Математическая статистика

Основные задачи математической статистики и ее применение в психолого-педагогических науках. Шкалирование, виды шкал. Программные продукты для обработки информации. Выявление различий в уровне исследуемого признака. Факторный и кластерный анализ.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 02.10.2014
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На рис. 28 приведены примеры диаграмм рассеивания для различных значений коэффициента корреляции. Обратите внимание: на последнем рисунке визуально наблюдается нелинейная взаимосвязь между переменными, однако коэффициент корреляции равен нулю. Таким образом, коэффициент корреляции Пирсона есть мера прямолинейной взаимосвязи; он не чувствителен к криволинейным связям.

Ранговый коэффициент корреляции Спирмена

Коэффициент корреляции рангов, предложенный К Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин Правила ранжирования варьирующих величин были описаны выше.

Величина коэффициента линейной корреляции Спирмена также лежит в интервале +1 и -1 Он, как и коэффициент Пирсона, может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале

В принципе число ранжируемых признаков (качеств, черт и т п ) может быть любым, но сам процесс ранжирования большего чем 20 числа признаков -- затруднителен.

Возможно, что именно поэтому таблица критических значений рангового коэффициента корреляции рассчитана лишь для сорока ранжируемых признаков (n < 40). В случае использования большего, чем 40 числа ранжируемых признаков, уровень значимости коэффициента корреляции следует находить с использованием пакетов прикладных программ.

Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле:

.

где n -- количество ранжируемых признаков (показателей, испытуемых)

D -- разность между рангами по двум переменным для каждого испытуемого

У(D2) -- сумма квадратов разностей рангов.

Коэффициент корреляции "ф" (тау) Кендалла

Коэффициент корреляции "ф" (тау) Кендалла относится к числу непараметрических, т е при вычислении этого коэффициента не играет роли характер распределения сравниваемых переменных Коэффициент ф предназначен для работы с данными, полученными в ранговой шкале Иногда этот коэффициент можно использовать вместо коэффициента корреляции Спирмена, поскольку способ его вычисления более прост он основан на вычислении суммы инверсий и совпадений.

Таблица возможного использования коэффициентов корреляции приведена ниже.

Таблица 13

Тип шкалы

Какой коэффициент использовать

Переменная X

Переменная Y

Интервальная или отношений

Интервальная или отношений

Коэффициент Пирсона r xy

Ранговая, интервальная или отношений

Ранговая, интервальная или отношений

Коэффициент Спирмена с xy

Ранговая

Ранговая

Коэффициент "ф" Кендалла

Частная корреляция

Очень часто две переменные коррелируют друг с другом только за счет того, что обе они согласованно меняются под влиянием некоторой третьей переменной. Иными словами, на самом деле связь между соответствующими свойствами отсутствует, но проявляется в статистической взаимосвязи (корреляции) под влиянием общей причины.

Пример

Общей причиной изменчивости двух переменных ("третьей переменной") может являться возраст при изучении взаимосвязи различных психологических особенностей в группе детей разного возраста. Предположим, что изучается взаимосвязь между зрелостью моральных суждений -- Хн скоростью чтения -- К. Но в распоряжении исследователя имеется лишь выборка из 45 детей разного возраста -- от 8 до 14 лет (переменная Z-- возраст). Если будет получена существенная положительная корреляция между Х и У, например rxy = 0,54, то о чем это будет свидетельствовать? Осторожный исследователь вряд ли сделает однозначный вывод о том, что зрелость моральных суждений непосредственно связана со скоростью чтения. Скорее всего, дело в том, что и зрелость моральных суждений, и скорость чтения повышаются с возрастом. Иными словами, возраст является причиной согласованной (прямо пропорциональной) изменчивости и зрелости моральных суждений, и скорости чтения.

Для численного определения степени взаимосвязи двух переменных при условии исключения влияния третьей применяют коэффициент частной корреляции (Partial Correlation). Для вычисления частной корреляции достаточно знать три коэффициента корреляции /--Пирсона между переменными X, У и Z: rxy,rxz и ryz):

Частная корреляция rxy-z равна rxy, при любом фиксированном значении Z (в том случае, если Z линeйнo коррелирует с Х и Y). Например, если значение частной корреляции скорости чтения Х и зрелости моральных суждений Ус учетом возраста равно 0,2 (rxy_z = 0,2) и возраст линейно коррелирует и с Х и с У, то с любой группе детей одного и того же возраста rxy будет тоже равно 0,2.

