвестных силовых факторов. Условимся через обозначать взаимное смещение точек системы.

Рис.4. Пример расчета рамы а)по выбранной основной системе- б)

Первый индекс при соответствует направлению перемещения, а второй -- силе, вызвавшей это перемещение.

В рассматриваемой раме в точке А отброшена неподвижная опора. Следовательно, горизонтальное перемещение здесь равно нулю и можно записать:

Индекс 1 означает, что речь идет о перемещении по направлению силы Х1, а индекс [Х1, Х2,..., Р] показывает, что перемещение определяется суммой всех сил, как заданных, так и неизвестных.

Аналогично можно записать:

Так как под величиной понимается взаимное смещение точек, то обозначает вертикальное смещение точки В относительно С, -- горизонтальное взаимное смещение тех же точек, есть взаимное угловое смещение сечений В и С. Угловым смещением будет также в рассматриваемой системе величина .

В точках A и D смещения являются абсолютными. Но абсолютные смещения можно рассматривать как смещения, взаимные с неподвижными отброшенными опорами. Поэтому принятые обозначения приемлемы для всех сечений системы.

Пользуясь принципом независимости действия сил, раскроем выражения для перемещений

Аналогичным образом запишем и остальные пять уравнений: каждое из слагаемых , входящих в уравнение, обозначает перемещение в направлении силы с первым индексом под действием силы, стоящей во втором индексе. Поскольку каждое перемещение пропорционально соответствующей силе, величину можно записать в следующем виде:

Что касается перемещений , и т. д., то под индексом Р будем понимать не просто внешнюю силу Р, а вообще систему внешних сил, которая может быть произвольной Поэтому величины , ,... в уравнениях оставим неизменными.

Теперь уравнения примут вид:

Эти уравнения являются окончательными и носят название канонических уравнений метода сил. Число их равно степени статической неопределимости системы. В некоторых случаях, как увидим далее, когда имеется возможность сразу указать значения некоторых неизвестных, число совместно решаемых уравнений снижается. Остается теперь выяснить, что представляют собой коэффициенты и как следует их определять. Для этого обратимся к выражению (6.1).

Если , то

Следовательно, коэффициент это есть перемещение по направлению i-го силового фактора под действием единичного фактора, заменяющего k-й фактор. Например, коэффициент уравнения представляет собой взаимное горизонтальное смещение точек B и С, которое возникло бы в раме, если бы к ней вместо всех сил была приложена только единичная сила в точке А (рис. 5 а). Если, например, вместо сил приложив единичные силы, а все прочие силы с эквивалентной системы снять (рис. 5 б), то угол поворота в сечении D под действием этих сил будет , горизонтальное перемещение в точке А будет и т. д.

а) , б) и

Рис.5. Интерпретация коэффициентов уравнений метода сил:

Весьма существенно отметить, что в проделанном выводе совершенно не обусловливается то, каким образом возникают перемещения . Хотя мы и рассматриваем раму, работающую на изгиб, все сказанное с равным успехом может быть отнесено, вообще, к любой системе, работающей на кручение, растяжение и изгиб или на то, другое и третье совместно.

Обратимся к интегралам Мора. Для того чтобы определить величину , следует вместо внешних сил рассматривать единичную силу, заменяющую k-й фактор. Поэтому внутренние моменты и силы , , , , и в интегралах Мора заменим на , , , , и , понимая под ними внутренние моменты и силы от единичного k-го фактора. В итоге получим:

где , … -- внутренние моменты и силы, возникающие под действием i-го единичного фактора. Таким образом, коэффициенты получаются как результат перемножения i-го и k-го внутренних единичных силовых факторов. Индексы i и k непосредственно указывают, какие факторы должны быть перемножены под знаком интегралов Мора. Если рама состоит из прямых участков и можно пользоваться правилом Верещагина, то представляет собой результат перемножения i-х единичных эпюр на k-е единичные эпюры.

Очевидно, что

Это следует, с одной стороны, непосредственно из выражений для , а с другой стороны, из теоремы о взаимности перемещений, поскольку перемещения и возникают под действием одной и той же силы, равной единице.

Величины , входящие в канонические уравнения, представляют собой перемещения в направлениях 1, 2,..., возникающие под действием заданных внешних сил в эквивалентной системе. Они определяются перемножением эпюры моментов заданных сил на соответствующие единичные эпюры.

Пример Раскрыть статическую неопределимость и построить эпюру изгибающих моментов для рамы, показанной на рис. 6.

Рис.6. Заданная расчетная схема

Рама три раза статически неопределима. Выбираем основную систему, отбрасывая левую заделку. Действие заделки заменяем двумя силами , и моментом и определяем эквивалентную систему (рис. 7).

