Основы сопротивления материалов

Метод сечений для определения внутренних усилий. Понятие о напряжениях и деформациях. Расчет статически неопределимых систем по допускаемым нагрузкам. Составные балки и перемещения при изгибе. Расчет динамического коэффициента при ударной нагрузке.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 15.09.2017
Размер файла 3,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.

Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно

Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

Влияние способа закрепления концов стержня

Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.

Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить' к основному случаю.

Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.

Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.

Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.

Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ. Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.

Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та,же, что для стойки с шарнирно-опертыми концами при длине :

Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).

Рис.3. Расчетная схема с жесткозакреплеными торцами.

Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :

Полученные выражения можно объединить с формулой для критической силы основного случая и записать:

здесь -- так называемый коэффициент длины, равный:

· при шарнирных концах (основной случай) ,

· одном свободном, другом защемленном ,

· обоих защемленных концах .

Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:

Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом

Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).

На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.

Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).

В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.

Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10--20) уменьшение свободной длины стержня.

Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.

Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.

Лекция № 44. Пределы применимости формулы Эйлера

Казалось бы, что полученные в предыдущих параграфах результаты решают задачу проверки сжатого стержня на устойчивость; остается выбрать лишь коэффициент запаса . Однако это далеко не так. Ближайшее же изучение числовых величин, получаемых по формуле Эйлера, показывает, что она дает правильные результаты лишь в известных пределах.

На рис.1 приведена зависимость величины критических напряжений, вычисленных при различных значениях гибкости для стали 3, обычно применяемой в металлических конструкциях. Эта зависимость представляется гиперболической кривой, так называемой «гиперболой Эйлеpa»:

При пользовании этой кривой надо вспомнить, что представляемая ею формула получена при помощи интегрирования дифференциального уравнения изогнутой оси, т. е. в предположении, что напряжения в стержне в момент потери устойчивости не превосходят предела пропорциональности.

Рис.1. Гиперболическая зависимость критического напряжения от гибкости стержня

Следовательно, мы не имеем права пользоваться величинами критических напряжений, вычисленных по формуле Эйлера, если они получаются выше этого предела для данного материала. Иначе говоря, формула Эйлера применима лишь при соблюдении условия:

или

Если из этого неравенства выразить гибкость , то условие применимости формул Эйлера получит иной вид:

Подставляя соответствующие значения модуля упругости и предела пропорциональности для данного материала, находим наименьшее значение гибкости, при которой еще можно пользоваться формулой Эйлера. Для стали 3 предел пропорциональности может быть принят равным , поэтому, для стержней из этого материала можно пользоваться формулой Эйлера лишь при гибкости

т. е. большей, чем 100 %

Для стали 5 при формула Эйлера применима при гибкости ; для чугуна -- при , для сосны -- при и т. д. Если мы на Рис.1 проведем горизонтальную линию с ординатой, равной , то она рассечет гиперболу Эйлера на две части; пользоваться можно лишь нижней частью графика, относящейся к сравнительно тонким и длинным стержням, потеря устойчивости которых происходит при напряжениях, лежащих не выше предела пропорциональности.

Теоретическое решение, полученное Эйлером, оказалось применимым на практике лишь для очень ограниченной категории стержней, а именно, тонких и длинных, с большой гибкостью. Между тем, в конструкциях очень часто встречаются стержни с малой гибкостью. Попытки использовать формулу Эйлера для вычисления критических напряжений и проверки устойчивости при малых гибкостях вели иногда к весьма серьезным катастрофам, да и опыты над сжатием стержней показывают, что при критических напряжениях, больших предела пропорциональности, действительные критические силы значительно ниже определенных по формуле Эйлера.

Таким образом, надо найти способ вычисления критических напряжений и для тех случаев, когда они превышают предел пропорциональности материалов, например, для стержней из мягкой стали при гибкостях от 0 до 100.

Необходимо сразу же отметить, что в настоящее время важнейшим источником для установления критических напряжений за пределом пропорциональности, т. е. при малых и средних гибкостях, являются результаты экспериментов. Имеются попытки и теоретического решения этой задачи, но они скорее указывают путь к дальнейшим исследованиям, чем дают основания для практических расчетов.

Прежде всего надо выделить стержни с малой гибкостью, от 0 примерно до 30--40; у них длина сравнительно невелика по отношению к размерам поперечного сечения. Например, для стержня круглого сечения гибкости 20 соответствует отношение длины к диаметру, равное 5. Для таких стержней трудно говорить о явлении потери устойчивости прямолинейной формы всего стержня в целом в том смысле, как это имеет место для тонких и длинных стержней.

Эти короткие стержни будут выходить из строя главным образом за счет того, что напряжения сжатия в них будут достигать предела текучести (при пластичном материале) или предела прочности (при хрупких материалах). Поэтому для коротких стержней, до гибкости примерно 3040, критические напряжения «будут равны, или немного ниже (за счет наблюдающегося все же некоторого искривления оси стержня), соответственно или (сталь), или (чугун, дерево).

Таким образом, мы имеем два предельных случая работы сжатых стержней: короткие стержни, которые теряют грузоподъемность в основном за счет разрушения материала от сжатия, и длинные, для которых потеря грузоподъемности вызывается нарушением устойчивости прямолинейной формы стержня. Количественное изменение соотношения длины и поперечных размеров стержня меняет и весь характер явления разрушения. Общим остается лишь внезапность наступления критического состояния в смысле внезапного резкого возрастания деформаций.

В сжатых стержнях большой гибкости, для которых применима формула Эйлера, после достижения силой Р критического значения обычно наблюдается резкий рост деформаций. До этого момента прогибы, как правило, растут с ростом нагрузки, но остаются незначительными. Теоретически можно было бы ожидать, что до критической силы стержень будет оставаться прямым; однако ряд неизбежных на практике обстоятельств -- начальная кривизна стержня, некоторый эксцентриситет приложения нагрузки, местные перенапряжения, неоднородность материала -- вызывают небольшие прогибы и при сжимающих силах, меньших критических.