9. Факторный и кластерный анализ

Возникновение и развитие факторного анализа тесно связано с измерениями в психологии. Длительное время факторный анализ и воспринимался как математическая модель в психологической теории интеллекта. Лишь начиная с 50-х годов XX столетия, одновременно с разработкой математического обоснования факторного анализа, этот метод становится общенаучным. К настоящему времени факторный анализ является неотъемлемой частью любой серьезной статистической компьютерной программы и входит в основной инструментарий всех наук, имеющих дело с многопараметрическим описанием изучаемых объектов, таких, как социология, экономика, биология, медицина и другие.

Основная идея факторного анализа была сформулирована еще Ф. Гальтоном, основоположником измерений индивидуальных различий. Она сводится к тому, что если несколько признаков, измеренных на группе индивидов, изменяются согласованно, то можно предположить существование одной общей причины этой совместной изменчивости -- фактора как скрытой (латентной), непосредственно не доступной измерению переменной. Далее К. Пирсон в 1901 году выдвигает идею "метода главных осей", а Ч. Спирмен, отстаивая свою однофакторную концепцию интеллекта, разрабатывает математический аппарат для оценки этого фактора, исходя из множества измерений способностей. В своей работе, опубликованной в 1904 году, Ч. Спирмен показал, что если ряд признаков попарно коррелируют друг с другом, _ то может быть составлена система линейных уравнений, связывающих все эти признаки, один общий фактор "общей одаренности" и по одному специфическому фактору "специальных способностей" для каждой переменной. В 1930-х годах Л. Терстоун впервые предлагает "многофакторный анализ" для описания многочисленных измеренных способностей меньшим числом общих факторов интеллекта, являющихся линейной комбинацией этих исходных способностей. С 1950-х годов, с появлением компьютеров, факторный анализ начинает очень широко использоваться в психологии при разработке тестов, обоснования структурных теорий интеллекта и личности. При этом исследователь начинает с множества измеренных эмпирических показателей, которые при помощи факторного анализа группируются по факторам (изучаемым свойствам). Факторы получают интерпретацию по входящим в них переменным, затем отбираются наиболее "весомые" показатели этих факторов, отсеиваются малозначимые переменные, вычисляются значения факторов для испытуемых и сопоставляются с внешними эмпирическими показателями изучаемых свойств.

В дальнейшем, по мере развития математического обеспечения факторного анализа, накопления опыта его использования, прежде всего в психологии, задача факторного анализа обобщается. Как общенаучный метод, факторный анализ становится средством для замены набора коррелирующих измерений существенно меньшим числом новых переменных (факторов). При этом основными требованиями являются: а) минимальная потеря информации, содержащейся в исходных данных, и б) возможность представления (интерпретации) факторов через исходные переменные.

Таким образом, главная цель факторного анализа -- уменьшение размерности исходных данных с целью их экономного описания при условии минимальных потерь исходной информации. Результатом факторного анализа является переход от множества исходных переменных к существенно меньшему числу новых переменных -- факторов. Фактор при этом интерпретируется как причина совместной изменчивости нескольких исходных переменных.

Если исходить из предположения о том, что корреляции могут быть объяснены влиянием скрытых причин -- факторов, то основное назначение факторного анализа -- анализ корреляций множества признаков.

Пример 1

Рассмотрим результаты факторного анализа на простом примере. Предположим, исследователь измерил на выборке из 50 испытуемых 5 показателей интеллекта: счет в уме, продолжение числовых рядов, осведомленность, словарный запас, установление сходства. Все показатели статистически значимо взаимосвязаны на уровне р < 0,05, кроме показателя №4 с №1 и 2 (табл. 14).