Рис.7. Динамика решения: от эквивалентной системы и силовой эпюры Р, включая эпюры моментов от единичных сил: 1, 2, 3 в точках приложения неизвестных , ,

Канонические уравнения (6.2) принимают для рассматриваемой системы такой вид:

Основные перемещения в рассматриваемой раме определяются изгибом. Поэтому, пренебрегая сдвигом и сжатием стержней, строим эпюры изгибающих моментов от заданной силы P и от трех единичных силовых факторов (рис. 7).

Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ. Величина определяется перемножением первой единичной эпюры самой на себя. Для каждого участка берется, следовательно, площадь эпюры и умножается на ординату этой же эпюры, проходящую через ее центр тяжести:

Заметим, что величины при всегда положительны, поскольку площади эпюр и ординаты имеют общий знак.

Определяем, далее, и остальные коэффициенты уравнений, перемножая эпюры с соответствующими номерами:

, , , , , , , .

Подставляем найденные коэффициенты в канонические уравнения. После сокращений получаем:

, ,

Решая эти уравнения, находим:

, ,

Раскрытие статической неопределимости на этом заканчивается.

Рис.8. Суммарная эпюра изгибающих моментов.

Эпюра изгибающих моментов может быть получена наложением на эпюру моментов заданных сил трех единичных эпюр, увеличенных соответственно в , и раза Суммарная эпюра изгибающих моментов представлена на рис. 8. Там же пунктиром показана форма изогнутой оси рамы.

Лекция № 39. Расчет толстостенных цилиндров

В тонкостенных цилиндрических резервуарах, подвергнутых внутреннему давлению, вполне возможно при вычислениях считать напряжения равномерно распределенными по толщине стенки. Это допущение мало отзывается на точности расчета.

В цилиндрах, у которых толщина стенок не мала по сравнению с радиусом, подобное предположение повело бы к большим погрешностям. Расчет таких цилиндров дан Ляме и Гадолиным в 1852 -- 1854 гг. Работы русского академика А. В. Гадолина в области расчета кривых стержней в применении к расчету прочности артиллерийских орудий создали ему мировую известность. Отечественные артиллерийские заводы (и многие зарубежные) до сих пор проектируют и изготовляют орудия, пользуясь исследованиями Гадолина.

На Рис.1 изображено поперечное сечение толстостенного цилиндра с наружным радиусом , внутренним ; цилиндр подвергнут наружному и внутреннему давлению .

Рис.1. Расчетная схема толстостенного цилиндра.

Рассмотрим очень узкое кольцо материала радиусом внутри стенки цилиндра. Толщину кольца обозначим . Пусть АВ изображает небольшую часть этого кольца, соответствующую центральному углу .

Размер выделенного элемента, перпендикулярный к плоскости чертежа, возьмем равным единице. Пусть и будут напряжения, действующие по внутренней и наружной поверхностям элемента АВ, a -- напряжения по его боковым граням. По симметрии сечения цилиндра и действующей нагрузки элемент АВ перекашиваться не будет, и касательные напряжения по его граням будут отсутствовать. По граням элемента AB, совпадающим с плоскостью чертежа, будет действовать третье главное напряжение , вызванное давлением на днище цилиндра. Это напряжение можно считать постоянным по всем точкам поперечного сечения цилиндра.

На элемент AB действуют в плоскости чертежа две силы coставляющие между собой угол , и радиальная сила, равная

Эта сила направлена в сторону наружной поверхности. Уравновешиваясь, эти три силы составляют замкнутый треугольник abc (Рис.2).

Рис.2. Условия равновесия элемента кольца

Из него следует, что радиальная сила, изображаемая отрезком ab, связана с силой (отрезок са) соотношением

или

;

пренебрегая малыми высшего порядка, получаем:

;

отсюда

(1)

Условие равновесия дало только одно уравнение для нахождения двух неизвестных напряжений. Задача статически неопределима, и необходимо обратиться к рассмотрению деформаций. Деформация цилиндра будет заключаться в его удлинении и в радиальном, перемещении всех точек его поперечных сечений. Назовем радиальное перемещение точек внутренней поверхности рассматриваемого элемента через u (Рис.3). Точки наружной поверхности переместятся по радиусу на другую величину ; таким образом, толщина dr выделенного элемента увеличится на du, и относительное удлинение материала в радиальном направлении будет

Рис.3. Геометрическая модель деформации элемента кольца

В направлении напряжений относительное удлинение будет равно относительному удлинению дуги ab, занявшей положение cd; так как относительное удлинение дуги таково же, как относительное удлинение радиуса r, то . По закону Гука

(2)

Так как и определяются одной и той же функцией и то они связаны условием совместности. Дифференцируем по r:

(3)

Это и будет условие совместности деформаций; заменяя в нем значения и по (2), получим второе уравнение, связывающее и :

или

(4)

Подставляя в это уравнение значение разности из (32.1), находим:

или

(5)

Для совместного решения уравнений (1) и (5) продифференцируем первое по и подставим в него значение из второго; получим:

отсюда дифференциальное уравнение задачи:

(6)

Интеграл этого уравнения будет

(7)

что можно проверить подстановкой.