Подобный же характер имеет и зависимость укорочений от напряжения при сжатии коротких стержней; мы имеет ту же внезапность роста деформаций при определенной величине напряжений (когда ).

Нам остается теперь рассмотреть поведение сжатых стержней при средних величинах гибкости, например для стальных стержней при гибкостях от 40 до 100; с подобными значениями гибкостей инженер чаще всего встречается на практике.

По характеру разрушения эти стержни приближаются к категории ^ тонких и длинных стержней; они теряют свою прямолинейную форму и разрушаются при явлениях значительного бокового выпучивания. При опытах для них можно отметить наличие ясно выраженной критической силы в «эйлеровом» смысле; критические напряжения получаются выше предела пропорциональности и ниже предела текучести для пластичных и предела прочности для хрупких материалов.

Однако потеря прямолинейной формы и понижение критических напряжений по сравнению с короткими стержнями для этих стержней «средней» гибкости связаны с такими же явлениями нарушения прочности материала, какие вызывают потерю грузоподъемности в коротких стержнях. Здесь комбинируются и влияние длины, понижающее величину критических напряжений, и влияние значительного роста деформаций материала при напряжениях за пределом пропорциональности.

Экспериментальное определение критических сил для сжатых стержней производилось неоднократно как у нас, так и заграницей. Особенно обширный опытный материал собрал проф. Ф. Ясинский, составивший таблицу критических («ломающих») напряжений в. зависимости от гибкости для целого ряда материалов и положивший начало современным методам расчета сжатых стержней на устойчивость.

На основании полученного опытного материала можно считать, что при критических напряжениях, меньших предела пропорциональности, все эксперименты подтверждают формулу Эйлера для любого материала.

Для стержней средней и малой гибкости были предложены различные эмпирические формулы, показывающие, что критические напряжения при таких гибкостях меняются по закону, близкому к линейному:

где а и b -- коэффициенты, зависящие от материала, a -- гибкость стержня. Для литого железа Ясинский получил: а = 338,7МПа, b = 1,483 МПа. Для стали 3 при гибкостях от = 40 до = 100 коэффициенты а и b могут быть приняты: а = 336 МПа; b = 1,47МПа. Для дерева (сосна): а = 29,3 МПа; b = 0,194 МПа.

Иногда удобны эмпирические формулы, дающие для неупругой области изменение критических напряжений по закону квадратной параболы; к ним относится формула

Здесь при = 0 считают для пластичного и для хрупкого материала; коэффициент а, подобранный из условия плавного сопряжения с гиперболой Эйлера, имеет значение:

для стали с пределом текучести = 280 МПа а = 0,009 МПа

· сосны прочности = 30; а = 0,0008 »

· чугуна = 420; а = 0,044 »

При наличии приведенных здесь данных может быть построен полный график критических напряжений (в зависимости от гибкости) для любого материала. На Рис.2 приведен такой график для строительной стали с пределом текучести и пределом пропорциональности .

Рис.2. Полный график критических напряжений для строительной стали.

График состоит из трех частей: гиперболы Эйлера при, наклонной прямой при и горизонтальной, или слабо наклонной, прямой при . Подобные же графики можно построить, комбинируя формулу Эйлера с результатами экспериментов, и для других материалов.

Таким образом, можно считать, что задача определения критических напряжений для стержней любой гибкости решена с достаточной для практических целей точностью.

Проверка сжатых стержней на устойчивость

Ранее было отмечено, что для сжатых стержней должны быть произведены две проверки:

на прочность

на устойчивость

где

Для установления допускаемого напряжения на устойчивость нам остается теперь выбрать только коэффициент запаса k.

На практике этот коэффициент колеблется для стали в пределах от 1,8 до 3,0. Коэффициент запаса на устойчивость выбирается выше коэффициента запаса на прочность, равного для стали 1,5 -- 1,6.

Это объясняется наличием ряда обстоятельств, неизбежных на практике (начальная кривизна, эксцентриситет действия, нагрузки, неоднородность материала и т. д.) и почти не отражающихся на работе конструкции при других видах деформации (кручение, изгиб, растяжение).

Для сжатых же стержней, ввиду возможности потери устойчивости, эти обстоятельства могут сильно снизить грузоподъемность стержня. Для чугуна коэффициент запаса колеблется от 5,0 до 5,5, для дерева -- от 2,8 до 3,2.

Чтобы установить связь между допускаемым напряжением на устойчивость [] и допускаемым напряжением на прочность [], возьмем их отношение:

или<

Обозначая

получим:

здесь -- коэффициент уменьшения основного допускаемого напряжения для сжатых стержней.

Имея график зависимости от для данного материала, зная или и выбрав коэффициенты запаса на прочность и на устойчивость , можно составить таблицы значений коэффициента в функции от гибкости. Такие данные приводятся в наших технических условиях на проектирование сооружений; они сведены в таблицу.

Пользуясь этой таблицей, можно произвести подбор сечения сжатого стержня. Так как величина площади сечения зависит от [], а это напряжение в свою очередь через коэффициент связано с гибкостью стержня , т. е. с формой и размерами его сечения, то подбор приходится осуществлять путем последовательных приближений в таком, например, порядке.

Выбираем форму сечения и задаемся его размерами; вычисляем наименьший радиус инерции и гибкость; находим по таблице коэффициент и вычисляем допускаемое напряжение на устойчивость ; сравниваем действительное напряжение с величиной []; если условие устойчивости

не удовлетворено, или удовлетворено с большим запасом, меняем размеры сечения и повторяем расчет. Конечно, окончательно выбранное сечение должно удовлетворять и условию прочности

В практических расчетах условие устойчивости иногда записывается так:

В левой части представляет собой расчетное (условное) напряжение.

Таблица.

Пример.

Подобрать двутавровое сечение стойки с одним защемленным концом, сжатой силами Р = 400 кН; длина стойки l=1,5 м. Основное допускаемое напряжение (Рис.3).