Таблица 14. Матрица корреляций пяти показателей интеллекта

Показатели

1

2

3

4

5

1

Счет в уме

1,00

0,88

0,33

0,23

0,42

2

Числовые ряды

0,88

1,00

0,32

0,24

0,35

3

Осведомленность

0,33

0,32

1,00

0,58

0,58

4

Словарный запас

0,23

0,24

0,58

1,00

0,54

5

Сходство

0,42

0,35

0,58

0,54

1,00

Таблица 15. Факторные нагрузки после варимакс-вращения

Исходные переменные

Факторные нагрузки

А2 (общность)

Fy

Рг

1

0,97

0,20

0,99

2

0,86

0,20

0,78

3

0,18

0,76

0,62

4

0,09

0,74

0,56

5

0,26

0,69

0,55

Собственное значение

1,79

1,70

3,5

Доля дисперсии

0,36

0,34

0,7

Применив факторный анализ, исследователь выделил два фактора. Основной результат, который подлежит интерпретации исследователем, -- таблица факторных нагрузок после варимакс-вращения (табл. 2). Не рассматривая пока шаги, приводящие к этому результату, попытаемся проинтерпретировать полученные данные. В нашем примере по фактору 1 (F{) максимальные нагрузки имеют переменные 1 и 2. Следовательно, фактор 1 и определяется этими переменными. Поскольку переменная 1 -- счет в уме, а переменная 2 -- продолжение числового ряда, то фактору 1 может быть присвоено название "арифметические способности", как показателю легкости оперирования числовым материалом. Точно так же фактору 2 можно присвоить название "вербальные способности", как показателю словесного понимания. Нетрудно заметить, что переменные, определяющие фактор, сильнее связаны друг с другом, чем с другими переменными (табл. 16). Так, переменные 1 и 2, определяющие фактор 1, сильнее связаны друг с другом, чем с переменными 3, 4 и 5. Таким образом, за взаимосвязью пяти исходных измерений способностей при помощи факторного анализа обнаруживается действие двух латентных переменных (факторов).

Интерпретация фактора через исходные переменные

Интерпретация факторов -- одна из основных задач факторного анализа. Ее решение заключается в идентификации факторов через исходные переменные. Эта идентификация и осуществляется по результатам обработки, представленным в табл. 2.

Основное содержание табл. 2 -- величины аи ... а2$ -- факторные нагрузки переменных 1-5 (строки) по факторам 1 и 2 (столбцы). Факторные нагрузки -- аналоги коэффициентов корреляции, показывают степень взаимосвязи соответствующих переменных и факторов: чем больше абсолютная величина факторной нагрузки, тем сильнее связь переменной с фактором, тем больше данная переменная обусловлена действием соответствующего фактора. Каждый фактор идентифицируется по тем переменным, с которыми он в наибольшей степени связан, то есть по переменным, имеющим по этому фактору наибольшие нагрузки. Идентификация фактора заключается, как правило, в присвоении ему имени, обобщающего по смыслу наименования входящих в него переменных.

Если исследователя интересует только структура измеренных признаков, на этом факторный анализ завершается. Продолжая факторный анализ, исследователь далее может вычислить значения факторов для испытуемых, например, с целью их дифференциации по преобладанию арифметических или вербальных способностей.

Выбирая факторный анализ как средство изучения корреляций, исследователь должен отдавать себе отчет в том, что это один из самых сложных и трудоемких методов. Зачастую нет веских оснований предполагать наличие факторов как скрытых причин изучаемых корреляции, и задача заключается лишь в обнаружении группировок тесно связанных переменных. Тогда целесообразнее вместо факторного анализа использовать кластерный анализ корреляций (см. ниже). Помимо простоты, кластерный анализ обладает еще одним преимуществом: его применение не связано с потерей исходной информации о связях между переменными, что неизбежно при факторном анализе. И уже после выделения групп тесно связанных переменных можно попытаться применить факторный анализ для их объяснения.

Итак, можно сформулировать основные задачи факторного анализа:

Исследование структуры взаимосвязей переменных. В этом случае каждая группировка переменных будет определяться фактором, по которому эти переменные имеют максимальные нагрузки.

Идентификация факторов как скрытых (латентных) переменных -- причин взаимосвязи исходных переменных.