Постоянные А и В определятся из условий на внутренней и наружной поверхностях цилиндра:

(8)

Знак минус в правых частях этих формул поставлен потому, что положительными мы приняли растягивающие напряжения (Рис.1).

Из условий (8) получаем:

Пользуясь этими значениями и уравнением (7), получаем окончательные формулы для и :

(9)

Как видно из этих формул, сумма ( не зависит от r, т. е. относительная деформация вдоль оси цилиндра во всех точках сечения одинакова (так как и одинаково), и сечение остается плоским

Представляет очень большой практический интерес случай когда имеет место только одно внутреннее давление ; тогда

(10)

График, изображающий распределение напряжений по толщине цилиндра в случае , дан на Рис.3. Так как по абсолютной величине продольное растягивающее напряжение обычно значительно меньше и то прочность цилиндра определяется этими последними. Применяя третью теорию прочности (наибольших касательных напряжений), получаем, что наибольшая разность главных напряжений, равная (для случая )

(11)

Рис.3. Распределение напряжений по толщине цилиндра при

будет иметь место в точках внутренней поверхности цилиндра и всегда будет по абсолютной величине значительно больше внутреннего давления.

Таким образом, остаточные деформации появятся прежде всего у внутренней поверхности цилиндра, когда будет равно пределу текучести материала; борьба с их появлением путем увеличения наружного радиуса практически безнадежна, -- с увеличением растут и числитель, и знаменатель формулы (11); поэтому разность главных напряжений хотя и убывает, но очень медленно. Однако момент появления пластических деформаций у внутренней поверхности цилиндра далеко не соответствует исчерпанию грузоподъемности конструкции; для правильной оценки прочности цилиндра необходимо перейти к расчету по допускаемым нагрузкам.

Рис.4. Динамика зоны текучести по толщине цилиндра

Полное исчерпание грузоподъемности произойдет тогда, когда кольцевая пластическая зона, распространяясь от внутренней поверхности цилиндра, дойдет до наружной; состояние разрушения наступит тогда, когда материал у наружной поверхности достигнет состояния, при котором произойдет разрыв. На фиг. 544 показано отношение внутреннего давления , при котором пластическая зона охватывает все сечение, к давлению, соответствующему началу пластических деформаций . Оказывается, что действительная грузоподъемность значительно выше получаемой при обычном методе расчета.

Упругая грузоподъемность толстостенных цилиндров может быть поднята путем создания начальных напряжений. Для этого необходимо изготовить цилиндр, составленный из двух цилиндров, вставленных один в другой; наружный диаметр внутреннего цилиндра делается несколько больше внутреннего диаметра наружного цилиндра; после одевания наружного цилиндра в нагретом состоянии на внутренний и его остывания по поверхности соприкасания возникнут реакция, сжимающие внутренний и растягивающие внешний цилиндры. Наличие этих начальных напряжений улучшает работу составного цилиндра при внутреннем давлении, как видно из приведенного ниже расчета.

На Рис.5 изображен составной цилиндр после остывания. Напряжения в тангенциальном направлении будут равны: для наружного цилиндра (растяжение)

для внутреннего цилиндра (сжатие)

Рис.5. модель составного цилиндра после остывания.

Установим, какую разницу в радиусах надо дать, чтобы осуществить желательное начальное усилие ; -- это начальный наружный радиус внутреннего цилиндра, а -- начальный внутренний радиус наружного цилиндра.

При остывании наружной трубы происходит выравнивание этих радиусов за счет уменьшения на , и увеличения на ; сумма абсолютных величин этих деформаций должна быть равна :

Относительное тангенциальное удлинение материала на внутренней поверхности наружного цилиндра равно

в эту формулу вместо подставлена величина общего для обоих цилиндров радиуса , так как -- малая величина и такая замена вводит очень небольшую погрешность. Относительное увеличение радиуса будет тоже ; поэтому

Относительное тангенциальное сжатие материала на наружной поверхности внутренней трубы равно:

укорочение радиуса будет равно:

Сумма абсолютных величин и равна по предыдущему

Таким образом, чтобы обеспечить наличие = принятого нами начального усилия необходимо дать разницу диаметров , равную

Минимальная температура , до которой надо нагреть наружный цилиндр при надевании его на внутренний, определяется уравнением

(при наших числовых данных : ).