Рис.3. Расчетная схема сжатой стойки.

Так как в условии устойчивости нам не известно ни , ни , одной из этих величин необходимо задаться. Примем для первого приближения . В этом случае необходимая площадь поперечного сечения стержня будет равна

или

По сортаменту выбираем двутавр No 24, b с площадью . Наименьший радиус инерции сечения . Соответствующая гибкость стойки

Коэффициент по интерполяции между значениями его из таблицы для и равен . Расчетным напряжением будет:

Перенапряжение составляет. Подбираем двутавр No 27, а. ; ; наибольшая его гибкость . Так как коэффициент , то расчетное напряжение

Перенапряжение составляет теперь что допустимо.

Лекция № 45. Прочность при циклически изменяющихся напряжениях

Многие детали машин в процессе работы испытывают напряжения, циклически меняющиеся во времени. Так, например ось вагона, вращающаяся вместе с колесами (рис. 1), находятся под действием периодически меняющихся сил и испытывает циклически изменяющиеся напряжения, хотя внешние силы сохраняют свою величину.

Рис.1. Расчетная схема оси вагона.

Для оси вагона на рис. 1 показана эпюра изгибающих моментов. В точке А поперечного сечения (рис. 2, а) имеем:

Расстояние y от точки А до нейтральной оси меняется во времени

где -- угловая скорость вращения колеса.

Следовательно,

Таким образом, нормальное напряжение в сечениях оси меняется по синусоиде с амплитудой (рис. 2, б).

Рис.2. Изменение напряжения в точке А.

Опыт показывает, что при переменных напряжениях после некоторого числа циклов может наступить разрушение детали, в то время как при том же неизменном во времени напряжении разрушения не происходит.

Рис.3. Иллюстрация усталостной прочности.

сечение деформация напряжение балка

Число циклов до момента разрушения зависит от величины и меняется в весьма широких пределах. При больших напряжениях для разрушения бывает достаточно 5--10 циклов. Это хорошо видно хотя бы на примере многократного изгиба куска проволоки (рис. 3).

При меньших напряжениях деталь выдерживает миллионы и миллиарды циклов, а при еще меньших -- способна работать неограниченно долго.

После разрушения на поверхности излома детали обнаруживаются обычно две ярко выраженные зоны ( рис. 4 и 5). В одной зоне кристаллы различаются невооруженным глазом с большим трудом. Поверхность излома имеет сглаженные очертания. В другой зоне явно выступают признаки свежего хрупкого разрушения. Кристаллы имеют острую огранку и блестящую чистую поверхность.

В целом создается первое впечатление, что подобного рода разрушение связано с изменением кристаллической структуры металла. Именно этим и объяснялось в свое время разрушение при циклических напряжениях. Описанное явление получило тогда название усталости, а направление исследований, связанных с прочностью, стало называться усталостной прочностью. В дальнейшем точка зрения на причины усталостного разрушения изменилась, но сам термин сохранился.

В настоящее время установлено, что структура металла при циклических нагрузках не меняется. Начало разрушения носит чисто местный характер. В зоне повышенных напряжений, обусловленных конструктивными, технологическими или структурными факторами, может образоваться микротрещина. При многократном изменении напряжений кристаллы, расположенные в зоне трещины, начинают разрушаться и трещина проникает в глубь тела.

Соприкасающиеся поверхности в зоне образовавшейся трещины испытывают контактное взаимодействие, в результате чего кристаллы истираются, а поверхности приобретают внешний вид мелкозернистой структуры. Так образуется одна из зон поверхности будущего излома.

В результате развития трещины сечение ослабляется. На последнем этапе происходит внезапное разрушение. Излом имеет характерную поверхность с неповрежденными чистыми кристаллами.

Из фотографии (рис. 4) видно, что разрушение бруса произошло в результате развития трещины, образовавшейся у края сечения. Разрушение рельса (рис. 5) обусловлено развитием трещины, образовавшейся внутри сечения в зоне местного порока.

Теоретический анализ усталостной прочности связан с большими трудностями. Природа усталостного разрушения обусловлена особенностями молекулярного и кристаллического строения вещества. Поэтому схема сплошной среды, которая с успехом применялась в рассматривавшихся до сих пор задачах, в данном случае не может быть принята в качестве основы для исследования.

Рис.4. Характерные признаки уталостного разрушения

Рис.5. Характерные признаки усталостного разрушения рельсы

Для создания достаточно стройной теории усталостной прочности необходимо проникнуть в особенности строения кристаллов и межкристаллических связей с последующим привлечением аппарата статистики.

В настоящее время, однако, физические основы теории твердого тела не находятся еще на такой стадии развития, чтобы на их базе можно было бы создать методы расчета на усталостную прочность, удовлетворяющие запросам практики. Поэтому приходится идти по пути накопления экспериментальных фактов, из совокупности которых можно было бы выбрать подходящие правила как руководство для расчета. Объединение и систематика экспериментальных данных и представляет собой в настоящее время содержание теории усталостной прочности.

Отсутствие единых основополагающих законов в этой теории лишает ее стройности. В результате полученные экспериментальные зависимости не являются универсальными, а сами расчеты; дают сравнительно невысокую точность.

Основные характеристики цикла и предел усталости

Рассмотрим вначале случай одноосного напряженного состояния.

Закон изменения главного напряжения о во времени представлен кривой, показанной на рис. 6.

Наибольшее и наименьшее напряжения цикла обозначим через и . Их отношение называется коэффициентом цикла

Рис.6. Закон изменения главного напряжения во времени.

В случае, когда , и цикл называется симметричным. Такой цикл, в частности, имеет место в рассмотренном выше примере вращающейся оси вагона.) Если или же , цикл называется пульсационным (рис. 7). Для пульсационного цикла r = 0 или . Циклы, имеющие одинаковые показатели r, называются подобными.