Вычисление значений факторов для испытуемых как новых, интегральных переменных. При этом число факторов существенно меньше числа исходных переменных.

В этом смысле факторный анализ решает задачу сокращения количества признаков с минимальными потерями исходной информации.

Кластерный анализ решает задачу построения классификации, то есть разделения исходного множества объектов на группы (классы, кластеры). При этом предполагается, что у исследователя нет исходных допущений ни о составе классов, ни об их отличии друг от друга. Приступая к кластерному анализу, исследователь располагает лишь информацией о характеристиках (признаках) для объектов, позволяющей судить о сходстве (различии) объектов, либо только данными об их попарном сходстве (различии). В литературе часто встречаются синонимы кластерного анализа: автоматическая классификация, таксономический анализ, анализ образов (без обучения).

Несмотря на то, что кластерный анализ известен относительно давно (впервые изложен Тгуоп в 1939 году), распространение эта группа методов получила существенно позже, чем другие многомерные методы, такие, как факторный анализ. Лишь после публикации книги "Начала численной таксономии" биологами Р. Сокэл и П. Снит в 1963 году начинают появляться первые исследования с использованием этого метода. Тем не менее, до сих пор в психологии известны лишь единичные случаи удачного применения кластерного анализа, несмотря на его исключительную простоту. Вызывает удивление настойчивость, с которой психологи используют для решения простой задачи классификации (объектов, признаков) такой сложный метод, как факторный анализ. Вместе с тем, как будет показано в этой главе, кластерный анализ не только гораздо проще и нагляднее решает эту задачу, но и имеет несомненное преимущество: результат его применения не связан с потерей даже части исходной информации о различиях объектов или корреляции признаков.

Варианты кластерного анализа -- это множество простых вычислительных процедур, используемых для классификации объектов. Классификация объектов -- это группирование их в классы так, чтобы объекты в каждом классе были более похожи друг на друга, чем на объекты из других классов. Более точно, кластерный анализ -- это процедура упорядочивания объектов в сравнительно однородные классы на основе попарного сравнения этих объектов по предварительно определенным и измеренным критериям.

Существует множество вариантов кластерного анализа, но наиболее широко используются методы, объединенные общим названием иерархический кластерный анализ (Hierarchical Cluster Analysis). В дальнейшем под кластерным анализом мы будем подразумевать именно эту группу методов. Рассмотрим основной принцип иерархического кластерного анализа на примере.

Пример 1

Предположим, 10 студентам предложили оценить проведенное с ними занятие по двум критериям: увлекательность (Pref) и полезность (Use). Для оценки использовалась 10-балльная шкала. Полученные данные (2 переменные для 10 студентов) графически представлены в виде графика двумерного рассеивания (рис. 29). Конечно, классификация объектов по результатам измерения всего двух переменных не требует применения кластерного анализа: группировки и так можно выделить путем визуального анализа. Так, в данном случае наблюдаются четыре группировки: 9,2, Ъ -- занятие полезное, но не увлекательное; 1, 10, 8 -- занятие увлекательное, но бесполезное; 5, 7 -- занятие и полезное и увлекательное; 4, 6 -- занятие умеренно увлекательное и умеренно полезное. Даже для трех переменных можно обойтись и без кластерного анализа, так как компьютерные программы позволяют строить трехмерные графики. Но для 4 и более переменных визуальный анализданных практически невозможен. Тем не менее, общий принцип классификации объектов при помощи кластерного анализа не зависит от количества измеренных признаков, так как непосредственной информацией для этого метода являются различия между классифицируемыми объектами.

Рис 29. График двумерного рассеивания переменных "увлекательность" (Pref) и "польза" (Use) для 10 студентов

Кластерный анализ объектов, для которых заданы значения количественных признаков начинается с расчета различий для всех пар объектов. Пользователь может выбрать по своему усмотрению меру различия. В качестве меры различия выбирается расстояние между объектами в Р-мерном пространстве признаков, чаще всего -- евклидово расстояние или его квадрат. В данном случае Р= 2 и евклидово расстояние между объектами i и j определяется формулой:

где х -- это значения одного, а у -- другого признака.