Напряжения в сферических толстостенных сосудах.

На фиг. 547 изображен элемент, вырезанный из толщи стенки толстостенного сферического сосуда; внутренний радиус этого элемента равен r, а наружный ; напряжения, действующие на этот элемент, изображены на чертеже.

Рис.6. фрагмент сферического толстостенного сосуда.

Составляя уравнения равновесия и совместности, получаем для и значения:

Постоянные А и В могут быть определены из условий на внутренней и внешней поверхностях сосуда при

и

соответственно, где и -- наружный и внутренний радиусы.

Так, при действии внешнего и внутреннего давлений А и В определяются из условий:

на внутренней поверхности,

на внешней поверхности

Отсюда

Тогда

Лекция № 40. Расчет тонкостенных сосудов и резервуаров

Если толщина стенок цилиндра мала по сравнению с радиусами и , то известное выражение для тангенцальных напряжений приобретает вид

т. е. величину, определенную нами раньше (§ 34).

Для тонкостенных резервуаров, имеющих форму поверхностей вращения и находящихся под внутренним давлением р, распределенным симметрично относительно оси вращения, можно вывести общую формулу для вычисления напряжений.

Выделим (Рис.1) из рассматриваемого резервуара элемент двумя смежными меридиональными сечениями и двумя сечениями, нормальными к меридиану.

Рис.1. Фрагмент тонкостенного резервуара и его напряженное состояние.

Размеры элемента по меридиану и по перпендикулярному к нему направлению обозначим соответственно и , радиусы кривизны меридиана и перпендикулярного к нему сечения обозначим и , толщину стенки назовем t.

По симметрии по граням выделенного элемента будут действовать только нормальные напряжения в меридиальном направления и в направлении, перпендикулярном к меридиану. Соответствующие усилия, приложенные к граням элемента, будут и . Так как тонкая оболочка сопротивляется только растяжению, подобно гибкой нити, то эти усилия будут направлены по касательной к меридиану и к сечению, нормальному к меридиану.

Усилия (Рис.2) дадут в нормальном к поверхности элемента направлении равнодействующую ab, равную

Рис.2. Равновесие элемента тонкостенного резервуара

Подобным же образом усилия дадут в том же направлении равнодействующую Сумма этих усилий уравновешивает нормальное давление, приложенное к элементу

Отсюда

Это основное уравнение, связывающее напряжения и для тонкостенных сосудов вращения, дано Лапласом.

Так как мы задались распределением (равномерным) напряжений по толщине стенки, то задача статически определима; второе уравнение равновесия получится, если мы рассмотрим равновесие нижней, отрезанной каким-либо параллельным кругом, части резервуара.

Рассмотрим случай гидростатической нагрузки (рис.3). Меридиональную кривую отнесем к осям х и у с началом координат в вершине кривой. Сечение проведем на уровне у от точки О. Радиус соответствующего параллельного круга будет х.

Рис.3. Равновесие нижнего фрагмента тонкостенного резервуара.

Каждая пара усилий , действующих на диаметрально противоположные элементы проведенного сечения, дает вертикальную равнодействующую bс, равную

сумма этих усилий, действующих по всей окружности проведенного сечения, будет равна ; она будет уравновешивать давление жидкости на этом уровне плюс вес жидкости в отрезанной части сосуда .

Отсюда

Зная уравнение меридиональной кривой, можно найти , х и для каждого значения у, и стало быть, найти , а из уравнения Лапласа и

Например, для конического резервуара с углом при вершине , наполненного жидкостью с объемным весом у на высоту h, будем иметь:

тогда

Для сферического сосуда радиусом , находящегося под внутренним давлением , по симметрии ; тогда из уравнения (Лапласа), так как

и

Если меридиональная кривая будет иметь переломы с разрывом непрерывности угла , то равновесие тонкой оболочки у места перелома может быть обеспечено лишь наличием реакций, приложенных к оболочке по окружности в этом месте. Появление таких реакций обеспечивается устройством специальных колец, способных брать на себя усилия, возникающие в них в связи с неуравновешенностью напряжений по обе стороны точки перелома.

Лекция № 41. Расчет быстровращающегося диска

Значительный интерес представляет задача о напряжениях и деформациях в быстро вращающихся валах и дисках. Высокие скорости вращения валов паровых турбин обусловливают появление в валах и дисках значительных центробежных усилий. Вызванные ими напряжения распределяются симметрично относительно оси вращения диска.