Рис.7. Симметричный а) и пульсационные б) циклы

Любой цикл может быть представлен как результат наложения постоянного напряжения на напряжение, меняющееся по симметричному циклу с амплитудой (рис. 6). Очевидно, при этом:

, (1)

Считается общепризнанным, что усталостная прочность детали не зависит от закона изменения напряжений внутри интервала . Поэтому между циклами, показанными, например, на рис. 8, различия не делается. Точно та к же считается несущественным и влияние частоты изменения цикла. В итоге цикл определяется только величинами и или же и .

Рис.8. Виды пульсаций в циклах.

Теперь перейдем к механическим характеристикам материала. И условиях циклических напряжений они определяются путем специальных испытаний.

Наиболее распространенными являются испытания в условиях симметричного цикла. При этом обычно используется принцип чистого изгиба вращающегося образца (рис. 9).

Рис.9. Модель усталостного испытания.

Для испытаний в условиях несимметричных циклов используются либо специальные машины, либо же вводятся дополнительные приспособления. Так, например, можно на испытуемом образце установить пружину, создающую постоянное растяжение образца с напряжением . Во время испытания на это напряжение накладывается напряжение от изгиба, меняющееся по симметричному циклу.

Путем многократных испытаний (если имеется достаточное количество образцов) можно определить число циклов, которое выдерживает образец до разрушения, в зависимости от величины цикла. Эта зависимость имеет вид кривой, показанной на рис.10

В связи с тем, что число циклов с уменьшением возрастает в высокой степени, предпочитают в ряде случаев по оси абсцисс откладывать не число N а его логарифм.

Опыт показывает, что для большинства черных металлов можно указать такое наибольшее максимальное напряжение, при котором материал не разрушается при любом числе циклов. Такое напряжение называется пределом усталости, или пределом выносливости.

Предел выносливости обозначается через , где индекс r соответствует коэффициенту цикла. Так, для симметричного цикла обозначение предела выносливости принимает вид , для пульсирующего или . и т. д.

Рис.10. Зависимость числа циклов разрушения от максимального напряжения.

Для цветных металлов и для закаленных до высокой твердости сталей не удается установить такое число циклов, выдержав которое, образец не разрушился бы в дальнейшем. Поэтому в подобных случаях вводится понятие условного предела выносливости. За условный предел выносливости принимается напряжение, при котором образец способен выдержать циклов.

Определение предела выносливости является трудоемкой операцией, поэтому был сделан ряд попыток связать эмпирическими формулами предел выносливости с известными механическими характеристиками материала.

Обычно считается, что для сталей предел выносливости при изгибе составляет половину от предела прочности:

Для высокопрочных сталей можно принять:

Для цветных металлов предел выносливости изменяется в более широких пределах:

Аналогично испытанию на чистый изгиб можно вести испытание «а кручение в условиях циклически изменяющихся напряжений. В этом случае:

Указанные соотношения и все им подобные следует, однако, применять с большой осторожностью, поскольку они получены только для определенных материалов и в определенных условиях испытаний (при изгибе, при кручении).

В связи с этим следует указать, что предел усталости не является характеристикой только свойств материала, как, например, модуль упругости или коэффициент Пуассона. Он зависит также от метода ведения испытаний. Расчетное напряжение для образца не определяет полностью процесс усталостного разрушения. В результате образования трещины величина напряжений и законы их распределения в образце непрерывно меняются в зависимости от условий дальнейшего развития трещины. Последние же в свою очередь зависят от абсолютных размеров образца и характера приложения внешних сил. Все это неминуемо сказывается на предельном числе циклов и на величине предела усталости.

В результате указанных обстоятельств, например, предел усталости, полученный в условиях циклического растяжения и сжатия, оказывается на 10--20% ниже, чем предел усталости, полученный при изгибе. Предел усталости при кручении сплошных образцов отличается от предела усталости, полученного для полых образцов, и т. п.

Лекция № 46. Диаграмма усталостной прочности

Положим, имеется машина, на которой можно производить усталостные испытания в условиях любого несимметричного цикла. Задавая постоянное значение , находим путем последовательных испытаний образцов такое наибольшее значение амплитуды , при котором материал способен еще выдержать неограниченное число циклов. Если для взятого материала такого предельного напряжения не существует, величина определяется по условному базовому числу N.

В результате проведенной серии испытаний устанавливается предельное значение , соответствующее некоторому напряжению . Полученный результат может быть графически изображен точкой в системе координат , ( рис. 438). Сумма координат этой точки дает предельное максимальное напряжение цикла, т. е. предел усталости , где:

Продолжая такие испытания и дальше, получаем множество точек, через которые проводится предельная кривая, характеризующая прочностные свойства материала в условиях несимметричных циклов. Эта кривая носит название диаграммы усталостной прочности (рис. 1).

Точки А к С диаграммы соответствуют пределам прочности.при простом растяжении и сжатии. Точка В отражает результаты испытания в условиях симметричного цикла.

Полученная диаграмма дает возможность судить о прочности конструкции, работающей при циклически изменяющихся напряжениях.

Положим, для некоторой детали цикл характеризуется значениями напряжений и . Эти величины могут рассматриваться как координаты рабочей точки в плоскости , . Если рабочая точка располагается ниже предельной кривой, рассматриваемая деталь может в условиях циклически изменяющихся напряжений работать неограниченно долго. Если рабочая точка оказывается выше предельной кривой, деталь разрушится после некоторого числа циклов.

Так как построение диаграммы усталостной прочности связано с весьма трудоемкими испытаниями, предпочитают обычно полученную кривую АВС заменять двумя прямыми АВ и ВС, как это отмечено пунктиром на рис. 2. Рабочая область при этом несколько сокращается, что дает погрешность в запас прочности.

Рис.1. Реализация предельного напряжения.

Рис.2. Диаграмма усталостной прочности.

Одновременно отсекается сомнительная зона разброса экспериментальных точек.