На первом шаге кластерного анализа путем перебора всех пар объектов определяется пара (или пары) наиболее близких объектов, которые объединяются в первичные кластеры. Далее на каждом шаге к каждому первичному кластеру присоединяется объект (кластер), который к нему ближе.

Этот процесс повторяется до тех пор, пока все объекты не будут объединены в один кластер. Критерий объединения объектов (кластеров) может быть разным и определяется методом кластерного анализа. Основным результатом применения иерархического кластерного анализа является дендрограмма -- графическое изображение последовательности объединения объектов в кластеры.

Для данного примера дендрограмма приведена на рис. 30.

Рис. 30. Дендрограмма для 10 студентов (метод средней связи)

На дендрограмме номера объектов следуют по вертикали. По горизонтали отмечены расстояния (в условных единицах), на которых происходит объединение объектов в кластеры. На первых шагах происходит образование кластеров: (3,9,2) и (5,7). Далее образуется кластер (8, 10, 1) -- расстояния между этими объектами больше, чем между теми, которые были объединены на предыдущих шагах. Следующий кластер -- (4, 6). Далее в один кластер объединяются кластеры (5, 7) и (4, 6), и т.д. Процесс заканчивается объединением всех объектов в один кластер. Количество кластеров определяет по дендрограмме сам исследователь. Так, судя по дендрограмме, в данном случае можно выделить три или четыре кластера.

Как видно из примера, кластерный анализ -- это комбинаторная процедура, имеющая простой и наглядный результат. Широта возможного применения кластерного анализа очевидна настолько же, насколько очевиден и его смысл. Классифицирование или разделение исходного множества объектов на различающиеся группы -- всегда первый шаг в любой умственной деятельности, предваряющий поиск причин обнаруженных различий.

Можно указать ряд задач, при решении которых кластерный анализ является более эффективным, чем другие многомерные методы:

· разбиение совокупности испытуемых на группы по измеренным признакам с целью дальнейшей проверки причин межгрупповых различий по внешним критериям, например, проверка гипотез о том, проявляются ли типологические различия между испытуемыми по измеренным признакам;

· применение кластерного анализа как значительно более простого и наглядного аналога факторного анализа, когда ставится только задача группировки признаков на основе их корреляции;

· классификация объектов на основе непосредственных оценок различий между ними (например, исследование социальной структуры коллектива по данным социометрии -- по выявленным межличностным предпочтениям).

Несмотря на различие целей проведения кластерного анализа, можно выделить общую его последовательность как ряд относительно самостоятельных шагов, играющих существенную роль в прикладном исследовании:

Отбор объектов для кластеризации. Объектами могут быть, в зависимости от цели исследования: а) испытуемые; б) объекты, которые оцениваются испытуемыми; в) признаки, измеренные на выборке испытуемых.

Определение множества переменных, по которым будут различаться объекты кластеризации. Для испытуемых -- это набор измеренных признаков, для оцениваемых объектов -- субъекты оценки, для признаков -- испытуемые. Если в качестве исходных данных предполагается использовать результаты попарного сравнения объектов, необходимо четко определить критерии этого сравнения испытуемыми (экспертами).

Определение меры различия между объектами кластеризации. Это первая проблема, которая является специфичной для методов анализа различий: многомерного шкалирования и кластерного анализа. Применяемые меры различия и требования к ним подробно изложены в главе 18 (раздел "Меры различия"),

Выбор и применение метода классификации для создания групп сходных объектов. Это вторая и центральная проблема кластерного анализа. Ее весомость связана с тем, что разные методы кластеризации порождают разные группировки для одних и тех же данных. Хотя анализ и заключается в обнаружении структуры, наделе в процессе кластеризации структура привносится в данные, и эта привнесенная структура может не совпадать с реальной.

Проверка достоверности разбиения на классы.

Последний этап не всегда необходим, например, при выявлении социальной структуры группы. Тем не менее следует помнить, что кластерный анализ всегда разобьет совокупность объектов на классы, независимо от того, существуют ли они на самом деле. Поэтому бесполезно доказывать существенность разбиения на классы, например, на основании достоверности различий между классами по признакам, включенным в анализ. Обычно проверяют устойчивость группировки -- на повторной идентичной выборке объектов. Значимость разбиения проверяют по внешним критериям -- признакам, не вошедшим в анализ.