Рассмотрим наиболее простую задачу о расчете диска постоянной толщины. Расчет такого диска положен в основу некоторых приближенных способов расчета дисков любого профиля. Воспользуемся некоторыми результатами, полученными при выводе формул для расчета толстостенных цилиндров. Предположим, что по толщине диска, принимаемой равной единице, напряжения и не меняются; осевое напряжение будем считать равным нулю.

Составим условия равновесия элемента АВ, выделенного из диска двумя меридиональными сечениями и двумя концентрическими цилиндрическими поверхностями (фиг. 586). В данном случае, кроме сил, действующих по граням элемента АВ, необходимо принять во внимание также и силу инерции направленную вдоль радиуса от центра к внешнему контуру диска

Рис.1. Расчетная схема вращающегося диска.

Вместо ранее полученного уравнения равновесия получим:

(1)

Уравнение условий совместности деформаций также остаются в силе и для данной задачи, т. е.

(1)

Подставляя в это уравнение значение разности из (35.4), находим:

(2)

Дифференцируя уравнение (1) по r и подставляя в него вместо его значение из формулы (2), получаем линейное дифференциальное уравнение

Или

Интегрируя это уравнение, находим:

(4)

Из (1) и (4) следует, что

(5)

В формулах (4) и (5) А и В -- постоянные интегрирования, которые должны быть определены из условий на контуре диска. При определении постоянных рассмотрим два случая: 1) диск с отверстием в центре и 2) сплошной диск. При этом вначале предположим, что края диска свободны от внешних усилий.

Для диска с центральным отверстием напряжение должно быть равно нулю как при, так и при (рис.1). Эти условия на контуре при подстановке их в формулу (4) приводят к уравнениям:

и

откуда

и

Подставляя значения А и В в формулы (35.7) и (35.8), получаем:

Полагая для краткости можем написать:

и

можем написать:

Замечаем, что напряжение обращается в нуль при и , т. е. на внутреннем и наружном контурах диска; при значениях между 1 и напряжение положительно и, как нетрудно убедиться, достигает наибольшей величины при При этом

(6)

Напряжение при всех значениях также положительно и наибольшей величины достигает у внутреннего края диска, где :

(7)

Сравнивая выражения (6) и (7), убеждаемся, что всегда больше Поэтому при проверке прочности диска как по теории наибольших касательных напряжений, так и по энергетической теории условие прочности должно быть написано в таком виде:

Диск равного сопротивления

Получено, что, изменение напряжений и вдоль радиуса диска постоянной толщины весьма значительно. Наиболее неравномерное распределение напряжений имеет место в дисках постоянной толщины с отверстием в центре. При расчете подобных дисков приходится ориентироваться на наибольшее напряжение у внутреннего края диска, что сильно ограничивает возможность повышения предельных скоростей. Для достижения высоких скоростей вращения диски приходится делать с переменной толщиной, уменьшающейся от центра к окружности диска. Наиболее выгодным является такой профиль диска, в котором напряжения во всех точках диска сохраняют постоянное значение. Подобные диски называются дисками равного сопротивления. При расчете этих дисков исходят из предположения, что по толщине диска напряжения не меняются, что обычно влечет за собой небольшие погрешности в величинах напряжений.

Основные формулы для расчета дисков переменной толщины по прежнему могут быть выведены из рассмотрения условий равновесия элемента диска abcd.

Рис.2. Равновесие элемента диска равного сопротивления.

Переменную толщину диска, являющуюся некоторой функцией радиуса r, обозначим через z. На элемент abcd по меридиональным сечениям ad и bc действуют две силы , составляющие между собой угол ; по грани dc на этот элемент действует радиальное усилие , направленное к центру диска, а по грани ab -- радиальное усилие , направленное от центра к наружной поверхности диска. К этим усилиям должна быть присоединена еще и сила инерции массы элемента

направленная от центра к окружности диска.

Проектируя все перечисленные выше усилия на направление радиуса, получаем такое дифференциальное уравнение равновесия диска переменной толщины:

Или

При z = const, это уравнение обращается в известное для диска постоянной толщины.

В случае диска равного сопротивления напряжения и всюду постоянны и равны между собой. Приравнивая их величине допускаемого напряжения [], можем так переписать уравнение равновесия:

или

где

Интегрируя это уравнение, находим:

где С -- постоянная интегрирования. Если диск не имеет отверстия в центре, то из условия, что при r = 0 z = z0, следует: С = z0. Толщина диска в центре (z0) определяется из условий на контуре диска.

Сплошной диск равного сопротивления может быть применен даже при очень высоких окружных скоростях. Однако по конструктивным соображениям на практике обычно применяются диски переменной толщины с отверстием в центре, профиль которых, близкий к профилю диска равного сопротивления, обеспечивает наиболее выгодное распределение напряжений вдоль радиуса. Методы расчета таких дисков рассматриваются в специальных курсах.