Для построения упрощенной диаграммы достаточно располагать пределом усталости при симметричном цикле , и иметь значения пределов прочности и .

Рабочая точка в плоскости , не может занимать произвольное положение. Она должна находиться в области осуществимых циклов, которая определяется следующими очевидными условиями:

и

Так как:

, а

то область осуществимых циклов имеет верхнюю границу в виде двух прямых:

и

Эти прямые вместе образуют треугольник АСD (рис.3), который и представляет собой область осуществимых циклов.

Рис.3. Область осуществимых циклов

Рис.4. Область допустимых циклов с ограничениями на пластические деформации.

Для пластичных материалов таким же способом может быть отмечена область упругих деформаций. Граница этой области очерчивается сверху прямыми:

и

В результате получаем треугольник (рис. 3).

Если рабочая точка оказывается в пределах этого треугольника» пластические деформации в детали не возникают. Рабочая точка, находящаяся за пределами треугольника А'С'D', но остающаяся внутри треугольника АСD, свидетельствует о том, что в детали возникают пластические деформации. Если, наконец, рабочая точка оказывается за пределами треугольника АСD, при первом же цикле происходит разрушение детали.

При расчетах конструкций, предназначенных на длительные сроки службы, напряжения цикла ограничиваются как по условиям усталостной прочности, так и по условиям недопущения пластических деформаций. Поэтому, объединяя диаграммы, показанные на рис. 2 и 3, получаем рабочую область в виде многоугольника А'КВLС' (рис.4). Рабочая точка (р. т.) исследуемого цикла для рассчитываемой детали должна находиться в пределах указанного многоугольника.

Теперь возникает вопрос, как определить координаты рабочей точки и как определить коэффициент запаса детали в условиях циклического нагружения. Оба эти вопроса содержат в своем решении ряд специфических особенностей, к рассмотрению которых сейчас и перейдем.

Лекция № 47. Расчет коэффициентов запаса усталостной прочности

Одним из основных факторов, которые необходимо учитывать при практических расчетах на усталостную прочность, является фактор местных напряжений.

а) растяжение, б) изгиб, в) контактные напряжения

Рис.1. Очаги концентрации местных напряжений:

Многочисленные теоретические и экспериментальные исследования показывают, что в области резких изменений в форме упругого тела (входящие углы, отверстия, выточки), а также в зоне контакта деталей возникают повышенные напряжения с ограниченной зоной распространения, так называемые местные напряжения.

Например, при растяжении полосы с небольшим отверстием рис. 1, а) закон равномерного распределения напряжений вблизи отверстия нарушается. Напряженное состояние становится двухосным, а у края отверстия появляется пик напряжения. Аналогично при изгибе ступенчатого стержня (рис. 1, б) в зоне входящего угла возникает повышенное напряжение, величина которого зависит в первую очередь от радиуса закругления r. При прессовой посадке втулки на вал (рис. 1, в) у концов втулки и вала также возникают местные напряжения. Подобных примеров можно привести очень много.

Величина местных напряжений в зависимости от геометрической формы детали определяется обычно теоретически при помощи методов математической теории упругости.

Основным показателем местных напряжений является теоретический коэффициент концентрации напряжений:

Рис.2. Зона расчета номинального напряжения

где -- наибольшее местное напряжение, а --так называемое номинальное напряжение. Это -- то напряжение, которое определяется по формулам сопротивления материалов без учета эффекта концентрации. Обычно подсчет ведется по наиболее ослабленному сечению детали, как, например, по сечению АА (рис. 2).

Например, для полосы с отверстием (рис. 1, а)

для случая изгиба ступенчатого стержня (рис. 1, б)

Однако, если при подобных подсчетах возникают трудности, за номинальное принимается напряжение в неослабленном сечении. Например, при кручении вала, имеющего поперечное отверстие (рис. 2), имеем:

где -- полярный момент сопротивления неослабленного сечения.

Так или иначе, номинальное напряжение выбирается в первую очередь из соображений, связанных с простотой расчета.

Величина теоретического коэффициента концентрации определена для большинства встречающихся на практике типовых конструктивных элементов.

Рис.3. Определение коэффициента концентрации для полосы с отверстием -- а), с использованием графика -- б)

Данные по величине приводятся в виде таблиц; в справочной литературе по машиностроению. Так, например, на рис. 3 показана зависимость теоретического коэффициента концентрации от соотношения геометрических размеров полосы с отверстием.

Наличие местных напряжений оказывает на прочность детали различное влияние в зависимости от свойств материала и от характера нагружения. В связи с этим в отличие от теоретического вводится понятие эффективного коэффициента концентрации , причем делается различие между постоянными и циклически изменяющимися напряжениями.

При постоянных напряжениях (при r=1) под эффективным коэффициентом концентрации понимается отношение

где --предел прочности для образца, не имеющего очагов концентрации, а --условный предел прочности для образца, обладающего очагами концентрации напряжений.

При испытании, например, призматического стержня с отверстием (рис. 4, а) эффективный коэффициент концентрации напряжений вблизи отверстия определяется отношением разрушающей нагрузки Р к разрушающей нагрузке Р'. То же самое имеет место и для образца с выточкой (рис. 4, б).

Для пластичных материалов местные напряжения в условиях постоянной нагрузки не оказывают на прочность детали существенного влияния. Обычно в зоне повышенных напряжений образуются местные пластические деформации без образования трещины, Весь остальной объем тела за пределами этой зоны работает упруго, и несущая способность сохраняется практически до тех же значений сил, что и при отсутствии очагов концентрации. Это дает право при статическом нагружении не учитывать местных напряжений.

Рис.4. эффект концентрации местных напряжений для детали с отверстием -- а) и с выточкой -- б)

Таким образом, можно считать, что для пластичных материалов:

Для хрупких материалов значение приближается к значению теоретического коэффициента концентрации . Здесь, правда, возможны исключения. Для чугуна, например, независимо от формы детали, . Объясняется это структурными особенностями чугуна, имеющего в своей массе включения графита. Каждое включение является очагом концентрации, приводящим к существенно большим местным напряжениям, чем те, которые обусловливаются конструктивными факторами (выточками, отверстиями и пр.).