Перечень вопросов к зачету

1. Шкалирование. Виды шкал.

2. Математическое ожидание случайной величины

3. Параметрические критерии различия.

4. Непараметрические критерии различия.

5. Математическое ожидание случайной величины.

6. Дисперсия случайной величины.

7. Двух модальное распределение случайной величины

8. Зависимые и независимые выборки. Стратифицированные выборки.

9. Репрезентативность и валидность выборки.

10. Гистограмма. Разброс выборки.

11. Нормальное распределение случайной величины.

12. Размах в пределах +/- 3 у - стандартное отклонение от среднего для нормального распределения.

13. Понятие о статистических гипотезах. Нулевая и альтернативная гипотеза.

14. Понятие уровня статистической значимости. Мощность критерия.

15. Непараметрические критерии различия.

16. Критерий знаков (G- критерий) и критерий Вилкоксона. Типичный и нетипичный сдвиг.

17. Критерий Фридмана.

18. Критерий Манна-Уитни

19. Критерий Розенбаума.

20. Критерий Крускала - Уоллиса.

21. Параметрические критерии различий: t-критерий Стьюдента и его смысл.

22. Критерий Хи-квадрат и его смысл.

23. Корреляционный анализ: понятие корреляционной связи; коэффициент корреляции Пирсона.

24. Корреляционный анализ: ранговый коэффициент корреляции Спирмена.

25. Корреляционный анализ: коэффициент корреляции "ф" Кендала.

26. Кластерный анализ: основные идеи кластерного анализа.

27. Элементы факторного анализа. Вращение факторов. Основные задачи психологии, решаемые с использованием кластерного анализа.

Список источников и литературы

Основная

1. Сидоренко Е.В. Методы математической обработки в психологии. СПб, 2007.

2. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных. СПб., Речь, 2006.

3. Наследов А.Д. SPSS компьютерный анализ данных в психологии и социальных науках. СПб., Питер. 2007.

4. Наследов А.Д. SPSS 19. Профессиональный статистический анализ данных. - Спб,: П. 2011. - 400 с.: ил.итер

5. Суходольский Г.В. Математическая психология. Харьков: Изд. Гуманитарный центр, 2006. - 306 с.

6. Ермолаев О.Ю. Математическая статистика для психологов. - М.: МПСИ, Флинта, 2003

Дополнительная

1. Артемьева Е.Ю., Мартынов Е.М. Вероятностные методы в психологии. - М Изд. МГУ, 1975. - 206 с.

2. Басимов М.М. Изучение статистических связей в психологических исследованиях. Монография. М.: Издательство Московского психолого-социального института; Воронеж: НПО "МОДЭК", 2008. - 432 с.

3. Гласс Дж., Стенли Дж. Статистические методы в педагогике и психологии. М.: Прогресс, 1976. - 495 с.

4. Годфруа Ж. Что такое психология? М.: Мир, 1996.

5. Дюк В.А. Компьютерная психодиагоностика. Спб, 1994.

6. Рабочая книга социолога. - М.: Наука. 1983. - 477 с.

7. Как провести социологическое исследование. - М.: Политиздат, 1985. - 225.

8. Плис А.И., Сливина Н.А. Практикум по прикладной статистике в среде SPSS. М.: Финансы и статистика, 2004.

9. stat-msu.narod.ru - Учебные материалы по статистике для психологов. Учебные материалы по курсу математической статистики для психологического факультета МГУ [электронный ресурс]

Образовательные Интернет-ресурсы

1. www.statsoft.ru (портал статистической обработки данных и электронный учебник по статистике в среде "Statistica 6.0")

2. http://www.spss.ru/ (Сайт посвященный работе в среде SPSS, включая примеры и электронный учебник).

Размещено на Allbest.ru

...

Подобные документы

  • Основные этапы обработки данных натуральных наблюдений методом математической статистики. Оценка полученных результатов, их использование при принятии управленческих решений в области охраны природы и природопользования. Проверка статистических гипотез.