Лекция № 42. Устойчивость сжатых стержней. Формула Эйлера

Во всем предыдущем изложении мы определяли поперечные размеры стержней из условий прочности. Однако разрушение стержня может произойти не только потому, что будет нарушена прочность, но и оттого, что стержень не сохранит той формы, которая ему придана конструктором; при этом изменится и характер напряженного состояния в стержне.

Наиболее типичным примером является работа стержня, сжатого силами Р. До сих пор для проверки прочности мы имели условие

Это условие предполагает, что стержень все время, вплоть до разрушения работает на осевое сжатие. Уже простейший опыт показывает, что далеко не всегда возможно разрушить стержень путем доведения напряжений сжатия до предела текучести или до предела прочности материала.

Если мы подвергнем продольному сжатию тонкую деревянную линейку, то она может сломаться, изогнувшись; перед изломом сжимающие силы, при которых произойдет разрушение линейки, будут значительно меньше тех, которые вызвали бы при простом сжатии напряжение, равное пределу прочности материала. Разрушение линейки произойдет потому, что она не сможет сохранить приданную ей форму прямолинейного, сжатого стержня, а искривится, что вызовет появление изгибающих моментов от сжимающих сил Р и, стало быть, добавочные напряжения от изгиба; линейка потеряет устойчивость.

Поэтому для надежной работы конструкции мало, чтобы она была прочна; надо, чтобы все ее элементы были устойчивы: они должны при действии нагрузок деформироваться в таких пределах, чтобы характер их работы оставался неизменным. Поэтому в целом ряде случаев, в частности, для сжатых стержней, помимо проверки на прочность, необходима и проверка на устойчивость. Для осуществления этой проверки надо ближе ознакомиться с условиями, при которых устойчивость прямолинейной формы сжатого стержня нарушается.

Рис.1. Расчетная схема

Возьмем достаточно длинный по сравнению с его поперечными размерами стержень, шарнирно-прикрепленный к опорам (Рис.1), и нагрузим его сверху центрально силой Р, постепенно возрастающей. Мы увидим, что пока сила Р сравнительно мала, стержень будет сохранять прямолинейную форму. При попытках отклонить его в сторону, например путем приложения кратковременно действующей горизонтальной силы, он будет после ряда колебаний возвращаться к первоначальной прямолинейной форме, как только будет удалена добавочная сила, вызвавшая отклонение.

При постепенном увеличении силы Р стержень будет все медленнее возвращаться к первоначальному положению при проверках его устойчивости; наконец, можно довести силу Р до такой величины, при которой стержень, после небольшого отклонения его в сторону, уже не выпрямится, а останется искривленным. Если мы, не удаляя силы Р, выпрямим стержень, он уже, как правило, не сможет сохранить прямолинейную форму. Другими словами, при этом значении силы Р, называемом критическим , мы будем иметь такое состояние равновесия, когда исключается вероятность сохранения стержнем заданной ему прямолинейной формы).

Переход к критическому значению силы Р происходит внезапно; стоит нам очень немного уменьшить сжимающую силу по сравнению с ее критической величиной, как прямолинейная форма равновесия вновь делается устойчивой.

С другой стороны, при очень небольшом превышении сжимающей силой Р ее критического значения прямолинейная форма стержня делается крайне неустойчивой; достаточно при этом небольшого эксцентриситета приложенной силы, неоднородности материала по сечению, чтобы стержень искривился, и не только не вернулся к прежней форме, а продолжал искривляться под действием все возрастающих при искривлении изгибающих моментов; процесс искривления заканчивается либо достижением совершенно новой (устойчивой) формы равновесия, либо разрушением.

Исходя из этого, мы должны практически считать критическую величину сжимающей силы эквивалентной нагрузке, «разрушающей» сжатый стержень, выводящей его (и связанную с ним конструкцию) из условий нормальной работы. Конечно, при этом надо помнить, что «разрушение» стержня нагрузкой, превышающей критическую, может происходить при непременном условии беспрепятственного возрастания искривления стержня; поэтому если при боковом выпучивании стержень встретит боковую опору, ограничивающую его дальнейшее искривление, то разрушение может и не наступить.

Обычно подобная возможность является исключением; поэтому практически следует считать критическую сжимающую силу низшим пределом «разрушающей» стержень силы.

Рис.2. Аналогия понятия устойчивости из механики твердого тела

Явление потери устойчивости при сжатии можно по аналогии иллюстрировать следующим примером из механики твердого тела (рис.2). Будем вкатывать цилиндр на наклонную плоскость ab, которая потом переходит в короткую горизонтальную площадку bс и наклонную плоскость обратного направления cd. Пока мы поднимаем цилиндр по плоскости ab, поддерживая его при помощи упора, перпендикулярного к наклонной плоскости, он будет в.состоянии устойчивого равновесия; на площадке bс его равновесие делается безразличным; стоит же нам поместить цилиндр в точку с, как его равновесие сделается неустойчивым-- при малейшем толчке вправо цилиндр начнет двигаться вниз.