В условиях циклически изменяющихся напряжений (при ) эффективный коэффициент концентрации определяется отношением:

где -- предел усталости гладкого образца, а --предел усталости образца, имеющего очаги концентрации напряжений.

Величина , также как и зависит не только от геометрической формы детали, но и от механических свойств материала. Концентрация напряжений существенно сказывается на усталостной прочности и хрупких и пластичных материалов, поскольку и в том и в другом случае при многократном изменении напряжений разрушение начинается с образования местной трещины.

Числовое значение эффективного коэффициента концентрации может быть определено только на основе усталостного испытания большого числа образцов из различных материалов. В настоящее время в этом направлении накоплен достаточно большой экспериментальный материал. Сопоставление полученных результатов позволяет в некоторой ограниченной мере установить соотношение между эффективным и теоретическим коэффициентами концентрации в виде

(13.6)

где q -- так называемый коэффициент чувствительности материала к местным напряжениям.

Величина q зависит в основном от свойств материала. Так, например, можно считать, что для высокопрочных легированных сталей величина q близка к единице. Для конструкционных сталей в среднем , причем более прочным стал ям соответствуют большие значения q. Для чугуна q = 0 и .

Коэффициент чувствительности зависит также в некоторой степени и от геометрических особенностей очага концентрации. Наблюдается некоторое снижение q в случае больших коэффициентов .

При расчетах на усталостную прочность наличие местных напряжений учитывается путем введения поправок в числовые значения координат рабочей точки ( р. т.) на диаграмме усталостной прочности. Так, если расчет детали по номинальным напряжениям дает характеристики цикла и , то с учетом местных напряжений следует соответственно принять значения координат рабочей точки в виде и , где принимается обычно равным единице.

Из всего изложенного следует, что наличие концентрации напряжений снижает усталостную прочность детали. Поэтому при проектировании машин следует стремиться к тому, чтобы влияние местных напряжений было сведено к минимуму. Достигается это, прежде всего, конструктивными мерами. Для ответственных деталей, работающих в условиях циклических напряжений, внешние обводы стремятся сделать возможно более плавными, радиусы закругления во внутренних углах увеличивают, необходимые отверстия располагают в зоне пониженных напряжений и т. д.

Рис.5. Конструкция галтели и проставочных колец

На рис. 5, а показана конструкция галтели с глубоким поднутрением, уменьшающим местные напряжения. Для увеличения радиуса галтели могут применяться также проставочные кольца, как это показано на рис. 5, б. Для снижения местных напряжений иногда практикуется введение разгрузочных канавок (рис. 6, а), наличие которых благотворно сказывается на усталостной прочности вала. Такого же рода разгрузочные канавки могут применяться и в местах посадки (рис. 6, б).

Рис.6. Конструкции разрушенных канавок -- а), в том числе в местах посадок -- б)

Влияние состояния поверхности и размеров детали на усталостную прочность

Так как при циклических напряжениях начало разрушения связано с образованием местной трещины, понятна та роль, которую играет в усталостной прочности детали состояние ее поверхности. Совершенно очевидно, что в случае чистой и тонко обработанной поверхности предел усталости возрастает. При грубой обработке наличие мелких поверхностных дефектов приводит к снижению показателей усталостной прочности. При этом для материалов, обладающих большой чувствительностью к местным напряжениям, влияние состояния поверхности будет более заметным.

При расчетах на усталостную прочность особенности, связанные с обработкой поверхности детали, учитываются коэффициентом качества поверхности:

где ,--предел усталости, полученный на образцах, имеющих стандартную обработку поверхности. В качестве таковой -- принимаете» обычно шлифовка. предел выносливости для образцов, состояние поверхности которых соответствует состоянию поверхности рассчитываемой детали.

На графиках рис. 7 приведены ориентировочные значения коэффициента качества поверхности различных сталей в зависимости от их предела прочности.

Рис.7. График определения коэффициента качества состояния поверхности

Предел прочности для шлифованных образцов принят за единицу (прямая 1). Прямая 2 относится к образцам с полированной поверхностью. Прямая 3 -- к образцам, имеющим поверхность, обработанную резцом. Прямая 4 дает значения коэффициента качества поверхности, имеющей мелкую насечку, а 5 -- относится к поверхности, необработанной после проката. Для поверхностей, корродированных в пресной и морской воде, значения , задаются прямыми 6 и 7.

Коэффициент качества поверхности вводится при расчетах в ординату рабочей точки (р. т.) на диаграмме усталостной прочности. Так, если рассчитанная по номиналу амплитуда цикла равна , то после введения поправки на качество поверхности она принимает значение . Абсцисса рабочей точки остается при этом неизменной, поскольку при постоянных напряжениях качество поверхности на прочность детали влияния не оказывает.

Из всего сказанного видно, что для повышения усталостной прочности необходимо добиваться высокой чистоты поверхности, особенно вблизи очагов концентрации напряжений. Ответственные детали, работающие в тяжелых условиях циклически изменяющихся напряжений, обычно шлифуются и даже полируются.

Большие возможности для повышения усталостной прочности открывают специальные способы обработки поверхности. Сюда относится поверхностное азотирование, которое дает особо ощутимые результаты при наличии концентрации напряжений Предел усталости может быть повышен также путем обкатки поверхности роликами.

Рис.8. График определения масштабного коэффициента.

Особенно большой эффект при наличии очагов концентрации дает дробеструйная обработка поверхности, заключающаяся в обдувке детали чугунной или стальной дробью. В результате такой обработки образуется поверхностный слой с остаточными напряжениями сжатия, что препятствует возникновению местных трещин в дальнейшем.

При расчете детали на усталостную прочность наряду с фактором состояния поверхности необходимо учитывать также еще так называемый масштабный фактор.