    практическая работа [132,1 K], добавлен 24.05.2013

  • Понятие математической статистики как науки о математических методах систематизации и использования статистических данных для научных и практических выводов. Точечные оценки параметров статистических распределений. Анализ вычисления средних величин.

    курсовая работа [215,1 K], добавлен 13.12.2014

  • Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.

    курс лекций [1,1 M], добавлен 08.04.2011

  • Предмет, методы и понятия математической статистики, ее взаимосвязь с теорией вероятности. Основные понятия выборочного метода. Характеристика эмпирической функции распределения. Понятие гистограммы, принцип ее построения. Выборочное распределение.

    учебное пособие [279,6 K], добавлен 24.04.2009

  • Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.

    шпаргалка [945,2 K], добавлен 18.06.2012

  • Программа курса, основные понятия и формулы теории вероятностей, их обоснование и значение. Место и роль математической статистики в дисциплине. Примеры и разъяснения по решению самых распространенных задач по различным темам данных учебных дисциплин.

    методичка [574,5 K], добавлен 15.01.2010

  • Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.

    контрольная работа [62,6 K], добавлен 20.02.2011

  • Понятие, происхождение и предмет статистики с точки зрения современной науки и практики; стадии и методы статистического исследования, математическая составляющая. Метод главных компонент, его применение. Закон больших чисел, парадокс сэра Гиффена.

    курсовая работа [955,2 K], добавлен 17.05.2012

  • Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.

    реферат [105,5 K], добавлен 01.01.2011

  • Правила выполнения и оформления контрольных работ для заочного отделения. Задания и примеры решения задач по математической статистике и теории вероятности. Таблицы справочных данных распределений, плотность стандартного нормального распределения.

    методичка [250,6 K], добавлен 29.11.2009

  • Что такое абсолютные и относительные величины. Применение абсолютной и относительной величины в статистике. Прикладные варианты использования методов математической статистики в различных случаях решения задач. Опыт построения статистических таблиц.

    контрольная работа [39,6 K], добавлен 12.12.2009

  • Предмет, методы и задачи социально-экономической статистики - система показателей, основные группировки и классификации. Статистическое изучение численности населения, источники статистической информации о населении. Уравнение демографического баланса.

    шпаргалка [516,4 K], добавлен 06.04.2008

  • Исследование методики математической обработки многократно усеченной информации. Особенности графического изображения опытной информации. Определение среднего значения показателя надежности, абсолютной характеристики рассеивания и коэффициента вариации.

    курсовая работа [116,1 K], добавлен 16.01.2014

  • Значение математической статистики для анализа закономерностей массовых явлений. Основные теоретические выкладки корреляционного анализа. Применение его инструментария в контексте металлургической промышленности в среде программного средства Statistica 6.

    реферат [261,4 K], добавлен 03.08.2014

  • Предмет и метод математической статистики. Распределение непрерывной случайной величины с точки зрения теории вероятности на примере логарифмически-нормального распределения. Расчет корреляции величин и нахождение линейной зависимости случайных величин.

    курсовая работа [988,5 K], добавлен 19.01.2011

  • Частота встречаемости зарубежных и отечественных фильмов на сайте Megogo.net. Теоретическое описание фильмов сайта. Популярность "отечественных" фильмов. Сравнение размаха количества просмотренных фильмов отечественного и зарубежного производства.

    курсовая работа [239,3 K], добавлен 08.12.2015

  • Формы, виды и способы статистического наблюдения. Виды группировок, их интервал и частота. Структура ряда динамики. Абсолютные и относительные статистические величины. Представление выборки в виде статистического ряда. Точечное и интервальное оценивание.

    курс лекций [1,1 M], добавлен 29.11.2013

  • Словесная, математическая постановка исходной задачи. Исследование математической задачи на корректность. Применение метода экспертных оценок и парных сравнений основных объективных, субъективных факторов, послуживших причиной к поступлению учиться в МАИ.

    курсовая работа [145,1 K], добавлен 19.12.2009

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция [387,7 K], добавлен 12.12.2011

  • Методы регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений. Обзор задач математической статистики. Закон распределения случайной величины. Проверка правдоподобия гипотез.

    презентация [113,3 K], добавлен 01.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.