Описанную выше физическую картину потери устойчивости сжатым стержнем легко осуществить в действительности в любой механической лаборатории на очень элементарной установке. Это описание не является какой-то теоретической, идеализированной схемой, а отражает поведение реального стержня под действием сжимающих сил.

Потерю устойчивости прямолинейной формы сжатого стержня иногда называют «продольным изгибом», так как она влечет за собой значительное искривление стержня под действием продольных сил. Для проверки на устойчивость сохранился и до сих пор термин «проверка на продольный изгиб», являющийся условным, так как здесь речь должна идти не о проверке на изгиб, а о проверке на устойчивость прямолинейной формы стержня.

Установив понятие о критической силе, как о «разрушающей» нагрузке, выводящей стержень из условий его нормальной работы, мы легко можем составить условие для проверки на устойчивость, аналогичное условию прочности.

Критическая сила вызывает в сжатом стержне напряжение, называемое «критическим напряжением» и обозначаемое буквой . Критические напряжения являются опасными напряжениями для сжатого стержня. Поэтому, чтобы обеспечить устойчивость прямолинейной формы стержня, сжатого силами Р, необходимо к условию прочности добавить еще условие устойчивости:

где -- допускаемое напряжение на устойчивость, равное критическому, деленному на коэффициент запаса на устойчивость, т. е. .

Для возможности осуществить проверку на устойчивость мы должны показать, как определять и как выбрать коэффициент запаса .

Формула Эйлера для определения критической силы

Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3). Собственным весом стержня пренебрегаем.

Рис.3. Расчетная схема в «задаче Эйлера»

Нагрузим стержень центрально приложенными продольными сжимающими силами и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как .

Деформация изгиба стержня предположена весьма малой, поэтому для решения поставленной задачи можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня. Выбрав начало координат в точке А и направление координатных осей, как показано на рис.3, имеем:

(1)

Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у, а изгибающий момент равен

По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у -- отрицательным и .)

Приведенное только что дифференциальное уравнение принимает вид:

деля обе части уравнения на EJ и обозначая дробь через приводим его к виду:

Общий интеграл этого уравнения имеет вид:

Это решение заключает в себе три неизвестных: постоянные интегрирования а и b и значение , так как величина критической силы нам неизвестна.

Краевые условия на концах стержня дают два уравнения:

в точке А при х = 0 прогиб у = 0,

В х = 1 у = 0.

Из первого условия следует (так как и cos kx =1)

0 = b.

Таким образом, изогнутая ось является синусоидой с уравнением

(2)

Применяя второе условие, подставляем в это уравнение

у = 0 и х = l

получаем:

Отсюда следует, что или а или kl равны нулю.

Если а равно нулю, то из уравнения (2) следует, что прогиб в любом сечении стержня равен нулю, т. е. стержень остался прямым. Это противоречит исходным предпосылкам нашего вывода. Следовательно, sin kl = 0, и величина может иметь следующий бесконечный ряд значений:

где -- любое целое число.

Отсюда , а так как то

и

Иначе говоря, нагрузка, способная удержать слегка искривленный стержень в равновесии, теоретически может иметь целый ряд значений. Но так как отыскивается, и интересно с практической точки зрения, наименьшее значение осевой сжимающей силы, при которой становится возможным продольный изгиб, то следует принять .

Первый корень =0 требует, чтобы было равно нулю, что не отвечает исходным данным задачи; поэтому этот корень должен быть отброшен и наименьшим корнем принимается значение . Тогда получаем выражение для критической силы:

(3)

(Здесь J--минимальный момент инерции поперечного сечения стержня.) Это -- так называемая формула Эйлера для сжатого стержня с шарнирно-опертыми концами. Значению критической силы (3) соответствует изгиб стержня по синусоиде с одной полуволной [формула (2)]

Лекция № 43. Анализ формулы Эйлера

Значениям критической силы высших порядков соответствуют искривления по синусоидам с двумя, тремя и т. д. полуволнами (Рис.1):

(1)

Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

Рис.1

Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

а изогнутая ось представляет синусоиду

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

Значит, а -- это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда

...

Подобные документы

  • Понятие прикладной механики. Эпюры внутренних усилий при растяжении-сжатии и кручении. Понятие о напряжениях и деформациях. Свойства тензора напряжений. Механические характеристики конструкционных материалов. Растяжение (сжатие) призматических стержней.