Величина предела усталости зависит от абсолютных размеров испытываемых образцов. Объясняется это, как уже указывалось выше, тем, что усталостное разрушение определяется не только напряжением в наиболее опасных точках, но также и общими законами распределения напряжений в объеме тела в процессе образования и развития трещин.

Опыты, проведенные по определению предела усталости для образцов различных размеров, показали, что с увеличением последних предел усталости уменьшается.

Отношение предела усталости детали к пределу усталости образцов стандартного размера называется коэффициентом масштабного фактора, или просто масштабным фактором,

При определении масштабного фактора предполагается, что состояние поверхности испытываемых деталей и образцов одинаково.

На рис. 8 дается ориентировочная зависимость масштабного фактора от диаметра вала для случая изгиба и кручения.

Кривая 1 получена для углеродистой стали при отсутствии местных напряжений. Кривая 2--для легированной стали при отсутствии концентрации напряжении и для углеродистой стали при умеренной концентрации. Кривая 3 относится к легированной стали при наличии концентрации напряжений, а 4 -- к сталям, имеющим высокую степень концентрации напряжений. Как видно из этих кривых, масштабный фактор более резко сказывается при больших местных напряжениях.

При расчетах на прочность коэффициент , так же как и , вводится только в ординату рабочей точки; вместо номинального значения амплитуды цикла берется значение .

Коэффициент запаса усталостной прочности и его определение

Построим диаграмму усталостной прочности и нанесем на ней рабочую точку цикла. Диаграмма строится, как это было показано выше, на основе заданных механических характеристик материала , и , а рабочая точка определяется по номинальным значениям напряжений цикла и . С учетом поправки на концентрацию напряжений, на поверхностный и масштабный факторы координаты рабочей точки примут значения и (рис. 9).

Условимся под запасом усталостной прочности понимать отношение отрезка ОВ к отрезку ОА (см. рис. 9)

Рис.9. Диаграмма усталостной прочности.

Это отношение характеризует степень близости рабочих условий к предельным для данного материала. В частном случае, когда напряжения не меняются во времени ( = 0), данное определение запаса прочности совпадает с обычным.

При подсчете запаса прочности можно прибегать к графическому построению диаграммы усталостной прочности и глазомерной оценке соотношения между отрезками. Точность такого определения остается в пределах точности определения исходных величин и последующих поправок.

В большинстве случаев для определения n предпочитают пользоваться расчетными формулами. Они получаются из геометрических соотношений отрезков, показанных на рис. 9.

Уравнения прямых СD и ОB будут:

,

Исключая из этих уравнений , находим абсциссу точки B, те.-- отрезок Оb,

Искомый запас усталостной прочности:

Так как:

то

Если точка В находится на прямой, ограничивающей цикл по пределу текучести (точка В' на диаграмме рис. 9), расчет на усталостную прочность заменяется обычным расчетом по пределу текучести.

Все рассмотренные до сих пор вопросы усталостной прочности относились к случаю одноосного напряженного состояния. Совершенно аналогичным образом могут быть получены соотношения усталостной прочности для чистого сдвига (кручения). В случаях более общего напряженного состояния задача существенно усложняется.

Известны многие попытки создания гипотез усталостной прочности в сложном напряженном состоянии. Все они сводились в основном к обобщению известных гипотез предельных состояний на случай циклических напряжений. Такой путь, однако, до сих пор не дал положительных результатов, и в настоящее время приходится пользоваться в основном экспериментально установленными зависимостями.

Для наиболее часто встречающегося на практике расчета при двухосном напряженном состоянии , общепринятой в настоящее время является эмпирическая формула Гафа и Полларда

где n -- искомый запас усталостной прочности; -- запас усталостной прочности в предположении, что касательные напряжения отсутствуют; -- запас по касательным напряжениям, установленный в предположении, что .

Приведенная формула применима не только в случае синфазного изменения и , но и при таких циклах, когда максимумы и достигаются не одновременно.

Лекция № 48. Основы вибропрочности конструкций

Постановка задачи. Явление Резонанса

До сих пор мы решали основную задачу сопротивления материалов, определяли размеры поперечных сечений частей конструкции и выбирали для них материал лишь при статическом действии нагрузок.

Статическое действие нагрузок имеет место, когда при передаче давления от одной части конструкции на другую или при действии объемных сил механическое движение этих частей не меняется с течением времени. В этом случае каждый элемент конструкции находится в равновесии под действием внешних нагрузок и напряжений.

Постоянство движения характеризуется тем, что скорость рассматриваемых деталей и каждой их части не меняется -- отсутствует ускорение частиц этих элементов. Наличие же ускорения частиц рассматриваемого тела или соприкасающихся с ним деталей характеризует уже воздействие динамической нагрузки. Так, давление земли на подпорную стенку будет статической нагрузкой, так как ни стенка, ни земляная масса не движутся, -- скорость их постоянна и равна нулю.

Точно так же статическим будет действие поднимаемого груза на канат при постоянной скорости подъема груза. Наоборот, это действие будет динамическим, если груз поднимается с ускорением. Динамическую нагрузку испытывают шатуны паровых машин и двигателей внутреннего сгорания, так как отдельные элементы их движутся с переменной скоростью. В качестве других примеров конструкций, работающих на динамическую нагрузку, можно указать на фундамент машины, имеющей вращающиеся части, расположенные внецентренно относительно оси вращения, -- они будут испытывать центростремительное ускорение; можно указать на фундамент и шток парового молота, так как боек молота при ковке теряет свою скорость за очень короткий период времени, что связано с сообщением ему весьма больших ускорений.

Уже из этих примеров видно, что на практике мы можем встречаться с различными видами ускорения рассматриваемой детали или соприкасающихся с ней тел; оно может быть постоянным по величине и направлению или только по направлению; может быть знакопеременным.

