Интерполяционная формула Стирлинга
Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.01.2013 |
Размер файла | 45,4 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.
лабораторная работа [265,6 K], добавлен 14.08.2010Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа [799,6 K], добавлен 20.01.2010Введение в численные методы, план построения вычислительного эксперимента. Точность вычислений, классификация погрешностей. Обзор методов численного интегрирования и дифференцирования, оценка апостериорной погрешности. Решение систем линейных уравнений.
методичка [7,0 M], добавлен 23.09.2010Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.
курсовая работа [1,7 M], добавлен 03.11.2011Изучение методов Рунге-Кутты четвертого порядка с автоматическим выбором длины шага интегрирования для решения дифференциальных уравнений. Оценка погрешности и сходимость методов, оптимальный выбор шага. Листинг программы для ЭВМ, результаты, иллюстрации.
курсовая работа [2,9 M], добавлен 14.09.2010Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.
курсовая работа [120,8 K], добавлен 27.01.2014Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
контрольная работа [320,8 K], добавлен 13.03.2013Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.
контрольная работа [2,0 M], добавлен 13.06.2012Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [791,0 K], добавлен 12.06.2010Обоснование итерационных методов решения уравнений в свертках, уравнений Винера-Хопфа, с парными ядрами, сингулярных интегральных, интегральных с одним и двумя ядрами. Рассмотрение алгоритмов решения. Анализ учебных программ по данной дисциплине.
дипломная работа [2,2 M], добавлен 27.06.2014Разработка программного обеспечения для решения нелинейных систем алгебраических уравнений методом дифференцирования по параметру и исследование влияние метода интегрирования на точность получаемого решения. Построение графиков переходных процессов.
курсовая работа [619,3 K], добавлен 26.04.2011Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.
курсовая работа [378,5 K], добавлен 08.01.2013Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат [183,1 K], добавлен 24.08.2015Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.
контрольная работа [129,0 K], добавлен 13.03.2012Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.
курсовая работа [97,2 K], добавлен 25.11.2011Определение дифференциальных уравнений в частных производных параболического типа. Приведение уравнения второго порядка к каноническому виду. Принцип построения разностных схем. Конечно-разностный метод решения задач. Двусторонний метод аппроксимации.
дипломная работа [603,8 K], добавлен 24.01.2013Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа [138,9 K], добавлен 08.01.2016Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация [247,7 K], добавлен 20.02.2015Методы численного интегрирования, основанные на том, что интеграл представляется в виде предела суммы площадей. Геометрическое представление метода Гаусса с двумя ординатами. Численные примеры и сравнение методов. Решение систем алгебраических уравнений.
курсовая работа [413,4 K], добавлен 11.06.2014