    учебное пособие [1,5 M], добавлен 10.02.2010

  • Системы подвижных взаимосвязанных и параллельных сил. Методы расчета на подвижную нагрузку. Построение линий влияния усилий простой балки в статически определимых системах. Построение линий влияния при узловой передаче нагрузки, определение усилий.

    презентация [136,2 K], добавлен 24.05.2014

  • Краткое описание металлоконструкции крана. Выбор материалов и расчетных сопротивлений. Построение линий влияния. Определение расчетных усилий от заданных нагрузок в элементах моста, подбор его сечений. Расчет концевой балки, сварных швов, прогиба балки.

    курсовая работа [1,3 M], добавлен 12.06.2010

  • Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.

    контрольная работа [1,4 M], добавлен 18.05.2015

  • Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.

    контрольная работа [1,5 M], добавлен 29.01.2014

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Кинематический анализ статически определимых стержневых систем, проектирование их поэтажных схем. Вычисление степени статической неопределимости. Расчет опорных реакций и усилий в стержнях. Построение эпюр участков, моментов, поперечных и продольных сил.

    контрольная работа [3,6 M], добавлен 07.02.2014

  • Анализ напряженно-деформированного состояния элементов стержневой статически неопределимой системы. Определение геометрических соотношений из условия совместности деформаций элементов конструкции. Расчет балки на прочность, усилий в стержнях конструкции.

    курсовая работа [303,5 K], добавлен 09.11.2016

  • Решение задачи определения напряженно-деформированного состояния сооружения, ее этапы. Особенности статически определимой системы. Определение опорных реакций. Внутренние усилия стержневой системы. Алгоритм метода простых сечений. Метод вырезания узла.

    лекция [75,6 K], добавлен 24.05.2014

  • Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.

    контрольная работа [477,1 K], добавлен 02.04.2014

  • Расчет подредукторной фермы вертолета. Ее геометрические параметры. Определение усилий в стержнях фермы и их проектировочный расчет. Расчет кругового кольца при плоском изгибе. Определение внутренних силовых факторов и поперечного сечения шпангоута.

    курсовая работа [776,7 K], добавлен 17.04.2010

  • Теоретические основы создания балки. Построение эпюр и подбор сечений, оценка их экономичности. Создание балки из конкретного металла с заданными характеристиками. Раскрытие статической неопределимости. Расчет нагрузки на элементы и размеров рам.

    курсовая работа [994,2 K], добавлен 27.07.2010

  • Калибровка сварной трубы методом раздачи внутренним гидравлическим давлением и гидравлическим испытанием. Условия эксплуатации гидромеханического пресса. Понятие о напряжениях и деформациях. Методика определения и работы раздачи в толстостенном цилиндре.

    реферат [1,3 M], добавлен 01.11.2014

  • Определение нагрузки и расчетных усилий, воспринимаемых балками настила до и после реконструкции здания. Подбор сечения балки настила. Усиление балки увеличением сечения. Расчет поясных швов и опорного узла. Проверка прочности и жесткости усиленной балки.

    контрольная работа [49,2 K], добавлен 20.01.2015

  • Определение геометрических характеристик поперечного сечения бруса. Расчет на прочность и жесткость статических определимых балок при плоском изгибе, построение эпюры поперечных сил. Расчет статически не определимых систем, работающих на растяжение.

    контрольная работа [102,8 K], добавлен 16.11.2009

  • Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.

    контрольная работа [1,1 M], добавлен 26.05.2014

  • Выполнение проектировочного расчета на прочность и выбор рациональных форм поперечного сечения. Выбор размеров сечения балки при заданной схеме нагружения и материале. Определение моментов в характерных точках. Сравнительный расчет и выбор сечения балки.

    презентация [100,2 K], добавлен 11.05.2010

  • Расчетная схема сварной подкрановой балки. Расчет конструкции и краткая технология изготовления балки. Построение линий влияния и определение величины изгибающего момента для различных сечений балки от веса тяжести. Конструирование опорных узлов балки.

    курсовая работа [835,8 K], добавлен 05.03.2013

  • Определение сил, действующих на зубчатые колёса (тангенсальной, осевой и радиальной). Расчет сосредоточенного момента и силы зацепления. Построение эпюр внутренних усилий. Поиск диаметров поперечных сечений вала. Подбор сечения вала по условию жесткости.

    курсовая работа [938,7 K], добавлен 24.06.2015

  • Рассмотрение теоретических вопросов, связанных с расчетом балки на прочность при прямом изгибе. Способы определения напряжения в поперечном сечении. Расчет балки с двусвязным поперечным сечением аналитическим способом и с помощью программы APM Beam.

    курсовая работа [1,6 M], добавлен 19.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.