При переменных и знакопеременных напряжениях мы встречаемся с явлением разрушения от постепенно развивающейся трещины -- с явлением усталости. При резком изменении скорости движения элемента конструкции в зависимости от передачи на него давлений от соседних деталей, когда имеет место явление удара, может обнаружиться хрупкость в таких материалах, которые при статическом действии нагрузок оказывались пластичными. Поэтому при проверке прочности деталей конструкций, подвергающихся действию динамических нагрузок, приходится интересоваться влиянием этих нагрузок не только на величину напряжений в детали, но и на сопротивляемость материала.

Влияние ускорений точек деталей конструкции на напряженное состояние материала может быть учтено следующим образом. Если какое-либо тело движется с ускорением, то это значит, что на него передаются (к нему приложены) силы (давления) от других тел; по закону равенства действия и противодействия оно передает на эти тела равные приложенным силам и противоположно направленные реакции, называемые силами инерции. Это рассуждение применимо также и к каждому элементу движущегося с ускорением тела; этот элемент будет передавать на прилегающие части материала усилия, равные силе инерции этого элемента.

...

Подобные документы

  • Понятие прикладной механики. Эпюры внутренних усилий при растяжении-сжатии и кручении. Понятие о напряжениях и деформациях. Свойства тензора напряжений. Механические характеристики конструкционных материалов. Растяжение (сжатие) призматических стержней.

    учебное пособие [1,5 M], добавлен 10.02.2010

  • Системы подвижных взаимосвязанных и параллельных сил. Методы расчета на подвижную нагрузку. Построение линий влияния усилий простой балки в статически определимых системах. Построение линий влияния при узловой передаче нагрузки, определение усилий.

    презентация [136,2 K], добавлен 24.05.2014

  • Краткое описание металлоконструкции крана. Выбор материалов и расчетных сопротивлений. Построение линий влияния. Определение расчетных усилий от заданных нагрузок в элементах моста, подбор его сечений. Расчет концевой балки, сварных швов, прогиба балки.

    курсовая работа [1,3 M], добавлен 12.06.2010

  • Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.

    контрольная работа [1,4 M], добавлен 18.05.2015

  • Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.

    контрольная работа [1,5 M], добавлен 29.01.2014

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Кинематический анализ статически определимых стержневых систем, проектирование их поэтажных схем. Вычисление степени статической неопределимости. Расчет опорных реакций и усилий в стержнях. Построение эпюр участков, моментов, поперечных и продольных сил.

    контрольная работа [3,6 M], добавлен 07.02.2014

  • Анализ напряженно-деформированного состояния элементов стержневой статически неопределимой системы. Определение геометрических соотношений из условия совместности деформаций элементов конструкции. Расчет балки на прочность, усилий в стержнях конструкции.

    курсовая работа [303,5 K], добавлен 09.11.2016

  • Решение задачи определения напряженно-деформированного состояния сооружения, ее этапы. Особенности статически определимой системы. Определение опорных реакций. Внутренние усилия стержневой системы. Алгоритм метода простых сечений. Метод вырезания узла.

    лекция [75,6 K], добавлен 24.05.2014

  • Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.

    контрольная работа [477,1 K], добавлен 02.04.2014

  • Расчет подредукторной фермы вертолета. Ее геометрические параметры. Определение усилий в стержнях фермы и их проектировочный расчет. Расчет кругового кольца при плоском изгибе. Определение внутренних силовых факторов и поперечного сечения шпангоута.

    курсовая работа [776,7 K], добавлен 17.04.2010

  • Теоретические основы создания балки. Построение эпюр и подбор сечений, оценка их экономичности. Создание балки из конкретного металла с заданными характеристиками. Раскрытие статической неопределимости. Расчет нагрузки на элементы и размеров рам.

    курсовая работа [994,2 K], добавлен 27.07.2010

  • Калибровка сварной трубы методом раздачи внутренним гидравлическим давлением и гидравлическим испытанием. Условия эксплуатации гидромеханического пресса. Понятие о напряжениях и деформациях. Методика определения и работы раздачи в толстостенном цилиндре.

    реферат [1,3 M], добавлен 01.11.2014

  • Определение нагрузки и расчетных усилий, воспринимаемых балками настила до и после реконструкции здания. Подбор сечения балки настила. Усиление балки увеличением сечения. Расчет поясных швов и опорного узла. Проверка прочности и жесткости усиленной балки.

    контрольная работа [49,2 K], добавлен 20.01.2015

  • Определение геометрических характеристик поперечного сечения бруса. Расчет на прочность и жесткость статических определимых балок при плоском изгибе, построение эпюры поперечных сил. Расчет статически не определимых систем, работающих на растяжение.

    контрольная работа [102,8 K], добавлен 16.11.2009

  • Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.

    контрольная работа [1,1 M], добавлен 26.05.2014

  • Выполнение проектировочного расчета на прочность и выбор рациональных форм поперечного сечения. Выбор размеров сечения балки при заданной схеме нагружения и материале. Определение моментов в характерных точках. Сравнительный расчет и выбор сечения балки.

    презентация [100,2 K], добавлен 11.05.2010

  • Расчетная схема сварной подкрановой балки. Расчет конструкции и краткая технология изготовления балки. Построение линий влияния и определение величины изгибающего момента для различных сечений балки от веса тяжести. Конструирование опорных узлов балки.

    курсовая работа [835,8 K], добавлен 05.03.2013

  • Определение сил, действующих на зубчатые колёса (тангенсальной, осевой и радиальной). Расчет сосредоточенного момента и силы зацепления. Построение эпюр внутренних усилий. Поиск диаметров поперечных сечений вала. Подбор сечения вала по условию жесткости.

    курсовая работа [938,7 K], добавлен 24.06.2015

  • Рассмотрение теоретических вопросов, связанных с расчетом балки на прочность при прямом изгибе. Способы определения напряжения в поперечном сечении. Расчет балки с двусвязным поперечным сечением аналитическим способом и с помощью программы APM Beam.

    курсовая работа [1,6 M], добавлен 19.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.